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Preface

On April 7, 2009 Professor Iver Hakon Brevik, a world-known norwegian scientist in
the area of theoretical physics and hydrodynamics, is celebrating his seventieth birthday.
This special volume represents the collection of articles devoted mainly to Casimir e�ect
and Cosmology and written by his friends and colleagues who wish to pay tribute to this
remarkable event.

It may seem a bit strange why this book appears in Tomsk State Pedagogical University.
There is very natural answer to this question. Tomsk State Pedagogical University (TSPU)
is famous due to its internationally-recognized Scienti�c School of Theoretical Physics. The
interests of this virtual Institute of Theoretical Physics are very wide. The following direc-
tions of leaders of this school may be mentioned: Prof. V.V. Obukhov (General Relativity
and Mathematical Physics), Prof. I.L. Buchbinder (Supergravity, Superstrings and Quantum
Field Theory), Prof. P.M. Lavrov (Quantization and Gauge Fields), Prof. S.D. Odintsov
(Cosmology and Quantum Gravity), Prof. K.E. Osetrin (General Relativity and Mathemat-
ical Physics), Prof. V.Ya. Epp (Electrodynamics and Radiation Theory). About a thousand
of research articles and half a dozen books on theoretical physics are published by these scien-
tists and their younger colleagues from TSPU. Over �fteen years ago, the scienti�c contacts
between Prof. I.H. Brevik (NTNU, Trondheim) and TSPU School of Theoretical Physics were
initiated. Since then, our scienti�c relations were developed up to very high level. There was
published some number of common papers, there was established the cooperation agreement
between TSPU, Tomsk and NTNU, Trondheim. Our students and professors are often guests
of NTNU at Trondheim. That was the reason why according to the iniciative by TSPU Rec-
tor, Prof. V.V. Obukhov it was suggested to publish this special volume Casimir E�ect and
Cosmology devoted to Prof. Iver Brevik seventieth birthday.

The research activity by Iver Brevik is very wide, as one can see from his brief CV attached
at the end of this volume. However, this volume is devoted to only two of the several research
directions by Iver Brevik: Casimir E�ect and Cosmology. Precisely these two areas overlap
with scienti�c interests of some of TSPU scientists. Needless to say that on his 70th birthday
Prof. I.H. Brevik is still very active in science, especially in cosmology and Casimir e�ect at
non-zero temperature. The editors and contributors present this special volume to Iver as a
gift on his 70th anniversary. All of them, together with researchers of TSPU Scienti�c School
of Theoretical Physics and TSPU Rector, Prof. V.V. Obukhov wish him excellent health for
many years and even more brilliant scienti�c achievments.

Prof. S.D. ODINTSOV (Tomsk and Barcelona),
Prof. E. ELIZALDE (Barcelona),
Dr. O.G. GORBUNOVA (Tomsk).
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Spectral zeta function factorization and

the multiplicative anomaly

Emilio Elizalde1 and Miguel Tierz2

Consejo Superior de Investigaciones Cient���cas
Instituto de Ciencias del Espacio & Institut d'Estudis Espacials de Catalunya (IEEC/CSIC)

Campus UAB, Facultat de Ci�encies, Torre C5-Parell-2a planta
08193 Bellaterra (Barcelona) Spain

Abstract

Some basic questions concerning the structure of a generic spectral zeta function (as
its poles and the existence of an Euler product) are addressed, starting from speci�c
considerations for the examples of the Riemann and the Hurwitz zeta functions, and
covering later higher dimensional Epstein zeta series. Use of the strategy of zeta func-
tion factorization �a very useful tool sometimes� allows to give a nice meaning to the
multiplicative anomaly of the zeta regularized determinants, alternative to the usual,
straightforward one. Finally, the question of the existence of a functional equation for
any spectral zeta function is discussed, by taking advantage of the relationships between
the momenta generating functions associated with the given zeta function 3.

1 Introduction

In this paper we discuss some particular and general features of a certain kind of zeta
functions. We focus on a broad class, usually called spectral zeta functions. By a spectral
zeta function we understand a function associated with a numerical sequence {λk}, �which
will typically be the spectrum of a certain di�erential operator� of the following kind:

ζ(s) =
∑

n

λ−s
n (1)

This series is analytical for Re s > s0 (s0 is called the abscissa of convergence), and can be
analytically continued to the rest of the complex plane (with the exception of a number of
poles). Particular cases of the numerical sequence (such as λk = k or λk = k + q) lead to

1E-mail: elizalde@ieec.uab.es elizalde@math.mit.edu//www.ieec.fcr.es/english/recerca/ftc/eli.html
2Present address: Biology Department, Brandeis University, Waltham MA02454, USA.
3This article is dedicated to 70th aniversary of Professor Iver Brevik
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10 Emilio Elizalde and Miguel Tierz. Spectral zeta ...

well-known, important functions. Associated to the Riemann zeta function is one of the most
famous and long-standing problem of contemporary mathematics: the Riemann hypothesis.
While we will not deal with this subject here, it gives us, in fact, some indirect motivation for
our quest, since it leads to the following question. Being the Riemann zeta function maybe
the most simple case from the spectral point of view, what is the reason why it is, without any
doubt, the most important and most studied of all? For many researchers it is the only one
they study, except from its natural number-theoretical generalization to Dirichlet L functions,
of course. To what essential properties owes the Riemann zeta function its importance? This
is probably not hundred per cent clear, but undoubtedly (as identi�ed by Selberg, the great
Norwegian mathematician) such properties include: (i) analyticity on the whole complex
plane (aside from simple poles), (ii) the existence of a simple functional equation (that is,
a re�ection formula which is basically multiplication by a gamma function), and (iii) the
existence of an Euler product [1].

On the other hand, the mathematical theory associated with spectral zeta functions is
rather wide and useful comprising, for example, the theory of pseudodi�erential (ΨDO) elliptic
operators. The zeta function allows to make sense of the determinant associated to the
spectrum, what translated to physical terms opens an incredible amount of possibilities in
quantum �eld theory and the like [2].

From this short summary we guess that, at least from the mathematical point of view, an
important question to be asked is the following. Does a given spectral zeta function share the
basic mathematical properties of the Riemann zeta function? This means in fact, does it have
an Euler product and a functional equation? We can advance a rather generic answer: While
it is usually found that a functional equation is indeed satis�ed, frequently an Euler product
is missing. In this paper we aim at understanding, via some simple examples, why this is
so, by making more precise the �rst statement and producing a number of comments and
observations on the second one. We will start with the second issue, illustrated for the case
of the Hurwitz zeta function. In addition, our discussion will lead to simple but interesting
considerations on the meaning of the multiplicative anomaly of zeta determinants and on the
existence of arbitrary factorizations of zeta functions.

2 The Hurwitz zeta function and the multiplicative anom-

aly

From the spectral point of view, the next to the simplest (Riemann's) example in com-
plexity corresponds to the following spectrum λk = k+ q with q a real parameter, leading to
the Hurwitz zeta function

ζ(s, q) =
∞∑

n=0

(n+ q)−s (2)

As for the case of the Riemann zeta function, it has also a unique pole, at s = 1, with residue
1. For q = 1 one gets back the Riemann zeta function. Both from the physical and from the
mathematical viewpoints, there is one value of the parameter q which is singled out. This
value is q = 1

2 . In physics, this is because it corresponds to the spectrum of a genuine quantum
harmonic oscillator, a system of paramount relevance in nature. In mathematics, it provides
the only case of a Hurwitz zeta function that possesses es an Euler product representation (no
wonder, since as is well known this Hurwitz zeta function is in fact reducible to the Riemann
one by elementary operations). The remarkable fact is that the same value of the parameter
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is singled out for both the physical and the mathematical point of view.4 Moreover, we can
add that this same value of the constant is the one singled out in the case of quadratic zeta
functions (again both for physical and for mathematical reasons), leading to the theory of
Epstein zeta functions [3, 4].

This simple observation leads to the question, whether this fact may have indeed a deeper
signi�cance, very much in line with the pioneering works that try to connect Number Theory
and Physics. In this sense it is worth remarking that, in all these papers the existence of an
Euler product is a central issue, in order to be able to consider the zeta function as a possible
partition function of an hypothetical quantum system. There are also physical situations
where the Hurwitz zeta function with the parameter 1

2 appears jointly with the Riemann
zeta function. One example of this is the computation of vacuum energies in conformal
�eld theories (that de�ne a new grading for the algebra, what has several mathematical
implications). The result is that the vacuum energies are essentially given in terms of ζ(−1, 1)
and ζ(−1, 1

2 ), depending on the boundary conditions (for fermions, the �rst corresponds to
the Neveu-Schwarz sector and the second to the Ramond sector, while for the bosonic case
one has the opposite).

A further observation on the mathematical properties of the Hurwitz zeta function at this
preferred value of the constant can be done from the point of view of regularized computations.
Again, we �nd the value q = 1

2 to have very special features. This is due to the property:
ζ(0, q) = 1

2 − q. To illustrate this point, consider the following spectrum: λn = β(n+ q). The
associated zeta function is:

ζ(s, q) =
∞∑

n=0

[β(n+ q)]−s = β−sζH(s, q), (3)

where the last is Hurwitz's zeta function. To obtain the corresponding determinant, we must
take the derivative

d

ds
ζ(s, q) = −ζH(s, q)β−s lnβ + β−sζ ′H(s, q), (4)

and evaluate it at zero, namely,

−ζ ′(s, q) |s=0= ζH(0, q) lnβ − ζ ′H(0, q) = (
1
2
− q) lnβ − ζ ′H(0, q). (5)

Then, it turns out that

∞∏
n=0

(β(n+ q)) = exp(−ζ ′(s, q) |s=0) = β( 1
2−q) exp (−ζ ′H(0, q)) = β( 1

2−q)
∞∏

n=0

(n+ q). (6)

Once more, the value q = 1
2 is the only one that yields the property that the regularized

product of the spectrum under consideration is absolutely independent of the value of the
parameter β. This implies that only in this case is our physical system invariant under
dilatations of the energy spectrum. This parameter can represent, for instance, a magnetic
�eld. For example, in the case of the Landau problem we have the following spectrum:
En = |B| (n + 1

2 ). For this system, the determinant is independent on the intensity of the
magnetic �eld. As soon as we do not have the value 1

2 this property does not hold any more.
This allows us to make some simple yet interesting remarks regarding the multiplicative

anomaly. Taking logarithms in the expression above, it can be easily shown that the zeta

4And what has the quantum harmonic oscillator to do with the Euler product?
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function calculation of the determinant yields [5]
∞∏

n=0
β =

√
β. Thus, we see immediately that

∞∏
n=0

β
∞∏

n=0

(n+ q) =
√
β

∞∏
n=0

(n+ q) . (7)

Since q 6= 0, it turns out that there is always a multiplicative anomaly. Such anomaly (or
defect, as termed by I. Singer), is de�ned by

det (AB) = det (A) det (B)ea(A,B) (8)

and has the value, in this case, a(A,B) = −q lnβ. For q = 1
2 , the whole anomaly term

e−a(A,B) = 1√
β
cancels exactly with the parameter term, leaving a result which is independent

of β.
Thus, the e�ect of a multiplicative parameter in the spectrum is to multiply the determi-

nant by βζ(0). Since we have that
∞∏

n=1
β = 1√

β
and

∞∏
n=0

β =
√
β, already for this very simple

example we do have a multiplicative anomaly of the type (ζ(0)± 1
2 ) lnβ.

To emphasize, once again, how simple is to get multiplicative anomalies, let us just consider
how

∏∞
n=1 β is computed:

log
∞∏

n=1

β =
∞∑

n=1

log β = log β
∞∑

n=1

1 = −1
2

log λ. (9)

Already an operation as simple as performing the following step Tr [βA] 6= βTr [A] contains
a multiplicative anomaly term (of course one has to take into account that we are dealing
all the time with regularized traces). It is shown in [6] that, with Tr

[
A1+s

]
= a−1s

−1 +
a0 + O (s), there is a multiplicative anomaly a (β,A) = Tr [βA] − βTr [A] = β ln (β) a−1.
For completeness, let us also recall that the zeta regularized trace does not either satisfy the
additive property, that is, generically Tr [A+B] 6= Tr [A] + Tr [B] (see, e.g., [5]).

3 Zeta function factorization

Let us consider an arbitrary, two-dimensional zeta function, factorized as a product of two
one-dimensional zeta functions:

ζ(s) = ζ1(s)ζ2(s) (10)

The determinant associated with ζ(s) is detA = exp(−ζ ′(0)) = exp(−ζ ′1(0)ζ2(0)−ζ1(0)ζ
′

2(0)).
While the determinants associated with ζ1(s) and ζ2(s) are, respectively: detB = exp(−ζ ′1(0))
and detC = exp(−ζ ′2(0)). We see that

det (A) = ( detB)ζ2(0)( detC)ζ1(0). (11)

In the particular case when ζ1(s) and ζ2(s) have the same value at zero: ζ1(0) = ζ2(0) = ζ̃(0),
we have

det (A) = ( detB detC)eζ(0) (12)
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What does this mean and how does it relate to the multiplicative anomaly issue? We can see
this clearly, by way of writing explicit but generic spectra for all the zeta functions involved
and those determinants: ζ1(s) =

∑
n
e−s
n and ζ2(s) =

∑
m
ẽ−s
m . Thus, ζ(s) =

∑
n

∑
m(enẽm)−s,

and also det (A) =
∏
n

∏
m

(enẽm) . We see then, that the computation of
∏
n
en

∏
m
ẽm is es-

sentially equivalently to
∏
n

∏
m

(enẽm) (the precise relation being

(∏
n
en

)ζ2(0)(∏
m
ẽm

)ζ1(0)

=∏
n

∏
m

(enẽm)), and not to
∏
m

(emẽm). That is, the object one computes from the product of

its parts and that leads to the multiplicative anomaly issue. We see here clearly why: when
factorizing the regularized determinant into two regularized products, we are essentially com-
puting the product of all the components in one regularized product, with all the components
in the other regularized products, and not just only the �diagonal� ones.

In other words, we see that one is computing essentially the determinant associated with
the two-dimensional zeta function ζ(s) =

∑
n

∑
m(enẽm)−s, instead of the determinant of

the one-dimensional zeta function ζ(s) =
∑

m(emẽm)−s. Thus, we see that the multiplicative
anomaly has to cancel out this non-diagonal products. With this result, the usual procedure of
associating the product of two determinants with the determinant of their product is not quite
a natural one, since for regularized determinants these quantities cannot be assumed to be
naturally linked. This is why the existence of the multiplicative anomaly cannot be excluded,
even in the most simple cases. This remark is particularly true in the case ζ1(0) = ζ2(0) =
ζ̃(0), since here the relationship between

∏
n
en

∏
m
ẽm and

∏
n

∏
m

(enẽm) is simple:
∏
n
en

∏
m
ẽm =(∏

n

∏
m

(enẽm)
) 1

ζ(0)

. Let us consider for this case the usual expression

det (BC) = detB detCea(B,C), (13)

then

exp(a(B,C)) =
det (BC)

detB detC
=

det (BC)

( detA)
1

ζ(0)
=

(
∏

n enẽn)(∏
n

∏
m

(enẽm)
) 1
eζ(0)

, (14)

or

a(B,C) = ln detBC + 2 ln detA =
∑

n

ln(enẽn) +
1

ζ̃(0)

∑
n

∑
m

ln ẽmen, (15)

which looks a somewhat arti�cial quantity (no wonder, since it links two non-directly related
quantities).

It is a remarkable property of a regularized product that when computing things like
(e1e2...) (ẽ1ẽ2...) we are essentially computing something rather close to (e1ẽ1ẽ2... e2ẽ1ẽ2...e3ẽ1ẽ2...)
and not just simply (e1ẽ1e2ẽ2e3ẽ3....) , that is the quantity that one is used to, from conver-
gent products. In general, if one is dealing with factorizations of the kind ζ(s) =

∏
i

ζi(s) ,

the determinants are related as detA =
∏
i

( detAi)
Q

j 6=i

ζj(0)

. This can be useful for the com-

putation of determinants of multidimensional zeta functions, once its factorization is known.
For a general n-dimensional zeta function we can write its factorization as: ζ(s) =

∏
i

ζdi
i (s),

where di speci�es the dimension of the zeta function, with n =
∑
i

di.
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In the simple examples of the previous sections, where we studied the e�ect of the product
of the spectrum by a constant parameter, we were not dealing with a genuine two-dimensional
zeta function, since one of the factorized spectra was just the constant parameter. It can be
easily checked then, both with the usual method and the methodology of this section that we
get the same results. A number of di�erent examples can be worked out with what we have
learned up to now. For example, if the factorized zeta functions have all value zero at the
origin, then clearly, the associated multidimensional determinant is exactly one. This is clearly

what happens to the product of harmonic oscillators :
∞∏

m=0
· · ·

∞∏
n=0

(n+ 1
2 ) · · ·

(
m+ 1

2

)
= 1. Or,

for example, in a multiple factorization ζ(N)(s) =
N∏

i=1

ζi(s), one of the zeta functions evaluated

at the origin is zero. Without loosing generality let us suppose that ζ1(0) = 0. Then, the

determinant associated with ζ(N)(s) is just
(
e−ζ

′
1(0)
) ∞Q

i=2
ζi(0)

, that is, the determinant of the

zeta function which is zero at the origin, up to the product of the other zeta functions at
zero. A number of examples of this kind (and also related with the multiplicative anomaly
problem) can be worked out in an analogously simple way.

4 Factorizations in the computation of determinants

On a di�erent level, as already indicated above, zeta function factorizations can be useful
for the computation of determinants of multi-dimensional zeta functions and for the compu-
tation of their functional equations as well. It thus seems a mathematical object to be studied
in this context. Of course, the program of zeta function factorization goes much beyond the
simple cases considered above (even if they already describe a rather general setting) such as
for example the factorization of a two-dimensional Epstein zeta function that can be shown
to factorize in terms of the Riemann zeta function and a certain Dirichlet L-function.

In Cartier [7], non-trivial factorizations can be found for zeta functions such as:

ζ(s) =
′∑

m,n

(m2 + n2)−s, (16)

with the summation extended over the pairs (m,n) 6= (0, 0) in Z2. The zeta function can be
expressed as:

ζ(s) = ζR(s)L(χ4, s). (17)

where ζR(s) is the Riemann zeta function and L(χ4, s) the Dirichlet zeta function correspond-
ing to the character χ4. Another very interesting factorization is the one for the following
particular case of the two-dimensional Epstein zeta function:

ζ(s) =
∑
m,n

′
(m2 + nm+ n2)−s = 6ζR(s)L(χ3, s) (18)

The two-dimensional Epstein zeta function is very important in Number Theory. Its
analytical continuation is given by the celebrated Chowla-Selberg formula [8], which for the
Epstein zeta function

ζE(s; a, b, c) =
∑
m,n

′
(am2 + bnm+ cn2)−s (19)
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reads

ζE(s; a, b, c) = 2ζ(2s) a−s +
22s
√
π as−1

Γ(s)∆s−1/2
Γ(s− 1/2)ζ(2s− 1)

+
2s+5/2πs

Γ(s) ∆s/2−1/4
√
a

∞∑
n=1

ns−1/2σ1−2s(n) cos(πnb/a)Ks−1/2

(πn
a

√
∆
)
, (20)

where σs(n) ≡
∑

d|n d
s, i.e., sum over the s-powers of the divisors of n. We observe that the

rhs's of (20) exhibits a simple pole at s = 1, with residue: Ress=1ζE(s; a, b, c; q) = 2π√
∆

=
Ress=1ζE(s; a, b, c; 0).

This formula has been non-trivially extended to situations of physical interest in recent
work [9]. Consider the zeta function (Re s > p/2):

ζA,~c,q(s) =
∑

~n∈Zp

′
[
1
2

(~n+ ~c)T
A (~n+ ~c) + q

]−s

≡
∑

~n∈Zp

′
[Q (~n+ ~c) + q]−s

. (21)

As before, the prime on a summation sign means that the point ~n = ~0 is to be excluded from
the sum. As we shall see, this is irrelevant when q or some component of ~c is non-zero but,
on the contrary, it becomes an inescapable condition in the case when c1 = · · · = cp = q = 0
(i.e., the case of interest in Number Theory, which strictly corresponds to a multidimensional
generalization of the original CS formula). Note that, alternatively, we can view the expression
inside the square brackets of the zeta function as a sum of a quadratic, a linear, and a constant
form, namely, Q (~n+ ~c) + q = Q(~n) + L(~n) + q̄. The end result is a formula that gives (the
analytic continuation of) this multidimensional zeta function in terms of an exponentially
convergent series, and which is valid in the whole complex plane, exhibiting the singularities
(poles) of the meromorphic continuation �with the corresponding residua� explicitly. The
only condition on the matrix A is that it correspond to a (non negative) quadratic form,
which we call Q. The vector ~c is arbitrary, while q is (to start with) a positive constant. The
explicit form of the solution to this problem depends dramatically on the fact that q and/or ~c
are zero or not. According to this, one has to distinguish di�erent cases, leading to unrelated
�nal formulas, all to be viewed as di�erent non-trivial extensions of the CS formula (they
have been named ECS formulas in [9]).

Writing the dimensions of the submatrices of A as subindices, the result for the multidi-
mensional, pure CS case is

ζAp
(s) ≡ ζAp,~0,0(s) =

21+s

Γ(s)

p∑
j=1

( detAp−j)
−1/2

{
π(p−j)/2

(
ajj − ~aT

p−jA
−1
p−j~ap−j

)(p−j)/2−s

×Γ (s− (p− j)/2) ζR(2s− p+ j) (22)

+4πs
(
ajj − ~aT

p−jA
−1
p−j~ap−j

)(p−j)/4−s/2
∞∑

n=1

∑
~mp−j∈Z

p−j

1/2

′
cos
(
2π~mT

p−jA
−1
p−j~ap−jn

)
n(p−j)/2−s

×
(
~mT

p−jA
−1
p−j ~mp−j

)s/2−(p−j)/4
K(p−j)/2−s

[
2πn

√(
ajj − ~aT

p−jA
−1
p−j~ap−j

)
~mT

p−jA
−1
p−j ~mp−j

]}
.

With a similar notation as above, here Ap−j is the submatrix of Ap composed of the last
p − j rows and columns. Moreover, ajj is the j-th diagonal component of Ap, while ~ap−j =
(ajj+1, . . . , ajp)T = (aj+1j , . . . , apj)T , and ~mp−j = (nj+1, . . . , np)T . Physically, it corresponds
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to the homogeneous, massless, zero-temperature case. It is to be viewed, in fact, as the genuine
multidimensional extension of the Chowla-Selberg formula.

When the matirx A is diagonal, one gets the simpli�ed formula

ζAp
(s) =

21+s

Γ(s)

p−1∑
j=0

( detAj)
−1/2

[
πj/2a

j/2−s
p−j Γ (s− j/2) ζR(2s− j)

+4πsa
j/4−s/2
p−j

∞∑
n=1

∑
~mj∈Z

j

′
nj/2−s

(
~mt

jA
−1
j ~mj

)s/2−j/4
Kj/2−s

(
2πn

√
ap−j ~mt

jA
−1
j ~mj

) ,(23)
with Ap = diag(a1, . . . , ap), Aj = diag(ap−j+1, . . . , ap), ~mj = (np−j+1, . . . , np)T , and ζR the
Riemann zeta function.

It is immediate to see that the term for j = 0 in the sum yields the last term, ζA1(s), of
the recurrence, that is:

ζA1(s) =
+∞∑

np=−∞

′ (ap

2
n2

p

)−s

= 21+sa−s
p ζR(2s). (24)

It exhibits a pole, at s = 1/2 which is spurious �it is actually not a pole of the whole
function (since it cancels, in fact, with another one coming from the next term, with further
cancelations of this kind going on, each term with the next). Concerning the pole structure
of the resulting zeta function, as given by Eq. (23), it is not di�cult to see that only the pole
at s = p/2 is actually there (as it should). It is in the last term, j = p − 1, of the sum, and
it has the correct residue, namely

Res ζAp
(s)
∣∣
s=p/2

=
(2π)p/2

Γ(p/2)
( detAp)

−1/2
. (25)

The rest of the seem-to-be poles at s = (p − j)/2 are not such: they compensate among
themselves, one term of the sum with the next, adding pairwise to zero.

Summing up, this formula, Eq. (23), provides the analytic continuation of the zeta function
to the whole complex plane, with its only simple pole showing up explicitly. Aside from this,
the �nite part of the �rst sum in the expression is quite easy to obtain, and the remainder
�an awfully looking multiple series� is in fact an extremely-fast convergent sum, yielding
a small contribution, exactly as it happens in the CS formula. It is to be viewed as the
extension of the original Chowla-Selberg formula �for the zeta function associated with an
homogeneous quadratic form in two dimensions� to an arbitrary number, p, of dimensions.
There are also formulas which provide extensions of the original CS expression to other cases
of physical interest. To summarize, the general case of a quadratic+linear+constant form
has been completed in [9], together with the ensuing evaluation of determinants for all these
cases.

In fact, as stated above, the factorization method could also be very useful for the eval-
uation of determinants, in particular, of a higher-dimensional zeta function, starting from
the knowledge of the determinants of its factors. In the examples considered above, it seems
nevertheless more interesting to compute in this way the determinant of the Dirichlet zeta
function, since these functions have been commonly considered in a number of di�erent the-
oretical contexts and given that the corresponding determinants are not known yet, in many
cases (while the other functions involved have been better studied already, under this point of
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view). Following our previous notation, it is more useful to express the Dirichlet zeta function

as ζ2(s) = ζ(s)
ζ1(s)

. Then, from the expression above,

ζ ′2(s) =
ζ ′(s)
ζ1(s)

− ζ(s)ζ ′1(s)
ζ1(s)2

, (26)

and we only need to know the value at s = 0 in order to have the determinant. In this, way
we can compute the determinant of a Dirichlet L function without the knowledge of any of
its special values. Of course, particular values of the L function can be computed too, from
the knowledge of the two spectral zeta functions.

Related with that issue, it seems worth to comment that there are some expectations from
the study of Dirichlet series. To begin, that given the existence of a functional equation and
an Euler product, then some kind of corresponding Riemann hypothesis is expected to hold.
Second, that if the function has a simple pole at the point s = 1, then it must be a product
of the Riemann zeta function and another Dirchlet series with similar properties [1]. Zeta
functions with more complex singularity structure are expected to have correspondingly more
complex factorizations.

On the other side, a very particular case of zeta factorization has been already considered
for the study of certain problems, related with fractal strings. In this context, one usually
considers the following factorization:

ζF (s) =
∞∑

n=1

∞∑
m=1

n−sλ−s
m =

∞∑
n=1

n−s
∞∑

m=1

λ−s
m , (27)

that is, the Riemann zeta function multiplied by a generic spectral zeta function. In the
context of fractal strings, the two-dimensional zeta function is called the frequency counting
function and the other is the geometric length function. The full zeta function is the two-
dimensional one, that weights all the eigenvalues of the system with all the possible (all
integers)degeneracies (excited states). The factorization reduces the problem to the study
of the geometric counting function, which is in principle simpler, thanks to the knowledge
one already has about the Riemann zeta function. Nevertheless, the zeta functions involved
are not spectral in the usual sense and they lead to a very rich singularity pattern, with
complex poles. This will make the usual heat-kernel asymptotic study a very rich one, with
the presence of oscillating terms due to the presence of complex dimensions.

5 Functional equation of a spectral zeta function

Here we shall deal with the important point of the existence of a functional equation.
Recall the functional equation for the Riemann zeta function:

ζR(1− s) = φ(s)ζR (s) , (28)

where φ(s) = 21−sπ−s cos(sπ/2) Γ(s). We will argue on the basis of some physically inspired
arguments. Associated with a sequence, one can de�ne several fundamental spectral functions.
In the case that the sequence on hand has a physical meaning �as for example the eigenvalues
of a Schr�odinger operator� then these spectral functions thoroughly govern the physics of
the system. Examples of such functions are:

1. The density of states: ρ(E) =
∞∑
n
δ(E − λn).
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2. The partition Function: Z(t) =
∞∑

n=0
e−λnt.

The spectral zeta function is related with these functions in the following way:

1. With the partition function by a Mellin transform

ζ(s) =
1

Γ(s)

∞∫
0

ts−1Z(t)dt. (29)

2. With the density of states through the integral

ζ(s) =

∞∫
0

dEE−sρ(E). (30)

3. And, moreover, the partition function is in fact the Laplace transformed of the density
of states, namely,

Z(t) =

∞∫
0

dEe−tEρ (E) . (31)

We are asuming all the time that the zeta function has been analytically continued to the whole
complex plane, and thus that the two integral representations make sense. It is interesting
to recall the fact that a Mellin transform encodes all the moments of the function under
consideration. In particular, note that

〈Z(t)s〉 = Γ(s+ 1)ζ(s+ 1) (32)

and

〈ρ(E)s〉 = ζ(−s). (33)

Furthermore, the inverse problem always exists too, namely, under which conditions �from
the knowledge of all the positive integer moments of a function� can one determine and
reproduce, in a unique way, the function itself? This problem has already been studied in
the context of partition functions and zeta functions and here we just want to point out that
Γ(s+1)ζ(s+1) and ζ(−s) are the s (not necessarily integer) moments of two functions, namely
the partition function and the density of states, which are related by a Laplace transform.
This naturally implies that

ζ(−s) = ϕ [Γ(s+ 1)ζ(s+ 1)] (34)

or, equivalently,

ζ(1− s) = ϕ [Γ (s) ζ (s) .] (35)

which will be the desired functional equation. To prove that it has the multiplicative form
that we have shown before (e.g. ϕ [Γ (s) ζ (s)] = g(s)Γ (s) ζ (s)) further work is needed. It
is likely that the explicit form of the function ϕ will be di�erent in each particular case.
Notice however that we already show here the natural appearance of the Gamma function as



References 19

a multiplicative factor (cf. the de�nition of the Selberg class of Dirichlet series [1]). Summing
up, we have shown by means of rather simple arguments that, indeed, any spectral zeta
function satis�es a functional equation, and have come close to its explicit form.

In a di�erent context, one should also recall the important applications of zeta function
methods to quantum vacuum Physics, the Casimir e�ect, and its possible in�uence in modern
cosmology (the dark energy issue, for a short list of references see [10]). It has been very nice
to collaborate with Iver Brevik in some of these problems [11]. We admire him as a scientist
and as a person.
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Gauge theory in in�ationary Universe

from a holographic model

Kazuo Ghoroku1
†Fukuoka Institute of Technology, Wajiro, Higashi-ku

Fukuoka 811-0295, Japan

Abstract

Yang-Mills theory in the in�ational Universe, dS4 space-time, is studied according to
the string theory/ gauge theory correspondence which has been proposed by Maldacena.
In oeder to set up QCD like theory, fundamental quarks are introduced by embedding
D7 brane as a probe in the AdS5 × S5 background. We can see the dynamical e�ects
of the gravity on the gauge �elds and quarks through the 4D cosmological constant λ.
One of the important facts obtained here is that the con�nement force is screened by
the gravitational interaction as in the �nite temperature gauge theory, namely large
cosmological constant corresponds to high temperature 2.

1 Introduction

There have been many approaches to QCD/gravity correspondence based on the super-
string theory [2]. After the idea, proposed by Karch and Katz [3], to add light �avor quarks
by embedding D7 brane(s), many kinds of analyses have been performed, and various inter-
esting results have been obtained for the properties of quarks and mesons, in the context of
the holography [4, 5, 6, 7, 8, 9, 10, 11].

However these analyses are restricted to the gauge theory in 4d Minkowski space-time.
On the other hand, some holographic approaches to the theory in the 4d de-Sitter space
(dS4) are seen [12, 13, 14, 15]. This direction is interesting since it would be possible to see
the gravitational e�ect on the the gauge theory through the dependece of the characteristic

1E-mail: gouroku@dontaku.�t.ac.jp
2This article is dedicated to 70th aniversary of Professor Iver Brevik. Although new points are

included, the main contents of this article are the review of our recent work, [1] hep-th/0609152, with M.
Ishihara and A. Nakamura.
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parameter of the curved space, the 4D cosmological constant, which plays an important role
This situation of the positive cosmological constant at the early in�ation universe or for the
present small acceleration which has been observed recently in our universe. Also from this
cosmological viewpoint, it would be important to make clear the non-perturbative properties
of the gauge theories at �nite cosmological constant or in dS4. It would be a di�cult to
see the non-perturbative e�ects of the gravitational interactions and the gauge �elds in the
curved space when we consider them within the 4D �eld theory.

Here we examine this problem from holographic approach which has been useful in the
�nite temperature case [10]. The bulk solution corresponding to the gauge theory in dS4 is
obtained from type IIB string theory with dilaton and axion under the �ve form �ux. And
the D7 brane is embedded in this background as a probe to introduce the �avor quarks. In
the bulk, there is a horizon as in the �nite temperature case. A phase transition as seen in
the high temperature case is also existing for the case of large gauge �eld condensate.

Through the Wilson-Polyakov loop. We �nd the existence of a maximum distance between
quark and antiquark to maintain the U-shaped string state. Above this maximum length,
the quark and antiquark can not make a bound state. In other words, the color force is
screened by the gravitational interaction. In this sense, we can say that the theory is in
the decon�nement phase. We compare these results with the similar results given for �nite
temperature theory.

The meson masses through the �uctuation of the D7 brane are examined, and we �nd that
all the states would disappear at large cosmological constant since they becomes unstable and
decay to free quarks and ant-quarks. A similar phenomenon for the baryon spectra is also
seen by studying the energy of the D5 baryon wrapped on S5 which is regarded as baryon.

In section 2, we give the setting of our model, and the phase transition is discussed by
solving the embedding of the D7 brane. In section 3, the quark properties are studied through
the Wilson Polyakov loop. In section 4, the mesons and baryons are discussed. The summary
is given in the �nal section.

2 Background geometry

We consider 10d IIB model retaining the dilaton Φ, axion χ and selfdual �ve form �eld
strength F(5). Under the Freund-Rubin ansatz for F(5), Fµ1···µ5 = −

√
Λ/2 εµ1···µ5 [16, 17]3,

we obtain [1]

ds210 = GMNdX
MdXN

= eΦ/2

{
r2

R2
A2
(
−dt2 + a(t)2(dxi)2

)
+
R2

r2
dr2 +R2dΩ2

5

}
, (1)

eΦ = 1 +
q

r4
1− (r0/r)2/3
(1− (r0/r)2)3

, χ = −e−Φ + χ0 , (2)

A = 1− (
r0
r

)2, a(t) = e2
r0
R2 t (3)

3Related solution is seen in [19].
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where M, N = 0 ∼ 9 and R =
√

Λ/2 = (4πN)1/4. The horizon is denoted by r0, which is
related to the 4d cosmological constant λ as

λ = 4
r20
R4

. (4)

And q represent the VEV of gauge �elds condensate [10].

In the present con�guration, the four dimensional boundary represents the N=4 SYM
theory in the de Sitter space or in the in�ational universe characterized by the 4d cosmological
constant λ. We examine the properties of this system by adding �avor quarks by embedding
D7 branes in this background.

3 D7 brane embedding and phase transition:

By rewriting the extra six dimensional part of (1) as,

R2

r2
dr2 +R2dΩ2

5 =
R2

r2
(
dρ2 + ρ2dΩ2

3 + (dX8)2 + (dX9)2
)
, (5)

and r2 = ρ2 + (X8)2 + (X9)2, we obtain the induced metric for D7 brane,

ds28 = eΦ/2

{
r2

R2
A2
(
−dt2 + a(t)2(dxi)2

)
+

R2

r2
(
(1 + (∂ρw)2)dρ2 + ρ2dΩ2

3

)}
, (6)

where we set as X9 = 0 and X8 = w(ρ) without loss of generality due to the rotational
invariance in X8 −X9 plane.

The brane action for the D7-probe is given as

SD7 = −τ7
∫
d8ξ

(
e−Φ

√
−det (Gab + 2πα′Fab)−

1
8!
εi1···i8Ai1···i8

)

+
(2πα′)2

2
τ7

∫
P [C(4)] ∧ F ∧ F , (7)

where Fab = ∂aAb−∂bAa. Gab = ∂ξaXM∂ξbXNGMN (a, b = 0 ∼ 7) and τ7 = [(2π)7gs α
′ 4]−1

represent the induced metric and the tension of D7 brane respectively. And P [C(4)] denotes
the pullback of a bulk four form potential.

Then, after a calculation, the equation of motion for w(ρ) is obtained as,

w

ρ+ w w′

[
Φ′ −

√
1 + (w′)2(Φ + 4 logA)′

]
+

1√
1 + (w′)2

[
w′
(

3
ρ

+ (Φ + 4 logA)′
)

+
w′′

1 + (w′)2

]
= 0, (8)

where prime denotes the derivative with respect to ρ.
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Asymptotic Solution and Chiral Symmetry: Firstly we consider the asymptotic
solution of w for large ρ. It is obtained usually as the following form

w(ρ) ∼ mq +
c

ρ2
, (9)

where mq and c are interpreted from the gauge/gravity correspondence as the current quark
mass and the chiral condensate, −c = /Ψ̄Ψ〉, where Ψ denotes the quark �eld. The ciral
condensate is determined by a theory as a function of the quark mass mq [10]. Then the
solutions for w are characterized only by the quark mass mq, and the vev of chiral condensate
is determined uniquely by mq.

However we must notice that the above asymptotic form (9) is useful for the case of CFT
in the 4D Minkowski space-time on the boundary. In the present case, however, the geometry
of the 4D boundary is dS4, then we expect that the form (9) would receive some modi�cation
from the gravity.

In order to investigate about c we consider the force between the D3-branes at the horizon
and the D7 brane at X8 = w. The force between them is obtained from the potential of w,
which is obtained from the D7 action by setting w′ = 0 and remembering r2 = ρ2 + w2 as
follows,

V (w) = τ7
(
A4 eΦ − C8

)
. (10)

In the limit of r0 = 0, 4D boundary is Minkowski space-time V = τ7 = constant. So there
is noforcee in this case. This is the re�ection of the supersymmetry of the solution. As a
result, we �nd c = 0 [10].

Sign of c: When the cosmological constant is turned on (r0 6= 0), we �nd the non-trivial
force,

F = −∂V
∂w

= −8τ7
w r20
r4

A3 eΦ < 0, (11)

and we can see that the force is attractive at any point of ρ.
Then we can understand that the c must be negative for any solution of w. Then the

chiral symmetry is preserved as in the case of λ = 0. This situation is similar to the case of
�nite temperature gauge theory, but we �nd a new feature of c as given below.

UV divergence of c: In the case of r0 6= 0, we �nd the following asymptotic form
instead of (9),

w(ρ) ∼ mq +
c0 − 4mqr

2
0 log(ρ)

ρ2
, (12)

where mq and c0 are constants. This implies that c depends on ρ like log(ρ) and diverges at
ρ = ∞. So we need an appropriate regularization, so we can estimate it as

c = c0 − 4mqr
2
0 log(ρcutoff) (13)

by introducing a cuto� ρcutoff .

Phase transition: For λ > 0, as in the case of �nite temperature, we can see a "topo-
logical" phase transion in this theory. For simplicity we consider the case of q = 0. It is seen
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Figure 1: Embedding solutions w and the chiral condensate c for q = 0 and r0 = R = 1.0.

through the �ip of solution w(ρ) and the D7 regularized energy. Their resuls are shown in the
Fig. 1 and Fig. 11. We should notice that an extra reguralization due to the UV divergence
of c(ρ) is needed [1]. The details for other parameter case are seen in [1], but the results are
similar to the case of q = 0.

4 Quark-antiquark potential

Firstly we brie�y review how quark-antiquark potentials described in the context of the
gauge/gravity correspondence. Consider the Wilson-Polyakov loop, W = (1/N)TrPei

R
A0dt,

in SU(N) gauge theory, then the quark-antiquark potential Vqq̄ is derived from the expectation
value of a parallel Wilson-Polyakov loop as

〈W 〉 ∼ e−Vqq̄

R
dt ∼ e−S , (14)

in terms of the Nambu-Goto action

S = − 1
2πα′

∫
dτdσ

√
−dethab, (15)

with the induced metric hab = Gµν∂aX
µ∂bX

ν , where Xµ(τ, σ) denotes the string coordinate.

To �x the static string con�gurations of a pair of quark and anti-quark, we choose X0 =
t = τ and decompose the other nine string coordinates as X = (X||, r, rΩ5). Then the Nambu-

2 4 6 8 10 12 14
Ρ
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Figure 2: The regularized energy for q = 0, and other parameter settings are the same
with the above Fig. 1.
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Goto Lagrangian in the background (2) becomes

LNG = − 1
2πα′

∫
dσ eΦ/2

√
A(r)2r′2 + r2A(r)2Ω5

′2 +
( r
R

)4

A(r)4a(t)2X||′2, (16)

where the prime denotes a derivative with respect to σ. The test string has two possible
con�gurations: (i) a pair of parallel string, which connects horizon and the D7 brane, and (ii)
a U-shaped string whose two end-points are on the D7 brane.

E�ective quark mass and con�nement: Consider the con�guration (i) of parallel two
strings, which have no correlation each other. The total energy is then two times of one
e�ective quark mass, m̃q. As mentioned above, it is given by a string con�guration which
stretches between r0 and the maximum rmax, so we can take as r = σ, X|| = constant, Ω5 =
constant, Then m̃q is obtained by substituting these into (16) as follows,

m̃q = E/2 =
1

2πα′

∫ rmax

r0

dr eΦ/2A(r) , (17)

where rrmax denotes the position of the D7 brane.

The integrand eΦ/2A(r) is diverges at r = r0 as 1/
√
r − r0, but we �nd that the contri-

bution of this part to the integration vanishes,∫
r0

dr
1√
r − r0

= 2
√
r − r0 |r0

= 0 . (18)

Then we �nd m̃q < ∞ for �nite r0 or λ. This means that the quark is not con�ned in this
case since single quark could exist. On the other hand, we �nd m̃q diverges for r0 = 0 and
q > 0 then the quark is con�ned.

While, in the above discussion, q 6= 0 is essential, we �nd for q = 0

2m̃q =
1
πα′

(rmax − r0)2

rmax
. (19)

Then the quark is not con�ned in this case even if λ = 0 as seen before [10].

U-shaped Wilson-Loop: The U-shaped con�guration is given by X|| = (σ, 0, 0), Ω5 =
constant. Since the Lagrangian does not contain sigma explicitly, we could use on integration
constant. It is set as the value of r at the midpoint rmin of the string is determined by
dr/dσ|r=rmin

= 0. Then the distance and the total energy of the quark and anti-quark are
given by

L = 2R2

∫ rmax

rmin

dr
1

r2A(r)a(t)
√
eΦ(r)r4A(r)4/

(
eΦ(rmin)r4minA(rmin)4

)
− 1

, (20)

E =
1
πα′

∫ rmax

rmin

A(r)eΦ(r)/2√
1− eΦ(rmin)r4minA(rmin)4/

(
eΦ(r)r4A(r)4

) . (21)

Here we study the time independent distance L̃ de�ned as L̃ ≡ aL instead of L given above.
The numerical results are shown in the Fig. 3

Two �gures show the dependence of the energy E on the distance L̃ at the selected
cosmological constant λ and q. For λ = 0, the well-known results are seen for q = 0 and �nite
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Figure 3: Plots of E vs L̃ at q = 0 (the left �gure) and = 0.3 (the right �gure) (GeV−4) for

R = 1 (GeV−1), rmax = 3 (GeV−1) and α′ = 1 (GeV−2). The solid and dashed curves represent the

case of λ = 0 and λ = 4 (GeV), respectively. The vertical solid and dashed lines represent the energy

of two parallel straight strings.

q; (i) For q = 0, E ∝ 1/L at large L and E ∝ m2
q L at small L [4]. And for �nite q [10],

E ∝ √
qL at large L and E ∝ m2

q L at small L. The behaviors at small L are the common
since the same AdS limit is realized there.

For �nite λ, there is a maximum bound of L (= Lmax). In other words, the U-shaped
con�guration disappears for L > L (= Lmax). Similar behavior is seen also in the case of the
�nite temperature [20]. In this sense, the theory in dS4 is in the quark decon�nement phase
as in the �nite temperature case. However, we notice the following di�erence. In the case of
�nite temperature, there are two possible U-shaped string con�gurations at the same values
of L (< Lmax), but in the case of �nite cosmological constant, U-shaped string con�guration
is unique at a given value of L̃(L̃ < L̃max). And at L̃ = L̃max, the energy of this string
con�guration arrives at 2m̃q. Then, this implies that the U-shaped string con�guration is
broken for L > Lmax to decay to free quark and anti-quark.

On the other hand, an unstable U-shaped string con�guration is allowed for the �nite
temperature case even if E > 2m̃q, and, just in this energy region, the other U-shaped string
con�guration is formed.

In our model, L̃max is obtained as (the details are seen in [1]),

L̃max = lim
rmin→r0

L̃ ∼ π

2
1√
λ
. (22)

This result implies that the size of the U-shape string con�guration is bounded by the length
λ−1/2. So we can observe mesons whose size is smaller than λ−1/2. At present, we can suppose
λ1/2 ∼ 10−3 eV, so the size of meson 1012×(typical hadoron size) is forbidden. Then the small
λ does not work to decon�ne the present hadron to free quarks. The real decon�nement phase
due to the cosmological constant would be see at very early Universe when λ1/2 ∼ 1 GeV. For
λ1/2 ∼ Mpl, any hadron can not exist. This point is assured through numerical calculation
of meson mass spectra [1].
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5 Summary

The Yang-Mills theory with �avor quarks is investigated in the in�ationally expanding 4d
space-time, dS4 space-time. The �avor quarks are introduced by embedding the D7 brane
as a probe. The 10d background is deformed from AdS5 × S5 by the dilaton and axion, and
its 4d boundary of AdS5 is set as the time-dependent dS4 space-time with a 4d cosmological
constant.

In this model, the asymptotic form of the pro�le function w(ρ) of D7 brane includes
logarithmic terms coming from the loop-corrections. Actually, we �nd the following form

w(ρ) ∼ mq +
c0 − 4mqr

2
0 log(ρ)

ρ2
,

at the lowest order of large ρ limit, and this implies the vev of the bilinear of quark �elds,
〈Ψ̄Ψ〉, receives the loop correction proportional to the cosmological constant λ and the quark
mass mq as

−〈Ψ̄Ψ〉 =
c

R4
=

c0
R4

−mqλ log(ρ). (23)

This kind of correction would be expected in other quantities also.
And we notice c < 0 for any solution of mq > 0 and c = 0 for mq = 0. This implies

that the chiral symmetry is kept being unbroken for dS4. The solutions are separated to two
groups by their infrared end point whether it is above the horizon or just on the horizon. And
when the solution is switched from the one group to the other, a phse transition has been
observed. These properties are similar to the �nite temperature case.

Another similar property seen in the �nite temperature theory is found as the screenig
of the quark con�nement force. In order to see the potential between quarks, the Wilson-
Polyakov loops are studied. Our model shows quark con�nement at λ = 0, but, in dS4 or for
λ > 0, the potential disappears at large L, where L denotes the distance between quark and
anti-quark, for L > Lmax. At L = Lmax, the energy of quark and anti-quark system is equal
to the one of two parallel strings, which connect horizon and the D7 brane. This means that
the quark and anti-quark do not make the bound state for L > Lmax since they can move
freely. In this sense, we can say that the gauge theory in dS4 is in the quark decon�nement
phase.

While the gauge theory of dS4 is in the decon�nement phase, we expect that some meson
states are stable for small λ. In order to assure this point, the spectra of mesons are examined
through the �uctuations of D7 brane [1]. Then, we can show that any meson state for a de�nite
quark mass becomes stable when we take λ to be small enough.

Our previous brane world model has been extended to the dS4 [21], and the results ob-
tained here would be useful to develop our model such that it could include the gauge �elds
dynamically coupled with gravity.
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Electromagnetic phenomena in

continuous media

Finn Ravndal
Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway.

Abstract

After exactly 100 years we still have two competing theories due to Minkowski and
Abraham for macroscopic electromagnetism in media. They di�er in particular after
quantization. A summary of the theoretical and experimental situation is given. When
applied to Cerenkov radiation at the quantum level, the Abraham version is ruled out
while the Minkowski theory requires free photons with negative energy. Recently an
e�ective �eld theory has been proposed which avoids these problems by considering the
photon as a quasiparticle like any other excitation in condensed matter physics for which
the rest frame of the medium is a preferred frame. It relates many di�erent classical and
quantum optical phenomena in a uni�ed description 1.

1 Introduction

Nearly 40 years ago Brevik[1] published his �rst papers on his investigations of electromag-
netism in continuous media based on the con�icting theories of Minkowski and Abraham[2][3].
During the subsequent years he continued this line of research and became a central person
in the e�ort to sort out the di�erent problems. Much of his insight was summed up in the
well-known review[4]. In parallel to this e�ort he also pursued investigations of di�erent
manifestations of the Casimir e�ect[5]. In particular, he was one of the �rst to study system-
atically the e�ects of having con�ning walls not being ideal conductors, but made of realistic
materials[6]. For this one needs an understanding of the boundary conditions to impose on
the �uctuating �eld in the vacuum. Again one is faced with the need for a consistent theory
for electromagnetism in continuous media.

The most recent step in this line of research was taken this year by Brevik in collaboration
with Milton[7]. They calculated the Casimir force between two parallel and ideal plates
separated by a distance L and enclosing dielectric matter with a refractive index n. After a
rather long and detailed calculation they found the resulting force to be a factor n smaller
than the standard vacuum force F0 = −~π2/240L4 in units where the velocity of light in
vacuum is c0 = 1.

1This article is dedicated to 70th aniversary of Professor Iver Brevik
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This simple result is obtained using the Minkowski theory for electromagnetism in media.
If one consults the standard text books, one �nds instead that the Abraham theory is generally
preferred from a theoretical point of view based on the standard theory of relativity[8]. But
already in his 1979 review article Brevik concluded that the Minkowski formulation was in
agreement with most experiments. This seems to be the situation also today[9]. One might
guess that this can be the reason for Jackson in the latest edition of his book argues that the
Abraham theory is fundamentally correct, but is modi�ed to become the Minkowski theory
when one includes the motion of the particles making up the medium. This point of view
re�ects a long discussion in the literature[10]. A detailed review of the theoretical situation
has recently been given by Obukhov[11].

At the most elementary level it is tempting to think of electromagnetism in a medium to
be a straight-forward modi�cation of the standard vacuum theory. A monochromatic wave
will have a certain frequency ν and a certain wavelength λ where νλ = 1/n < 1 is the velocity
of light in the medium. This simple fact is the basis of geometrical optics. When such an
electromagnetic wave is quantized, the corresponding photon is expected to have a momentum
p = h/λ and energy E = hν. Introducing the wave vector k in the direction of the wave, we
can then write the momentum vector as p = ~k when the wave number k = 2π/λ. Similarly,
the energy becomes E = ~ω where ω = k/n.

With this simple-minded quantization, one can now look at the Casimir problem investi-
gated by Brevik and Milton[7]. The force results from the zero-point, electromagnetic �eld
energy between the plates which is just

∑
k ~ωk = (~/n)

∑
k |k|. Except for the factor 1/n,

this just the standard Casimir energy for vacuum between the plates. We thus have repro-
duced their result without any calculations.

Another consequence of these elementary ideas is to consider black-body radiation in a
cavity �lled with the same dielectric matter at temperature T . Standard statistical mechanics
says then that the energy density in the large-volume limit is given by

u = 2
∫

d3k

(2π)3
~ωk

e~ωk/kBT − 1
(1)

where kB is the Boltzmann constant. Again using ωk = k/n we �nd a result which is simply
n3 times the vacuum value u0 = π2(kBT )4/15~3. Interestingly, in the book by Landau and
Lifshitz where they also endorse the Abraham description, the same result is derived from
consideration of correlators of �uctuating currents in the enclosing cavity walls[12]. At the
end of a rather elaborate calculation, they just state without any further comments that the
same result can be obtained more directly as done above. It would be interesting and of some
importance to verify this experimentally.

These simple ideas thus seem to reproduce some results in a satisfactory way. But can
it be part of a consistent theory? What about the photon mass in this picture? In special
relativity the squared mass is given bym2 = E2−p2. This gives in our case (~ω)2(1−n2) < 0,
i.e the photon four-momentum is space-like as for a tachyon. We will in the following see
that this is actually the result emerging from the Minkowski theory. Can we live with this?
Tachyons in ordinary �eld theories usually signal some instability which we don't expect to
�nd here. And what about gauge invariance? This fundamental symmetry is in vacuum
related to having massless photons.

Recently an attempt has been made to clarify this rather confusing situation[13]. Most of
the problems seem to result from forcing the theory into the standard framework of special
relativity which is not present as a physical symmetry of the system. Instead one can avoid
the problems by considering the electromagnetic �eld in the macroscopic limit as any other
excitation in a medium for which the rest frame is a preferred frame. It can be described as
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an ordinary, e�ective �eld theory. The resulting photons are then quasi-particles on the same
footing as quanta in any other �eld theory with a linear dispersion relation

Starting with the Maxwell equations in the next section, we review the derivation of the
energy and momentum of the electromagnetic �eld in a continuous medium. Gauge invariance
is discussed and the equivalent of the covariant Lorenz gauge is found. From the form of the
resulting wave equation it follows that the theory is invariant under Lorentz transformations
involving the physical speed of light 1/n in the medium. The covariant theories of Minkowski
and Abraham are brie�y described and confronted with a di�erent covariance of the e�ective
theory. Quantization is performed in the rest frame and implications for the three theories
discussed.

The following section is devoted to the Cerenkov e�ect which is most easily understood
in the rest frame of the medium. It can also be derived within the Minkowski theory in an
arbitrary frame if we are willing to accept free photons with negative energies. On the other
hand, the Cerenkov e�ect at the quantum level is inconsistent with the Abraham formulation.
In the last section higher order interactions are added to the free Lagrangian to give an
e�ective �eld theory which incorporates non-linear dispersion and the Kerr e�ects in a natural
way. Thus it relates many di�erent classical and quantum optical phenomena into a uni�ed
and consistent theory.

2 Maxwell theory

Assuming no charges or currents present in the material, the electric �elds E,D and
magnetic �elds B,H are in general governed by the Maxwell equations

∇×E +
∂B
∂t

= 0, ∇ ·B = 0 (2)

and

∇×H− ∂D
∂t

= 0, ∇ ·D = 0 (3)

The displacement �eld D describes the modi�cation of the electric �eld E by the polarization
of the atoms in the material, while H describes the similar modi�cation of the magnetic �eld
B due to magnetization of the atoms. When the medium can be considered as an isotropic
continuum, the relation between these macroscopic �elds in the rest frame of the system can
be written as D = εE and B = µH as explained in standard text books[8]. These constitutive
relations represent very complex phenomena on a microscopic scale involving a large number
of atoms. The e�ective description is therefore only valid on large scales, or equivalently, at
su�ciently low energies.

As a �rst approximation we will take the electric permittivity ε and the magnetic perme-
ability µ to be constants. In the following we will use units so that for the vacuum ε0 = µ0 = 1.
It is then straight-forward to show that the above Maxwell equations are Lorentz invariant,
but only for transformations involving the physical speed of light 1/

√
εµ in the medium. This

should be obvious without any explicit derivation since the theory is identical with the one
in vacuum except for this di�erence in light velocity.

Since the second Maxwell equation in (2) is satis�ed by writing B = ∇ ×A where A is
the magnetic vector potential, it follows from the �rst equation that E + ∂A/∂t must be a
gradient of a scalar �eld. One can therefore write

E = −∂A
∂t

−∇Φ (4)
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where Φ is the electric potential. Both the electric and magnetic �elds in the medium can
therefore be expressed in terms of potentials in the same way as in vacuum. They are invariant
under the simultaneous gauge transformations A → A+∇χ and Φ → Φ−∂χ/∂t where χ(x, t)
is an arbitrary, scalar function.

Using now these �eld expressions together with the constitutive relations in the �rst of
equation (3), one obtains the equation of motion

∇× (∇×A) + εµ
∂

∂t

(∂A
∂t

+∇Φ
)

= 0 (5)

for the two potentials. Introducing the index of refraction n =
√
εµ, it can be rewritten as(

n2 ∂
2

∂t2
−∇2

)
A +∇

(
n2Φ̇ +∇ ·A

)
= 0 (6)

Now imposing the gauge condition

n2Φ̇ +∇ ·A = 0 (7)

in the medium, one obtains the standard wave equation(
n2 ∂

2

∂t2
−∇2

)
A(x, t) = 0 (8)

The electromagnetic propagation velocity is thus 1/n as expected. Needless to say, the gauge
condition (7) is equivalent to choosing the covariant Lorenz gauge in vacuum.

With the assumption of no free charges, the Maxwell equation ∇·E = 0 gives the relation
∇ · Ȧ = −∇2Φ with the use of (4). Taking the time derivative of the gauge condition (7), we
then see that the scalar potential Φ(x, t) satis�es the same wave equation (8) as the vector
potential. Both of these equations of motion follow from the Lagrangian

L =
1
2
εE2 − 1

2µ
B2 (9)

where the potentials A and Φ are the dynamic �elds. On this form it is obviously only valid
in the rest frame of the medium.

The energy content of the electromagnetic �eld in a medium is obtained by standard
methods[8]. One takes the scalar products of the �rst equation in (2) with H and the �rst
equation in (3) with E. Subtracting the two resulting expressions, the equation

∂E
∂t

+∇ ·N = 0 (10)

follows. It represents conservation of energy where

E =
1
2
(
E ·D + B ·H

)
(11)

is the standard energy density and N = E×H is the Poynting vector describing the energy
current carried by the �eld.

Momentum conservation can be similarly obtained by forming the vector products of the
�rst equation in (2) with D and the �rst equation in (3) with B. Combining the two resulting
expressions, one then �nds

(∇×H)×B + (∇×E)×D =
∂

∂t
(D×B) (12)
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This can be written on a more compact form using the triple vector product formula A ∧
(B ∧C) = (A ·C)B− (A ·B)C. It results in

∂G
∂t

+∇ ·T = 0 (13)

where G = D×B and

Tij = −(EiDj +BiHj) +
1
2
δij(E ·D + B ·H) (14)

is the Maxwell stress tensor. Using the constitutive equations, it is seen to be symmetric in
the rest frame of the medium. It is thus natural to consider the vector G to represent the
momentum density of the �eld.

3 Covariant formulations

There seems to be no disagreement around the presentation given in the previous section.
The di�culties start when one attempts to embed this non-covariant formulation into a four-
dimensional framework based on the special theory of relativity. One could then discuss
electromagnetic phenomena in a general, inertial frame where the medium could have any
velocity below the velocity of light in vacuum. This was �rst done by Minkowski at the same
time as his successfull covariant formulation of the Maxwell theory in vacuum[2].

In the rest frame of the medium the space and time coordinates of an event can be
combined into a four-dimensional vector xµ = (t,x). The covariant gradient operator is then
∂µ = (∂/∂t,∇). We will raise and lower Greek indices with the standard Lorentz metric ηµν ,
taken here to have negative signature. Combining the two potentials Φ and A into the four-
dimensional vector potential Aµ = (Φ,A), the antisymmetric �eld tensor Fµν = ∂µAν−∂νAµ

is then seen to have the components

Fµν =
(

0 −E
E −Bij

)
(15)

in the same frame where Bij = εijkBk. The �rst two Maxwell equations (2) can then be
written as

∂λFµν + ∂νFλµ + ∂µFνλ = 0 (16)

Thus this part of the Maxwell theory in a medium is the same as in vacuum.
The problems arise with the remaining �elds D and H. In analogy with the tensor (15)

they can be combined into a new, antisymmetric tensor

Hµν =
(

0 −D
D −Hij

)
(17)

with Hij = εijkHk. The two last Maxwell equations (3) can then be simply reduced to
∂νH

µν = 0. It also makes it possible to write the Lagrangian (9) on the compact form
L = −FµνH

µν/4 when we make use of the constitutive equations in the rest frame. Despite
the covariant form of the Lagrangian, it does not represent a Lorentz-invariant theory in
the usual sense. This is so because the phenomenological tensor Hµν must be expressed in
terms of the more fundamental tensor Fµν in a frame where the medium is in motion so to
generalize the constitutive equations D = εE and B = µH valid only in the rest frame of the



3. Covariant formulations 37

medium. Such a relation can always be found, but will obviously involve the velocity of the
medium[2][14]. In a general frame this velocity will then enter the Lagrangian explicitly and
thus signal the lack of physical invariance under vacuum Lorentz transformations as already
mentioned. The true invariance of the Maxwell theory in a medium is represented by Lorentz
transformations involving the reduced speed of light 1/n.

But as long as we restrict ourselves to the rest frame of the medium, there are so far no
problems. The energy and momentum content of the �eld derived in the previous section,
can then be combined into the four-dimensional energy-momentum tensor

Tµν
M =

(
E N
G Tij

)
(18)

valid in this frame. Minkowski wrote it as

Tµν
M = Fµ

αH
αν +

1
4
ηµνFαβH

αβ (19)

with the intention of making use of it in any inertial frame. A direct derivation can be
found in the book by M�oller[15]. The two conservation laws can now be expressed on the
more compact form ∂νT

µν
M = 0. This energy-momentum tensor is in general seen not to

be symmetric which implies that the total angular momentum of the �eld is not conserved.
Only in the limit n → 1 where it becomes the electromagnetic energy-momentum tensor of
the vacuum, do we recover this desired property.

In order to remedy this lack of symmetry, Abraham proposed the following year that only
the symmetric part of the Minkowski tensor should describe the energy-momentum content
of the �eld[3]. The momentum density in the rest frame must therefore equal the Poynting
vector E×H, i.e. a factor n2 smaller than the momentum density D×B of the Minkowski
theory. The resulting energy-momentum tensor is no longer conserved on either index. Instead
there should exist a new volume force which has so far avoided any clear-cut experimental
veri�cation.

The most direct way to distinguish between these two formulations, is via the radiation
pressure directly related to the electromagnetic momentum density. It should thus be a factor
n2 smaller than in the Minkowski version. This seems to be ruled out by most experiments[16].
But according to Garrison and Chiao[9], there still are a few experiments more consistent with
the Abraham theory. Typically of them is that the investigated systems undergo acceleration.
Obviously, this makes the interpretation of the measurements more di�cult.

Both the Minkowski and the Abraham formulations are based on being valid in any inertial
frame related by ordinary vacuum Lorentz transformations. The recently proposed e�ective
theory is instead only valid in the medium rest frame as similar theories in condensed-matter
physics[13]. In this frame light moves with the velocity 1/n. The corresponding light cone is
|x| = ±t/n. As in vacuum, it is desirable to write this on an in�nitesemal level as ds2 = 0
with a line element on the form ds2 = ηµνdx

µdxν . If we now choose ηµν to be the Minkowski
vacuum metric, the contravariant coordinates in this frame must be xµ = (t/n,x). The
corresponding covariant derivative is obviously then ∂µ = (n∂/∂t,∇). In a quantum theory
this should correspond to the four-momentum pµ = (nE,p) for a particle with energy E
and three-momentum p. The d'Alembertian ∂µ∂µ = (n2∂2

t −∇2) is invariant under Lorentz
transformation corresponding to the light speed 1/n. It is seen to equal the wave operator
we found for the Maxwell theory in a medium.

This theory can now be given a simple covariant formulation. We introduce a four-vector
electromagnetic potential Aµ = (nΦ,A) so that the electric and magnetic �eld vectors are
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again given by the antisymmetric tensor Fµν = ∂µAν − ∂νAµ. It has now the components

Fµν =
(

0 −nE
nE −Bij

)
(20)

instead of (15) for the Minkowski formulation. The rest-frame Lagrangian (9) takes then
the standard form µL = −(1/4)F 2

µν . The �rst set of �eld equations (16) obviously remains
unchanged while the second Maxwell equations (3) are replaced by ∂µF

µν = 0 when we make
use of the constitutive equations. One thus obtains the wave equation ∂2Aν − ∂ν(∂ ·A) = 0.
In the Lorenz gauge de�ned by ∂µA

µ = 0, it gives the previous wave equation (8). Notice
that this covariant gauge condition becomes (7) when written out in terms of components.

From the above invariant Lagrangian the energy-momentum tensor can now be derived
as in vacuum, giving

µTµν = Fµ
αF

αν +
1
4
ηµνFαβF

αβ (21)

with components

Tµν =
(

E nN
nN Tij

)
(22)

It is obviously symmetric, traceless and conserved on both indices, i.e. ∂µT
µν = ∂µT

νµ = 0.
In the time direction this gives energy conservation on the form (10) while in the space
directions it gives momentum conservation as in (13). The momentum density of the �eld
G = D × B is therefore the same as in standard Maxwell theory and for the Minkowski
description restricted to the rest frame.

4 Quantization

In the rest frame of the system we have the Lagrangian density (9) and the theory can be
quantized by standard methods. With no free charges, we can take the scalar potential Φ = 0
and use the Coulomb gauge ∇ ·A = 0. There are then only two transverse �eld degrees of
freedom governed by Lagrangian

L =
∫
d3x

[
1
2
εȦ2 − 1

2µ
(∇×A)2

]
(23)

With the system in a volume V with periodic boundary conditions, we can expand the vector
potential in plane waves as

A(x, t) =

√
1
V

∑
k

Ak(t)eik·x (24)

where each Fourier mode with amplitude Ak(t) is characterized by a discrete wave vector k.
In terms of these complex amplitudes satisfying A∗

k = A−k, the Lagrangian becomes

L =
1
2
ε
∑
k

(
ȦkȦ∗

k − ω2
kAk ·A∗

k

)
(25)
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Each term is seen to describe a harmonic oscillator with frequency ωk = |k|/n. Introducing
standard creation and annihilation operators for photons with de�nite polarizations λ, the
quantized Hamiltonian thus takes the standard form

H =
∑
kλ

~ωk

(
a†kλakλ +

1
2

)
(26)

where the last term gives the zero-point energy. A single photon with the wave vector k thus
has the energy E = ~ωk. This will also be the photon energy in the Minkowski and Abraham
theories as long as they are restricted to the rest frame of the medium.

With the above classical momentum density, we can now derive in a similar way the
operator for the total momentum of the quantized �eld from

P =
∫
d3xD×B (27)

It simpli�es to

P =
∑
k

~k(a†k+ak+ + a†k−ak−) (28)

when we make use of the same plane-wave expansion and write out explicitly the contributions
from the two polarization directions. Thus a photon with wave vector k has the momentum
p = ~k. In the new, covariant formulation the mass-squared of the photon is (nE)2 − p2 = 0
for E = ~ωk and p = ~k. We can therefore say that it is massless also in a medium.

Needless to say, the above energy and momentum of a photon will also result from the
Minkowski theory when it is restricted to the rest frame. But this formulation is by construc-
tion valid in any inertial frame related to the rest frame by a vacuum Lorentz transformation.
The theory can then in principle be quantized in such an arbitrary frame where the medium
is in motion. This was �rst done by Jauch and Watson[14]. As expected, it is much more
cumbersome than the above rest-frame quantization and with new problems. This should not
come as a surprise since these vacuum Lorentz transformations do not represent a physical
symmetry. In particular there are di�culties in the treatment of the longitudinal components
of the radiation �eld. A later attempt by Brevik and Lautrup to to clarify the situation, did
not lead to a de�nite conclusion[17] .

A simple example of such a problem is to consider a photon with the four-momentum
pµ = (~ωk, ~k) moving along the x-axis in the rest frame. In the Minkowski formulation,
it is space-like since E2 − p2 < 0 and moves with a velocity 1/n < 1. Now going to a new
inertial frame by a vacuum Lorentz transformation moving along the x-axis with a velocity
v > 1/n, it will be observed to have negative energy[18]. What this means physically, is not
clear. One cannot simply assign it a negative frequency. It must in some way be the matter
which zooms by in this frame, which imparts upon the photon this negative energy. A similar,
strange situation will be found in the next section for the Cerenkov e�ect when described by
the same Minkowski theory.

According to the Abraham description, the photon energy is the same as above while the
momentum in the rest frame is reduced to p = ~k/n2. Its four-momentum is now time-like
since E2 − p2 = (~ω)2(1 − 1/n2) > 0. This is more appropriate for a particle moving with
a speed less than the velocity of light in vacuum. But the squared four-momentum is again
not an invariant since the theory has no invariance under vacuum Lorentz transformations.
In the next section we will see that this formulation of the theory has even greater problems
with the Cerenkov e�ect.
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The total angular momentum of the �eld is given by the classical expression

J =
∫
d3x r× (D×B) (29)

Separating out the orbital part, the intrinsic spin part can be quantized and becomes

S =
∑
k

~k̂(a†k+ak+ − a†k−ak−) (30)

where k̂ is a unit vector along the wave vector k. Needless to say, this is exactly the same
result as in vacuum. The photon in a medium has spin S = 1 with only two helicities λ = ±
required for a massless vector particle.

In the Minkowski formulation the photon has a non-zero mass and one should therefore
a priori expect the spin to have a third direction. This is even more true for the Abraham
formulation, but here the magnitude of the photon spin is reduced to S = 1/n2. It was
therefore suggested by Brevik in his review paper[4]) that a measurement of the photon spin
would o�er a clear method to di�erentiate between these two theories. Some years later such
an experiment was performed[19] giving a value very close to S = 1. Even if this measurement
was not made on free photons as above, but on photons in a wave guide �lled with a dielectric
liquid, the result should be the same. Again the validity of the Abraham theory seems to be
ruled out.

5 Cerenkov radiation of photons

When a charged particle with a speed v > 1/n passes through a medium with index
of refraction n, electromagnetic radiation is emitted. This Cerenkov e�ect is similar to a
sonic boom when an object goes through air with a speed larger than the speed of sound.

Figure 1: Cerenkov radiation from particle with velocity v during a time t in a medium where velocity of
light is 1/n.

The radiation is emitted in a cone with opening angle given by cos θ = 1/nv as shown in
Fig.1. As �rst demonstrated by Frank and Tamm, it is a classical e�ect following directly
from the previous Maxwell equations in the rest frame of the medium[8]. At the microscopic
level it corresponds to the incoming particle emitting a photon in a direction θ away from
the incoming direction and continuing in a slightly di�erent direction with smaller energy as
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shown in Fig.2. The quantum mechanical transition rate for this process was calculated by
Jauch and Watson in the same frame using the Minkowski formulation[20]. They obtained
a radiation rate in agreement with the Frank-Tamm result. This is to be expected from the
correspondence principle.

If we denote the energy and momentum of the incoming particle by E and p and similarly
primed quantities for the outgoing particle, then energy conservation implies E = E′ + ~ω.
The photon frequency ω is related to its wave number by ω = k/n. Using now the photon
momentum ~k from the previous section, one has momentum conservation p = p′x + ~k cos θ
along the incoming x-direction. In the normal y-direction, it similarly follows that p′y +
~k sin θ = 0. Squaring these two eqations and adding, it follows that

p′2 = p2 + (~k)2 − 2~kp cos θ (31)

Combining this with the squared conservation equation for energy which takes the form

Figure 2: Cerenkov radiation of a photon with wave vector k from a charged particle with momentum p.

p′2 = p2 − 2~kE/n+ (~k/n)2, the de�ection angle is seen to be determined by

cos θ =
1
nv

+
~k(n2 − 1)

2pn2
(32)

where v = p/E is the velocity of the incoming particle. When the particle is relativistic and
we consider the emission of visible light, the last, quantum term can be neglected. The angle
is then given by the classical expression.

Obviously, this derivation also holds for the Minkowski theory in the rest frame. But
in this case we can in principle consider the process in any other inertial frame where the
theory should be just as valid. For this reason Jauch and Watson also used the special frame
where the incoming particle is at rest. From the kinematics in this frame it then follows that
it can then decay into a new particle with a certain three-momentum plus a photon with
the opposite momentum. Since the masses of the initial and �nal particles are assumed to
be the same, energy conservation then gives that the photon must have negative energy in
this frame. It is therefore a photon with properties very di�erent from all other photons in
physics. Although this result seems to be mathematically correct, one must be allowed to ask
about its physical validity.

For the Abraham description this process is catastrophic. Going through the same steps
as above, but now with the photon momentum ~k/n2, it follows immediately that the classical
term for the de�ection angle gives cos θ = n/v > 1 for physical velocities. Thus there can
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be no Cerenkov e�ect at the quantum level in this case as also noted a long time ago by
Brevik and Lautrup[17]. This should come as no surprise since the momentum of a photon
with wavelength λ is no longer given by the fundamental de Broglie expression h/λ in this
formulation.

6 Including interactions

So far we have only considered the free theory described by the Lagrangian (9) and as-
suming the phenomenological parameters ε and µ to be constants. It is therefore only valid
on very large scales, i.e. at energies so low that no microscopic degrees of freedom are excited.
For a physical medium made out of atoms this corresponds to energies much less than a few
eV. At higher energies, these e�ects will start to manifest themselves and must be included
some way. In particular we need to incorporate non-linear dispersion in order for the theory
to be realistic. And it must be done in such a way that it allows a consistent treatment at
the quantum level.

The free theory was formulated along the same lines as for other excitations in condensed
matter physics. For many years it has been well known in this �eld how to incorporate
microscopic e�ects in a macroscopic description by extending the free theory in the rest
frame by including higher-order operators in the Lagrangian. The coupling constants of
these new terms are determined by the microscopic physics. They must be determined from
an underlying, more fundamental theory or from experiments. The resulting Lagrangian
describes then an interacting, e�ective theory. Although it is in general said to be non-
renormalizable, �nite quantum corrections can be derived from it as long as one restricts
oneself to phenomena below a characteristic energy. Such e�ective �eld theories have during
the last 10-20 years also become of great use in high energy physics[21]. The �rst well-
known theory of this kind was found by Euler and Heisenberg already in 1936 to describe
classical electromagnetic e�ects in strong �elds, induced by virtual electron-positron pairs in
the vacuum[22]. It is �rst quite recently that it became clear that it could also be used as
an e�ective, quantum �eld theory[23]. Now a similar, e�ective theory for electromagnetic
phenomena in media has been proposed[13].

In order to be gauge invariant, higher-order terms or couplings in the Lagrangian can
only involve the �elds E and B and derivatives of them. For the sake of counting, we can
use quantum units with ~ = 1 so that these �elds have dimension +2 and every derivative
corresponds to an increase in dimension by +1. To be invariant under time-reversal and
ordinary rotations, such new couplings must involve at least two spacetime derivatives. For
example, one possibility could be the term E · ∂2E. It has dimension 6. But the lowest order
equation of motion is just ∂2E = 0 and this term can therefore not contribute. Possible new
terms of dimension 8 would be (E ·E)2, (B ·B)2, E2B2 and (E ·B)2. All such terms describe
anharmonic interactions involving four �elds.

The simplest form of non-linear dispersion follows from dimension-6 interactions when
we restrict ourselves to a theory with only rotational invariance. One example of a possible
interaction is then ∇iE ·∇iE. It is equivalent to E ·∇2E by a partial integration in the action
integral where it appears. The similar term ∂tE ·∂tE involving two time derivatives is for the
same reason equivalent to E · ∇2E when we use the equation of motion. An interaction like
E · ∇2B is ruled out by parity invariance.

Of most interest are dielectric media for which we can set the permeability µ = 1. In such
materials magnetic e�ects are negligible and it is therefore reasonable to assume that all the
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terms involving the magnetic �eld, are absent. The e�ective Lagrangian then becomes

L =
1
2

(
n2E2 −B2

)
+

d1

M2
E · ∇2E +

d3

M4
(∇2E)2 +

a1

M4
(E ·E)2 (33)

when we restrict ourselves to operators with dimension 8 or less. M is a characteristic energy
below which the theory should be valid. In addition, it contains only three independent
dimensionless parameters d1, d3 and a1. For each material they can therefore be determined
by three di�erent measurements when the value of M is known. The Lagrangian should then
be able to predict the outcome of other experiments without any more parameter �tting.

The e�ect of the �rst new term proportional with d1 is simplest to analyze since it is
quadratic in the �eld. In the quantum treatment it will give a perturbation ∆E to the
energy of a photon with momentum ~k. It is simple to calculate and the result is found to
be ∆E = −d1k

3/2M2n3. The resulting total energy E′ = E + ∆E can now be written as
E′ = ~k/n(ω) where the modi�ed index of refraction is

n(ω) = n
(
1− d1ω

2

2M2

)
(34)

where n =
√
ε as before. Thus it gives the Cauchy parametrization of non-linear dispersion

valid for the longest wavelengths of light[24] when d1 is negative. Comparing with measured
values, we �nd that M = 5 − 10 eV for typical materials if we set the unknown parameter
d1 = −1. The operator proportional to d3 (33) will obviously give a ω4 correction to this
dispersion law. Similarly we can show that the operator (E · E)2 describes the AC and DC
Kerr e�ects[24]. The mass parameter M is again found to be in the same range as above if
we choose a1 = 1. One can therefore instead take M to have the same value for all materials
and let the dimensionless parameters d1, d3 and a1 vary from material to material.

7 Conclusion

The Abraham description of electromagnetism in media is inconsistent with both basic
theoretical ideas and experimental results. After having been discussed now for 100 years,
it is time for it to be laid permanently to rest. While the energy and momentum content
resulting from the Minkowski theory in the rest frame of the medium avoid these problems,
it still has di�culties with the requirement of being valid in any inertial frame.

Considering instead these �elds like any other excitations in condensed matter physics
and de�ned by an e�ective theory in the medium rest frame, a satisfactory theory can be
formulated. Except for the reduced velocity of light, it equals the corresponding theory in
vacuum. This new theory thus becomes equivalent to electromagnetism in the ether before
1905. The Maxwell equations were then considered to be valid only in the rest frame of
the ether. Einstein's special theory of relativity showed that there is no need for a physical
ether and Maxwell equations became valid in all inertial frames. Today we would rather say
that there is an ether, but that it is invariant under Lorentz transformations. In contrast,
a physical medium is not invariant under these transformations and that makes the whole
di�erence.

A want to thank Iver Brevik for teaching me classical electromagnetism including the
Cerenkov e�ect when I was a student. Throughout the subsequent years he has kept me
continually updated on di�erent aspects and problems with the Minkowski and Abraham
descriptions of these phenomena in materials.
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Casimir Lifshitz pressure and free energy:

exploring a simple model
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Abstract

The Casimir e�ect, the dispersion force attracting neutral objects to each other, may
be understood in terms of multiple scattering of light between the interacting bodies. We
explore the simple model in which the bodies are assumed to possess re�ection coe�cients
independent of the energy and angle of incidence of an impinging �eld and show how
much information can be extracted within the geometry of two parallel plates. The full
thermal behaviour of the model is found and we discuss how non-analytic behaviour
emerges in the combined limits of zero temperature and perfect re�ection. Finally we
discuss the possibility of a generalised force conjugate to the re�ection coe�cients of the
interacting materials and how, if the materials involved were susceptible to changing their
re�ective properties, this would tend to enhance the Casimir attraction. The dependence
of thi correction on separation is studied for the constant re�ection model, indicating
that the e�ect may be negligible under most experimental circumstances 2.

1 Introduction

The Casimir e�ect was �rst reported in 1948 [1] as an attractive force between parallel
mirrors due to the zero point �uctuations of the electromagnetic �eld in vacuum. Casimir
calculated the formally in�nite quantum energy associated with the eigenmodes n of the �eld
between the plates, ~

2

∑
n ωn, subtracted the corresponding energy of free space (in�nte plate

separation) and obtained after some regularisation the simple result

P 0
C = − ~cπ2

240a4
; F0

C = − ~cπ2

720a3
(1)

where PC and FC are the Casimir pressure and free energy per unit plate area respectively
and a is the separation between the plates. Here and henceforth a superscript 0 refers to
zero temperature. A negative pressure here corresponds to an attractive force. Naturally,

1E-mail: simen.a.ellingsen@ntnu.no
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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the relation between pressure and free energy is P (a) = −∂F(a)/∂a. In the following we will
employ natural units ~ = kB = c = 1.

In the following section we give a brief review of the understanding of Casimir interactions
as a multiple scattering or re�ection phenomenon. The remainder of the paper is the begin-
nings of an exploration of a simple model, �rst employed in [2] to the author's knowledge.
The model is one in which the interacting bodies scatter electromagnetic �elds with re�ection
coe�cients |r| ≤ 1 which are modelled as invariant with respect to the energy and direction
of the wave. We do not venture beyond the planar geometry herein, but show that certain
closed form solutions exist in this case, and how the model enables simple extraction of key
information.

We review in section 3 the derivation of closed form expressions for the Casimir force
and free energy in the constant re�ection model and in section 4 how this model was used to
generalise the frequency spectrum of the Casimir energy to imperfect re�ection. In sections
5 through 6 we thereafter calculate the full temperature behaviour of the Casimir-Lifshitz
pressure and free energy within the model and demonstrate how one encounters non-analytic
behaviour in the limit of perfect re�ection, reminiscent of the still ongoing debate over the
temperature corrections to the Casimir force. Finally in section 7 we consider the possibility
that the Casimir free energy could exhibit a generalised force on the re�ective properties of
the materials involved, thereby increasing its own magnitude. We lay out the basic theory
of such a possibility, not hitherto reported to the author's knowledge, and use the constant
re�ection model to extract information about how the corresponding correction to Casimir
attraction scales with temperature and separation.

2 A brief review of the multiple scattering understanding

of Casimir interactions

The beauty and simplicity of Casimir's results (1) stems from the assumption of perfectly
conducting plates, that is, the metal plates are perfect mirrors at all frequencies of the elec-
tromagnetic �eld. Drawing on the theory of �uctuations due to Rytov [3], Lifshitz made an
important generalisation of Casimir's results to the case of two half-spaces with frequency de-
pendent permittivities ε1(ω) and ε2(ω) [4] (Lifshitz moreover assumed the slabs be immersed
in a third medium which we assume to be vacuum here for simplicity). The calculation was
rather involved and the result at zero temperature was found to be:

P 0 = − 1
2π2

∫ ∞

0

dζ

∫ ∞

ζ

dκκ2
∑

σ=s,p

r
(1)
σ r

(2)
σ e−2κa

1− r
(1)
σ r

(2)
σ e−2κa

(2a)

F0 =
1

4π2

∫ ∞

0

dζ

∫ ∞

ζ

dκκ
∑

σ=s,p

ln
[
1− r(1)σ r(2)σ e−2κa

]
(2b)

where the quantities r
(i)
σ pertaining to medium i are

r(i)s =
κ− κi

κ+ κi
; r(i)p =

εi(iζ)κ− κi

εi(iζ)κ+ κi
(3)

and κi = κi(κ, iζ) =
√
κ2 + [εi(iζ)− 1]ζ2.

By noting that iκ = kz, ẑ being the axis normal to the plates one may recognise r
(i)
s

and r
(i)
p as the standard Fresnel re�ection coe�cients of a single interface for the TE and
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TM polarisation respectively, as well known from classical optics. Thus the Casimir-Lifshitz
force (2a) does not depend directly on the bulk properties of the materials of the slabs as
is ostensible from the original Lifshitz derivation, but only on the re�ection properties of
the surfaces of the material half-spaces. Kats [5] may have been the �rst to point this out
explicitly in 1977, and the point has been given widespread attemtion more recently [6, 7, 8, 9].

It is a simple exercise to show that inserting (r(i)σ )2 = 1, ∀i, σ into (2a) and (2b) yields the
Casimir limits (1).

The trait that the Casimir-Lifshitz pressure (2a) is a function of re�ection properties only
is a tell-tale that the e�ect may be thought of as the result of multiple scattering of light
between boundaries. Another hint is the recognition of the fraction in (2a)

r
(1)
σ r

(2)
σ e−2κa

1− r
(1)
σ r

(2)
σ e−2κa

=
∞∑

k=1

(
r(1)σ r(2)σ e2ikza

)k

(4)

as a sum of contributions from waves which are re�ected o� both interfaces k times before
returning to whence it originated.

This implies that the Casimir interaction between much more general materials than bulk
dielectrics (as considered by Lifshitz) may be calculated, if one is able to obtain an expression
for the re�ection properties of the surfaces involved and how light is transmitted between the
bodies. This fact was used, among other things, to calculate the e�ect of spatial dispersion
[5, 10, 11, 12] and interaction between (magneto)dielectric multilayers [13, 14, 15, 16, 17]
based on Green's function methods [18]. Some further considerations were given in [19].

In recent years, the understanding of Casimir problems in terms of multiple scattering has
become widespread and makes way for what is presently perhaps the most powerful techniques
for calculating Casimir energies in non-trivial geometries. Within such a general scattering
formalism the Lifshitz formula (2b) may be seen as a special case of the much more general
formula

F0 =
∫ ∞

0

dζ

2π
Tr ln

[
1− T1G0

12T2G0
21

]
(5)

where Ti is the T-matrices (operators) of two arbitrary interacting bodies and G0
ij is a vacuum

propagator (Green's function) from object i to object j. The energy expression (5) was
recently dubbed the TGTG formula and is written here as derived in [20, 21], but the use of
less general embodiments of essentially the same multiple scattering technique goes back at
least to the 1970s [22, 23]. The recent acceleration of progress towards understanding the role
of geometry in Casimir interactions has brought much attention to this technique in recent
years (e.g. [24, 25, 26, 27, 28]; for a review see [29] and the introduction to [27]).

To see somewhat roughly how the Casimir-Lifshitz free energy (2b) is a special case of
(5) let the propagators be simply that of a plane wave along the ẑ direction over a distance
a, G0 → exp(ikza) and let the T matrices represent specular scattering at the surfaces,

Ti → diag(r(i)s , r
(i)
p ). Take the trace operation in (5) to include an integral over the trans-

verse momentum k⊥ plane (isotropic due to rotational symmetry) and one obtains (2b) with
minimal manipulation. See e.g. [30] for details.

For reasons of simplicity much of the recent research on geometry e�ects has been made
for the massless scalar �eld satisfying the Klein-Gordon equation rather than the vectorial
electromagnetic �eld. Historically, Dirichlet and Neumann boundary conditions have been
employed together with path integral methods of quantum �eld theory to mimic the two
electromagnetic polarisations (note that the sum of the Dirichlet and Neumann scalar solu-
tions of the wave equation only reproduces the ideally conducting electromagnetic case in
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special geometries where the electromagnetic modes decouple, such as the original Casimir
geometry).

In order to model semi-transparent bodies in this formalism, the introduction of delta-
function potentials into the Klein-Gordon equation has been common (see review in [30]). A
delta potential V (r) = λδ3(f(r)) models a body whose surface solves f(r) = 0 and where
the coupling constant λ determines the �transparency�. Dirichlet boundary conditions are
regained in the strong coupling limit λ → ∞, and it has turned out that several non-trivial
geometries are exactly solvable to linear order in λ in the weak coupling case λ� 1 [26, 27].

The model of constant re�ection coe�cients is a somewhat similar idea and constitutes
another model of semi-transparency where some physicality is traded for mathematical man-
ageability.

3 Closed form expression using polylogarithms

It is straightforward to obtain a closed form expression for the Casimir pressure and
energy in the constant re�ection model. The mathematical formalism which enters is that of
polylogarithmic functions. The νth order polylogarithm of x is de�ned as

Liν(x) =
∞∑

k=1

xk

kν
. (6)

It is related to the Riemann zeta functions (as is obvious for ν > 1) by Liν(1) = ζ(ν) and
obeys the recursion relation (d/dx)Liν(x) = (1/x)Liν−1(x), which in particular implies that
for |<eA| < 1 ∫

dxLiν(Ae−bx) = −1
b
Liν+1(Ae−bx) + C (7)

where A, b, C are constants. We recognise the polylogarithms which enter into (2a) and (2b),

Li1(x) = − ln(1− x); Li0(x) =
x

1− x
. (8)

The polylogarithms of interest herein are all of real and integer order.
In the Wick rotated formalism in Euclidean space where the time axis is imaginary, it

follows from the general properties of causal response functions that the re�ection coe�cients
are necessarily real quantities [31]. Now, assuming the re�ection coe�cients are constants
with respect to κ and ζ the integrals are easily solved with partial integration using (7) and
yields for the pressure and free energy at zero temperature, respectively3,

P 0 = − 3
16π2a4

∑
σ=p,s

Li4(r(1)σ r(2)σ ); (9)

F0 = − 1
16π2a3

∑
σ=p,s

Li4(r(1)σ r(2)σ ). (10)

In the ideal limit |rσ| → 1, Li4(r
(1)
σ r

(2)
σ ) → ζ(4) = π4/90 and Casimir's results (1) are

regained. The Casimir pressure as a function of the squared re�ection coe�cient r2 (assuming
both materials equal and the same coe�cient for both polarisations) is plotted in �gure 1. A
similar graph for the free energy would obviously be exactly identical.

3If the calculation is performed for real frequencies, re�ection coe�cients are generally complex and the
real part of the Li4 functions should be taken [2].



4. Real-frequency spectrum 49

Figure 1: Casimir pressure as a function of a constant re�ection coe�cient relative to the
ideal conductor Casimir result. Materials are assumed similar and the re�ection coe�cient
equal for both polarisations for simplicity.

4 Real-frequency spectrum

The model of constant re�ections was introduced in [2] in order to slightly generalise
considerations of the real-frequency spectrum of the Casimir force due to Ford [32]. He
showed from quantisation of the vacuum how the Lifshitz frequency integrand is equal to the
vacuum energy spectrum, which in the case of perfect mirrors studied by Ford turns out to
be an oscillating function of frequency with discontinuities at ω = nπ/a, n ∈ N. The Lifshitz
pressure formula for real frequencies at zero temperatures reads [4]

P 0(a) = − 1
2π2

<e
∫ ∞

0

dωω3

∫
Γ

dpp2

×
∑

σ=s,p

r2σ exp(2ipωa)
1− r2σ exp(2ipωa)

(11)

where the Lifshitz variable p is the positive real part root of p =
√

1− (k⊥/ω)2. In the
following we will assume the materials equal for simplicity; the generalisation to di�erent

re�ectivity is r2σ → r
(1)
σ r

(2)
σ . Replacing an isotropic integral over all k⊥ the integration contour

Γ therefore runs from 1 to 0 (propagating modes) and thence to i∞ (evanescent modes).
By assuming re�ection coe�cients to be constant with |<e{r2σ}| ≤ 1, the frequency spec-

trum can be found. De�ning

P 0 =
∫ ∞

0

dω
∑

σ=s,p

P 0
ω,σ (12)

one �nds the spectrum

P 0
ω,σ =

−1
16π2a3

[
−ξ2=mLi1(r2σe

iξ)

−2ξ<eLi2(r2σe
iξ) + 2=mLi3(r2σe

iξ)
]

(13)

where we have de�ned the shorthand dimensionless quantity ξ = 2ωa. The spectrum (13) is
plotted for a few di�erent rσ in �gure 2. Note how the discontinuous behaviour seen in the
ideal case r2σ = 1, which stems from the term

=mLi1(eiξ) = arctan
(

sin ξ
1− cos ξ

)
(14)
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Figure 2: Casimir-Lifshitz frequency spectrum for real constant re�ection coe�cients. This
�gure generalises �gure 2 of [32].

becomes smooth for r2σ < 1. This is one example of how the Lifshitz formulae exhibit non-
analytic behaviour in the perfectly re�ecting limit, a fact which is closely related to the
ongoing dispute about the temperature correction to the Casimir force as explained in the
following.

5 Thermal behaviour

We start by generalising the closed form result (10) to include �nite temperature correc-
tions. It is easiest to work within the imaginary frequency formalism. When going to �nite
temperature the real frequency integrand of (11) and the corresponding free energy expres-
sion receives an additional factor coth(ω/2T ) from the Bose-Einstein distribution. By use of
Cauchy's theorem the real frequency integral can be written as a sum over the poles of this
factor at ω/2T = mπi, m ∈ N. Thus the Lifshitz formula for free energy of polarisation mode
σ (letting F = Fp + Fs) at temperature T is

FT
σ =

T

2π

∞∑
m=0

′
∫ ∞

ζm

dκκ ln(1− r2σe
−2κa) (15a)

=− T

8πa2

∞∑
m=0

′ [
2aζmLi2(r2σe

−2ζma)

+ Li3(r2σe
−2ζma)

]
(15b)

where ζm = 2πmT are the Matsubara frequencies and the prime on the sum means the m = 0
term is taken with half weight. In the last form we use that ln(1− x) = −Li1(x), and partial
integration by use of (7).

In the high temperature limit 2ζ1a � 1 the m = 0 term dominates (other terms are
exponentially small) and we immediately obtain the free energy in this limit:

FT
σ ∼ − T

16πa2
Li3(r2σ); ζ1a� 1, (16)

in accordance with the well known high-temperature free energy between ideal plates, FC ≈
−ζ(3)T/(8πa2) known at least since the 1960s [33].
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Figure 3: Casimir-Lifshitz free energy as a function of temperature for rσ = 1/2 and the high
and low temperature asymptotics, (16) and (18) respectively.

By using the de�nition (6) and changing the order of summation, (15b) can be written

FT
σ =

−T
16πa2

∞∑
k=1

r2k
σ

k3

[
ζka

sinh2(ζka)
+ coth(ζka)

]
(17)

This is a generalisation of equation (3.12) of [34], which is for ideal conductors. One may
note that the expression between the square brackets equals the Wronskian W(cothx, x)
with x = ζka. For numerical purposes (17) is useful for having a summand which converges
geometrically and consists of standard functions only.

We go on to �nd the asymptotic behaviour for small T . When aT is small and r2σ < 1
only small values of the quantity ζka are of importance to the sum (17) because for a given
rσ the temperature may be chosen so small that the sum has converged due to the factor r2k

σ

before ζka becomes of order unity. Then a Laurent expansion

x sinh−2(x) + coth(x) = 2x−1 + 2x3/45 + ...

gives the low temperature expansion assuming r2σ < 1:

FT
σ ∼− 1

16π2a3
Li4(r2σ)− π2aT 4

45
r2σ

1− r2σ

+O(T 6); T → 0 (18)

where we use Li0(x) = x/(1−x). The thermal behaviour of Fσ is plotted in �gure 3 together
with the high and low temperature asymptotics.

One may note a couple of peculiar traits about this low-temperature behaviour. Firstly,
all �nite temperature coe�cients are singular in the ideal limit r2σ → 1; there are only even
order terms, and the temperature correction of order T 2n diverges as (1− r2σ)3−n for n ≥ 2 as
we will show below. This is an indication that FT

σ is not analytic in the double limit where
T vanishes and r2σ → 1.
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Secondly, note the contrast with the corresponding ideal result r2σ = 1 derived in [34, 35],

1
2
FT

C ∼ − π2

1440a3
− ζ(3)T 3

4π
+
π2aT 4

90
+ ...; T → 0. (19)

where further corrections are exponentially small (see also [36]). Mathematically the change
of sign and coe�cient of the T 4 term from (18) to (19) can be na�ively explained by

r2σ
1− r2σ

= Li0(r2σ)
r2

σ→1−→ ζ(0) = −1
2
, (20)

yet there appears a hitherto unseen term ∝ T 3 which is independent of a and therefore does
not contribute to the Casimir pressure.

Mathematically, the reason for this fundamental change of temperature behaviour at r2σ =
1 is due to the fact that the summand of (15a) becomes a non-analytical function of m at
m = 0 when r2σ = 1, but is analytical whenever r2σ < 1. It was demonstrated in [37] that
a term ∝ T 3 in the low temperature expansion of F appears when the summand of (15a)
contains a term proportional to m2 ln(m).

Before elaborating this further, we will work out the full asymptotic series expansion of
F in powers of T by use of the method developed in [37]. We de�ne the function gσ(µ)

FT
σ ≡ − T

8πa2

∞∑
m=0

′
gσ(µ) (21)

where µ = mT and gσ(µ) is the expression inside the square brackets of (15b). When gσ(µ)
is analytical at µ = 0, gσ can be written as a Taylor series gσ(µ) =

∑∞
k=0 c

σ
kµ

k. By zeta
regularisation the temperature correction ∆Fσ(T ) = FT

σ −F0
σ can be written[37]

∆Fσ(T ) ∼ − 1
8πa2

∞∑
k=1

cσ2k−1ζ(1− 2k)T 2k

=
1

8πa2

∞∑
k=1

cσ2k−1

B2k

2k
T 2k; T → 0, (22)

where Bn are the Bernoulli numbers as de�ned in [38]. Only odd orders of µ from the Taylor
expansion contribute since ζ(−2k) = 0; k ∈ N, thus there are only even orders of T .

Since (
d

dx

)k

Lin(Ae−bx) = (−b)kLin−k(Ae−bx)

and since for <eA < 1,
Li−k(A) ∝ (1−A)−(k+1), k ≥ 0,

it is clear that the summand of (15a) is analytic if and only if r2σ < 1, since the higher
derivatives of the Li3 term become divergent at m = 0. The asymptotic series on the form
(22) is therefore valid for all r2σ < 1 but not in the perfectly re�ecting limit.

When r2σ < 1 it is obvious that

Lin(r2σe
−α) =

∞∑
l=0

(−α)l

l!
Lin−l(r2σ),
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which automatically gives the Taylor expansion of gσ(µ). Inserted into gσ(µ) from (15b) we
�nd

gσ(µ) =Li3(r2σ)−
∞∑

k=1

k − 1
k!

(−4πaµ)kLi3−k(r2σ). (23)

It is thus clear that cσ1 = 0, in accordance with (18) where the lowest correction to zero
temperature was found to be T 4. With (22) the full temperature expansion to arbitrary
order is thus

FT
σ =

1
16π2a3

∞∑
k=0

(k − 1)B2k

(2k)!
Li4−2k(r2σ)(4πaT )2k. (24)

One may easily verify that this generalises (18), noting that Li0(x) = x/(1 − x). One may
show that this series has zero convergence radius, that is, it does not converge for any �nite
T .

6 Asymptotic temperature expansion for perfect conduc-

tors revisited

The fact that the na�ive transition (20) yields the correct T 4 term for ideal conductors leads
one to speculate that the even-power terms of the asymptotic T -series for ideal conductors
may be given by simply letting Li4−2k(r2σ) → ζ(4 − 2k) in (24). Since the Riemann zeta
function with even negative integer arguments is zero, this would if so truncate the series
beyond order T 4. This does not explain the appearence of the T 3 term in (19), however, and
does not preclude the emergence of other additional terms of higher non-even order.

The answer is readily found using the above mentioned method developed in [37]. From
(15b) and (21) we see that for ideal conductors

gσ(µ) = τLi2(e−τ ) + Li3(e−τ ) (25)

where we have de�ned the shorthand τ = 4πaµ. The asymptotic behaviour of Lin(e−τ ) for
small τ was found by Robinson [39] who studied the function4

φ(s, τ) =
1

Γ(s)

∫ ∞

0

dx
xs−1

ex+τ − 1
= Lis(e−τ ).

For integer s = n the Robinson formula is

Lin(e−τ ) =
(−τ)n−1

(n− 1)!

[
n−1∑
k=1

1
k
− ln(τ)

]

+
∞∑

k = 0
k 6= n − 1

ζ(n− k)
k!

(−τ)k (26)

which gives

gσ(µ) =ζ(3)− τ2

4
+

1
2
τ2 ln(τ)

−
∞∑

k=3

k − 1
k!

ζ(3− k)(−τ)k. (27)

4For this integral representation of the polylogarithm see e.g. [40] equation (2.4).
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It is shown in [37] that, as de�ned in (21), a term in gσ(µ) of the form cσ2lµ
2 lnµ gives a term

in the free energy

F2l = − 1
8πa2

ζ(3)
4π2

cσ2lT
3.

From (27) one recognises cσ2l = 8π2a2, wherewith the T 3 term of (19) is regained.
Terms of gσ(µ) which are constant or proportional to µ2 give no contribution to the

temperature correction to free energy and a comparison of (23) and (27) to order µ3 and
higher shows that for all orders of T above cubic the expansion of FT

C is the same as (24) with
Li2−2k(r2σ) → ζ(2−2k) = − 1

2 , 0, 0, ... for k = 1, 2, 3, ... Thus the series is terminated at fourth
order and the expansion (19) is in fact the full temperature behaviour modulo exponentially
small corrections:

FT
C ∼ − π2

720a3
− ζ(3)T 3

2π
+
π2aT 4

45
;T → 0. (28)

This result was found by di�erent methods in [34, 35, 36] and is consistent with Mehra's early
considerations [33].

6.1 Relation to the temperature debate

In connection with an ongoing debate concerning the temperature correction to the Casimir
force, a point which has been raised is that the application of certain re�ectivity models lead
to apparent inconsistencies with the third law of thermodynamics, the Nernst heat theorem
(c.f. [41] and references therein), that is, entropy does not vanish with vanishing temperature
as it should. It was recently concluded that these formal violations of Nernst's theorem stem
from non-analytical behaviour in the combined limit of zero frequency (where re�ection coef-
�cients approach unity for metal models) and zero temperature [42, 43]. Indeed, violation can
only occur due to particular types of non-analyticities causing abrupt change of re�ectivity
at the point ω = T = 0 [44]. The nonzero entropy at zero temperature would then stem
from the fact that the summand of the free energy sum such as (15a) became discontinuous
at m = 0.

The transition from imperfect to perfect re�ection in the previous paragraph is reminiscent
of the anomalous entropy at some level. In [42, 43, 44] the situation is one in which the
re�ection coe�cients and thus the free energy summand is discontinuous when frequency and
temperature are taken continuously to zero. Here the second temperature derivative of the
free energy integrand (15a) is discontinuous (indeed divergent) as re�ection coe�cient and
temperature are taken continuously to zero. The former discontinuity leads to a change in
free energy leading temperature dependence from quadratic to linear, the linear dependence
which implies nonzero entropy at zero temperature since S = −∂F/∂T . The rσ → 1 transition
considered above changes the temperature correction from quartic to cubic. No anomalous
entropy at T = 0 stems from this transition, yet its mathematical dynamics are very similar.

7 A generalised force on re�ectivity?

We conclude with a few remarks on the possibility of a generalised force whose generalised
coordinate is the re�ectivity of one of the materials. In most calculations of Casimir forces
between real materials the material is treated as inert and it is assumed that its re�ection
properties do not change due to the Casimir interaction across the gap. One could remark,
however, that were it possible, the system could lower its free energy by increasing its re�ec-
tivity. Such a mechanism was in fact suggested as a possible explanation of the energetics of
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the high temperature superconducting transition in which a ceramic multilayer can decrease
its total free energy by becoming superconducting, thus a better re�ector [45].

In the following a few notes are made on this possibility. A determination of the question
of whether such an e�ect could be measurable is only possible subsequent to calculating the
material's free energy as a functional of its re�ection coe�cients and determining to which
extent variation of re�ectivity is a degree of freedom. This is complicated task we shall not
pursue herein.

One is reminded at this point of the previously mentioned dispute over the thermal de-
pendence of the Casimir e�ect between real materials (reviews include [46, 41]). Puzzlingly,
recent high accuracy experiments which have measured the Casimir force between good met-
als ([47] and references therein) report a measured Casimir pressure signi�cantly larger than
that predicted by several theoretical groups [34, 46, 48, 49].

Our calculations indicate that the Casimir self-enhancing e�ect is negligible under most
circumstances yet it might be worth investigating it further taking into account speci�c ma-
terial characteristics for a quantitative treatment. Here we shall content ourselves with laying
out the very basic theory and using the constant re�ection model as a tool to extract the
dependence on temperature and separation in two limits.

Consider the Lifshitz free energy on yet another form,

FT
σ [r(1)σ , r(2)σ ] =

1
2i

∫ ∞

−∞

dω

2π
coth

ω

2T

×
∫

d2k⊥
(2π)2

ln(1− r(1)σ r(2)σ e−2κa) (29)

with κ =
√

k2
⊥ − ω2 with <e{κ} > 0 and re�ection coe�cients functions of k⊥ and ζ. In

the special case of a single interface between vacuum and a dielectric, r
(i)
σ take the form (3).

Note that the integrand of (29) is complex but only the imaginary part contributes due to
symmetry properties so that the expression as a whole is real (see e.g. [43]). The logarithm
is understood as its principal value.

The total free energy of the system per unit transverse area should be well approximated
by

F tot

σ = F (1)
σ [r(1)σ ] + F (2)

σ [r(2)σ ] + FL

σ [r(1)σ , r(2)σ ]

where the �rst two terms on the right hand side pertain to the two media on either side of
the gap and the last term is the Lifsthiz free energy, now with a superscript L for distinction
(we assume �nite temperature throughout this section except as explicated). We de�ne the
generalised force acting on material i:

Φ(i)
σ (ω,k⊥) =− δFL

σ [r(i)σ , r
(j)
σ ]

δr
(i)
σ (k⊥, ω)

=
1
2i

coth
( ω

2T

) r
(j)
σ e−2κa

1− r
(i)
σ r

(j)
σ e−2κa

(30)

where i, j = 1, 2; i 6= j and δ/δr
(i)
σ denotes the functional derivative. The dependence of

re�ection coe�cients on ω and k⊥ has been suppressed on the right hand side. The generalised
force can take either sign but always acts so as to increase the attraction between the plates,
an observation which is self evident from the fact that the negative Casimir-Lifshitz free
energy (15a) increases in magnitude with increasing re�ectivity 5.

5One may note that if one were to have a dielectric and a magnetic material, repulsion can in principle be
e�ectuated. In this case Φσ acts to decrease repulsion.
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A given material i will have a generalised susceptibility which determines its ability to
alter its re�ective properties in response to Φσ,

χ(i)
σ (ω, ω′,k⊥,k′⊥) =

δr
(i)
σ (ω,k⊥)

δΦ(i)
σ (ω′,k′⊥)

(31)

=

[
δ2F (i)

σ [r(i)σ ]

δr
(i)
σ (ω,k⊥)δr(i)σ (ω′,k′⊥)

]−1

(32)

and a Taylor expansion in Φσ gives

∆r(i)σ (ω,k⊥) =
∫ ∞

−∞

dω′

2π

∫
d2k′⊥
(2π)2

χ(i)
σ (ω, ω′,k⊥,k′⊥)

× Φ(i)
σ (ω′,k′⊥) + ...

At �nite temperature we may close the ω′ integral path around the upper half complex plane

and invoke the Cauchy theorem. Since χ
(i)
σ (· · · ) does not have any singularities in the upper

ω′ plane [31], the integral over ω′ then gives a sum over the poles of coth(ω′/2T ), and by
letting ω → iζ we obtain

∆r(i)σ (iζ,k⊥) = T
∞∑

m=0

′
∫

d2k′⊥
(2π)2

χ(i)
σ (iζ, iζm,k⊥,k′⊥)

× Φ(i)
σ (iζm,k′⊥) + ... (33)

where

Φ(i)
σ (iζ,k⊥) =

r
(j)
σ (iζ,k⊥)e−2κa

1− r
(i)
σ (iζ,k⊥)r(j)σ (iζ,k⊥)e−2κa

. (34)

On the imaginary frequency axis all quantities in (33) and (34) are real.

Since χ
(i)
σ (· · · ) depends on r(i)σ and Φ(i)

σ depends on both re�ection coe�cients, quation

(33) de�nes a set of integral equations for the new re�ection coe�cients. Note that Φ(i)
σ always

has the same sign as r
(i)
σ and increases in magnitude with increasing |r(i)σ |, so equation (33)

implies that given time, |r(i)σ | will �ow to ever higher values until the �xed point

χ(i)
σ (iζ, iζ,k⊥,k⊥) = 0 (35)

is reached for both materials. If one is able to calculate χ
(i)
σ (· · · ) for a given r

(i)
σ , (33) with

(34) may be invoked iteratively for a simple numerical scheme to obtain the new re�ection
coe�cients.

An approximation of the change in re�ectivity is provided by use of (33) using the '�rst
order' estimate

Φ(i)
σ,0 =

r
(j)
σ,0e

−2κa

1− r
(i)
σ,0r

(j)
σ,0e

−2κa
(36)

where r
(i)
σ,0 are the re�ection coe�cients without any Casimir interaction, which satisfy δF

(i)
σ /δr

(i)
σ,0 =

0. To �rst order in ∆r the change in Lifshitz free energy is

∆FL
σ =− T

∞∑
m=0

′
∫

d2k⊥
(2π)2

(
∆r(1)σ

r
(1)
σ,0

+
∆r(2)σ

r
(2)
σ,0

)

×
r
(1)
σ,0r

(2)
σ,0e

−2κa

1− r
(1)
σ,0r

(2)
σ,0e

−2κa
. (37)
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which, upon comparison with (36) gives the 'one-loop' approximation

∆FL
σ ≈ −T 2

∞∑
m,m′=0

′
∫

d2k⊥
(2π)2

d2k′⊥
(2π)2

∑
i=1,2

Φ(i)
σ,0(iζm,k⊥)χ(i)

σ (iζm, iζm′ ,k⊥,k′⊥)Φ(i)
σ,0(iζm′ ,k′⊥).

(38)

It is understood that χ
(i)
σ (· · · ) is evaluated assuming unperturbed re�ection.

7.1 Constant re�ection model

Assuming constant re�ection coe�cients as before it is easy to see that Φσ scales with
distance like Fσ:

Φ(i)
σ = T

∞∑
m=0

′
∫

d2k′⊥
(2π)2

Φ(i)
σ (iζm,k⊥) = − ∂Fσ

∂r
(i)
σ

∼

{
(16π2a3r

(i)
σ )−1Li3(r

(1)
σ r

(2)
σ ), T → 0

T (16πa2r
(i)
σ )−1Li2(r

(1)
σ r

(2)
σ ), aT � 1

(39)

where only the last form is speci�c to the constant re�ection model.
The one-loop correction (38) now simpli�es to

∆FL
σ ≈−

T 2

4π2

∞∑
m,m′=0

′
∫ ∞

ζm

dκκ

∫ ∞

ζm′

dκ′κ′

×
∑

i=1,2

Φ(i)
σ,0(κ)χ

(i)
σ (κ, κ′)Φ(i)

σ,0(κ
′).

The dependence of χ
(i)
σ on κ, κ′ is of course unknown, but it is in the spirit of our simple

model to assume it constant with respect to these arguments (dependent on r
(1)
σ and r

(2)
σ

only) as a �rst approximation so as to extract some information as to how the corrections to
Casimir force and free energy depend on distance. In this model the simple result is

∆FL
σ ≈ −χ(i)

σ

[
Φ(i)

σ

]2
∝
{

a−6, T = 0
T 2a−4, aT � 1 (40)

with Φ(i)
σ from (39).

The indication is thus that the change in the Casimir pressure will fall o� as a−7 and
a−5 in the two regimes respectively, much faster than the Casimir pressure, which falls o�
as a−4 and a−3 respectively. Although tentative and subject to restrictive assumptions, the
above calculation indicates that the e�ect of the generalised force on re�ectivity is likely to
be negligible under most circumstances. It is notable, however, that the e�ect increases as
T 2 in the high aT limit, whereas the Casimir force is a linear function of temperature in this
regime.

Conclusions

We have reviewed how the Casimir e�ect can be thought of as a multiple scattering
phenomenon, an observation which inspires the use of a simple model in which the re�ection
coe�cients of interacting bodies (the relative amplitude of re�ected vs. incoming �eld) are
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assumed to be independent of the direction and energy of the �eld. We review how this
simple model yields some closed form results in the planar geometry famoyusly considered by
Casimir and Lifshitz, and how much important information may be extracted with relatively
simple methods within the con�nes of the model.

We review how the frequency spectrum of the Casimir e�ect is generalised from per-
fect re�ection and becomes analytic and continuous upon introducing non-unity re�ection
coe�cients. The full asymptotic behaviour of the Casimir-Lifshitz free energy in powers of
temperature is found, and it is demonstrated how the transition to the perfectly re�ecting
case is not smooth. This is another demonstration of the non-analytic behaviour of the Lif-
shitz formalism in the double limit of zero temperature and perfect re�ection which has given
rise to debate over the thermodynamic consistency of various re�ection models in connection
with the temperature behaviour of the Casimir force.

We �nally discuss the idea of a generalised �Casimir� force conjugate to the re�ection co-
e�cients of the interacting bodies. If there exist mechanisms by which the materials involved
could be susceptible to changing their re�ective properties, the generalised force initiates a
back reaction e�ect by which the re�ection coe�cients tend towards their maximal available
values, increasing the Casimir interaction. The indication is, however, that the e�ect would
be small and fall o� faster with interplate separation than the Casimir force itself.
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Abstract

We give indications that outer future trapping horizons play a role in the particular
semi-classical instability of an evolving black hole that produces the Hawking's radiation.
These are obtained with the use of the Hamilton-Jacobi tunneling method. It automat-
ically selects one special expression for the surface gravity of a changing horizon, the
one de�ned a decade ago by Hayward using Kodama's theory of spherically symmetric
gravitational �elds. The method also applies to point masses embedded in an expanding
universe and to general, spherically symmetric black holes. The local surface gravity
solves a puzzle concerning the charged stringy black holes, namely that it vanishes in
the extremal limit, whereas the Killing global gravity does not2.

1 Introduction

It has long been felt that the usual semi-classical treatment of stationary black holes (ab-
brev. BHs) should be extended to cover at least slowly changing, or evolving black holes.
By this expression we mean black holes that can still be described in terms of few multiplole
moments such as mass, angular momentum and the charges associated to local gauge sym-
metries, except that the parameters and the causal structure change with time either because
matter and gravitational radiation fall in, or because there operate a Hawking's process of
quantum evaporation or �nally because the hole is actually immersed in a slowly expanding
universe. A technical de�nition of a �slowly varying BH� can be given in some cases, an exam-
ple being the Booth-Fairhurst slowly evolving horizon, but in general it depends on the actual
physical processes involved. For example, in the case of Hawking's evaporation, conditions
for slowness in the presence of a near-horizon viscous �uid have been given by Brevik [1] in an
interesting attempt to generalize 't Hooft's model of the self-screening Hawking atmosphere
(quantum corrections to this model can be found in [2]). In general it is understood that the
black hole temperature is to be be much smaller than the Planck mass, or equivalently the

1E-mail: vanzo@science.unitn.it
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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mass M �MP = G−1/2 ∼ 1019 Gev, while in order to study the e�ects of the expansion the
Hubble rate H−1 should dominate over the black hole emission/absorption rate.

One surprising aspect of the semi-classical results obtained so far, is that the radiation
caused by the changing metric of the collapsing star approaches a steady outgoing �ux for large
times, implying a drastic violation of energy conservation if one neglects the back reaction of
the quantum radiation on the structure of spacetime. But the back reaction problem has not
been solved yet in a satisfactory way. As pointed out by Fredenhagen and Haag long ago [3],
if the back reaction is taken into account by letting the mass of the black hole to change with
time, then the radiation will possibly originate from the surface of the black hole at all times
after its formation.

This poses the question: what is and where is the surface of a dynamical black hole?
This issue always ba�ed scientists from the very beginning and produced several reactions
during the nineties, which eventually culminated with the notion of outer trapping horizons
by Hayward[4] and the isolated [5] and dynamical horizons of Ashtekar and Krishnan [6, 7]
(a �ne review is in [8]). Thus one is concerned to show, in the �rst place, what kind of a
surface a dynamical horizon can be and also which de�nition can capture a useful local notion
of such a surface, and then what sort of instability, if any, really occurs near the horizon of
the changing black hole. This question was non trivial since a changing horizon is typically
embedded in a dynamical space-time and it is not even expected to be a null hypersurface,
although it is still one of in�nite red shift.

We analyze this question for a class of dynamical black hole solutions that was inspired
by problems not directly related to black hole physics, although these were subsequently
reconsidered in the light of the black hole back reaction problem in the early Eighties. The
metrics we shall consider are the Vaidya radiating metric [9], as revisited by J. Bardeen [10]
and J. York [11], together with what really is a fake dynamical black holes, the McVittie
solution representing, in author's mind, a point mass in cosmology [12]. We shall indicate
how the results can be extended to all dynamical, spherically symmetric solutions admitting
a possibly dynamical future outer trapping horizon.

2 Horizons

After the time lasting textbook de�nition of the event horizon (abbr. EH) to be found in
the Hawking & Ellis renowned book [13], several quasi-local notions of dynamical horizons
appeared in the literature (a nice review is in [14]) , perhaps starting with the perfect horizons3

of H�ajiček [15] and the apparent horizons (AHs, boundaries of trapped 3-dimensional space-
like regions) of Hawking-Ellis themselves. But the former only applied to equilibrium BHs and
the existence of the latter is tie to a partial Cauchy surface so it represents only a �localization
in time�. Moreover it has proven not possible to formulate thermodynamical laws for AHs
akin to those holding for event horizons.

The �rst succesfull attempt to go beyond the limitations imposed either by the istanta-
neous character of the apparent horizons or by the global, teleological nature of the event
horizons is due to S. Hayward. His concept of a future outer trapping horizon (FOTH) then
evolved either into some less constrained de�nition, like the Ashtekar-Krishnan dynamical
horizons (DH), or some specialization like the Booth-Fairhurst slowly evolving FOTH [16];
so an updated (but perhaps partial) list of locally or quasi-locally de�ned horizons would
contain:

3These are null hypersurfaces whose rays have zero expansion and intersect space-like hypersurfaces in
compact sets. All stationary horizons are perfect, but the converse is not true.
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(a) Trapping horizons (Hayward [4])

(b) Dynamical horizons (Ashtekar & Krishnan [7, 6])

(c) Non expanding and perfect horizons (H�ajiček [15])

(d) Isolated and weakly isolated horizons (Ashtekar et al. [5])

(e) Slowly evolving horizons (Booth & Fairhurst [16])

In contrast to the old fashioned apparent horizons, these newly de�ned horizons do not require
a space-like hypersurface, no notion of interior and exterior and no conditions referring to
in�nity (all are non local conditions). Moreover they are not teleological and, given a solution
of Einstein equations, one can �nd whether they exist by purely local computations. Finally,
unlike EHs they are related to regions endowed by strong gravitational �elds and absent in
weak �eld regions.

All quasi-local horizons rely on the local concept of trapped (marginally trapped) surface:
this is a space-like closed 2-manifold S such that θ(`)θ(n) > 0, where `, n are the future-directed
null normals to S, normalized to ` ·n = −1, and θ(`), θ(n) are the respective expansion scalars.
We write the induced metric on each S in the form

qab = gab + `anb + `bna (1)

and put qab = gab + `anb + `bna, not an inverse. Then qa
b is the projection tensor to T∗(S),

the tangent space to S. To cover BHs rather than white holes it is further assumed that both
expansions are negative (non positive).

The most important quantities associated with the null vector �elds ` and n are the
projected tensor �elds Θab = qa

nq
b
m∇alb and Φab = qa

nq
b
m∇anb and their decomposition into

symmetric, anti-symmetric and trace part. Their twists are zero since they are normal to S.
Finally, the expansions are given by

θ(`) = qab∇a`b, θ(n) = qab∇anb (2)

Let us describe the listed horizons in turn, adding comments where it seems appropriate. A
black triangle down H will close the de�nitions.
Future Outer Trapping Horizon: A future outer trapping horizon (FOTH) is a smooth
three-dimensional sub-manifold H of space-time which is foliated by closed space-like two-
manifolds St, t ∈ R, with future-directed null normals ` and n such that (i) the expansion θ(`)
of the null normal ` vanishes, (ii) the expansion θ(n) of n is negative and (iii) /calLnθ(`) < 0.
H

Condition (i) requires strong �elds since certainly θ(`) > 0 in weak �elds. Condition (ii) is
related to the idea that H is of the future type (i. e. a BH rather than a WH); (iii) says that
H is of the outer type, since a motion of St along n

a makes it trapped. It also distinguishes
BH horizons from cosmological ones.

One can always found a scalar �eld C on H so that

V a = `a − Cna and Na = `a + Cna , (3)

are respectively tangent and normal to the horizon. Note that V · V = −N · N = 2C.
Hayward [4] has shown that if the null energy condition holds, then C ≥ 0 on a FOTH. Thus,

the horizon must be either space-like or null, being null i� the shear σ
(`)
ab as well as Tab`

a`b

both vanish across H. Intuitively, H is space-like in the dynamical regime where gravitational
radiation and matter are pouring into it and is null when it reaches equilibrium.
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The second law of trapping horizon mechanics follows quite easily. If
√
q is the area

element corresponding to the metric qab on the cross-sections, then

LV
√
q = −Cθ(\)

√
q . (4)

By de�nition θ(n) is negative and we have just seen that C is non-negative, so we obtain the
local second law: If the null energy condition holds, then the area element

√
q of a FOTH is

non-decreasing along the horizon. Integrating over St, the same law applies to the total area
of the horizon sections. It is non-decreasing and remains constant if and only if the horizon
is null.
Dynamical Horizon: a smooth three-dimensional, space-like sub-manifold H of space-time
is a dynamical horizon (DH) if it can be foliated by closed space-like two-manifolds St, with
future-directed null normals ` and n such that (i) on each leaf the expansion θ(`) of one null
normal `a vanishes, (ii) the expansion θ(n) of the other null normal n is negative.H

Like FOTHs, a DH is a space-time notion de�ned quasi-locally, it is not relative to a
space-like hypersurface, it does not refer to ii, it is not teleological. A space-like FOTH is
a DH on which L\θ(`) < ′; a DH which is also a FOTH will be called a space-like future
outer horizon (SFOTH). The DH cannot describe equilibrium black holes since it is space-like
by de�nition, but is better suited to describe how a BH grow in general relativity. Suitable
analogues of the laws of black hole mechanics hold for both FOTHs and DHs. Our main
interest in the following will be precisely for these local horizons, but for the time being we
continue our description.
Perfect and Non-Expanding Horizons: a perfect horizon is a smooth three-dimensional
null sub-manifold H of space-time with null normal `a such that θ(`) = 0 on H and which
intersect space-like hypersurfaces in compact sets. H
If in the last clause H is topologically R×S2 and moreover the stress tensor Tab is such that
−T a

b `
b is future causal for any future directed null normal `a, thenH is called a non-expanding

horizon.H
If X, Y are tangent to a non-expanding horizon we can decompose the covariant derivative

∇XY = DXY +N(X,Y )`+ L(X,Y )n

where DX is the projection of the vector ∇XY onto the spheres St in H. If X is tangent
to the spheres then DX is the covariant derivative of the induced metric qab, and if X is
tangent to H one may regard the operator ∇̂X = DX +N(X, ·)`, acting on vector �elds, as
a connection on H. If this connection is �time independent� then the geometry of H is time
independent too and we have Ashtekar et al. notion of an horizon in isolation.
Isolated Horizon: a non-expanding horizon with null normal `a such that [L`, ∇̂X ] = ′
along H.H

These horizons are intended to model BHs that are themselves in equilibrium but possibly
in a dynamical space-time. For a detailed description of their mathematical properties we
refer the reader to Ashtekar-Krishnan's review [8].

The new horizons just introduced all have their own dynamics governed by Einstein eq.s.
There exist for them existence and uniqueness theorems [17], formulation of �rst and second
laws [8, 4, 18] and even a �membrane paradigm� analogy. In particular, they carry a mo-
mentum density which obey a Navier-Stokes like equation generalizing the classical Damour's
equations of EHs, except that the bulk viscosity ζFOTH = 1/16π > 0 [19, 20]. We think Iver
would be amused by that.

The new horizons are also all space-like or null, hence it remains to see what is the role
they play in the problem of black hole quantum evaporation. In this connection the following
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notion can be useful.
Time-like Dynamical Horizon: a smooth three-dimensional, time-like sub-manifold H of
space-time is a time-like dynamical horizon (TDH) if it can be foliated by closed space-like
two-manifolds St, with future-directed null normals ` and n such that (i) on each leaf the
expansion θ(`) of one null normal `

a vanishes, (ii) the expansion θ(n) of the other null normal
n is strictly negative.H

Surface Gravities

The surface gravity associated to an event horizon is a well known concept in black hole
physics whose importance can be hardly overestimated. Surprisingly, a number of inequivalent
de�nitions beyond the historical one appeared recently (over the last 15 years or so) in the
�eld with various underlying motivations. We have collected the following (we rely on the
nice review of Nielsen and Yoon [28]):

1. The historical Killing surface gravity (Bardeen et al. [21], textbooks)

2. Hayward's �rst de�nition [4]

3. Mukohyama-Hayward's de�nition [22]

4. Booth-Fairhurst surface gravity for the evolving horizons [16]

5. The e�ective surface gravity appearing in Ashtekar-Krishnan [8]

6. The Fodor et al. de�nition for dynamical spherically symmetric space-times [23]

7. The Visser [24] and Nielsen-Visser [25] surface gravity

8. Hayward's de�nition [26] using Kodama's theory [27].

We will not spend much time on the various de�nitions and their motivations except for the
last item, which is what the tunneling approach leads to, among other things.

1. The Killing surface gravity is related to the fact that the integral curves of a Killing
vector are not a�nely parametrized geodesics on the Killing horizon H. Hence

Ka∇bKa
∼= κKa

de�nes the Killing surface gravity κ on H, where ∼= means evaluation on the horizon. The
Killing �eld is supposed to be normalized at in�nity by K2 = −1. The de�nition can be
extended to EHs that are not Killing horizons, by replacing K with the null generator ` of
the horizon. However there is no preferred normalization in this case, and this is one reason
of the debating question regarding the value of the surface gravity in dynamical situations.

2. Hayward's �rst de�nition was motivated by the desire to get a proof of the �rst law
for THs. It is de�ned without appeal to ina�nity of null geodesics as

κ ∼=
1
2

√
−na∇aθ(`) (5)

and is independent on the parametrization of `a integral curves, since the evaluation is on a
marginal outer surface where n · ` = −1 and θ(`) = 0.

3. We leave apart the Mukohyama-Hayward and the Booth-Fairhurst de�nitions (see 4.)
as they are somewhat more technical and complicated than it is necessary, so we refer the
reader to the original papers.
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5. Given a weakly isolated horizon H, Ashtekar and Krishnan showed that for any vector
�eld ta along H with respect to which energy �uxes across H are de�ned, there is an area
balance law that takes the form

δEt =
κ̄

8πG
δAS + work terms

with an e�ective surface gravity given by

κ̄ =
1

2R
dr

dR

R is the areal radius of the marginally trapped surfaces, i.e. AS = 4πR2, the function r is
related to a choice of a lapse function and �nally Et is the energy associated with the evolution
vector �eld ta. For a spherically symmetric DH a natural choice would be r = R so κ̄ = 1/2R,
just the result for a Schwarschild BH. To illustrate the naturalness of this de�nition, consider
a slowly changing spherically symmetric BH with mass M(v), where v is a time coordinate.
De�ning the horizon radius at each time by R = 2M(v) and AS = 4πR2, we can di�erentiate
M to obtain

Ṁ =
Ṙ

2
=

1
2R

ȦS

8π
=⇒ δM =

κ̄

8π
δAS

which is the usual area balance law with surface gravity κ̄ = 1/2R = 1/4M . Consider,
however, the more general possibility where the horizon is at R = 2M(v,R), as it happens
for example in the Vaidya-Bardeen metric. The same computation leads to

Ṁ =
1

2R
(1− 2M

′
)
ȦS

8π
=⇒ κ ∼=

1
4M

(1− 2M
′
) (6)

a prime denoting the radial derivative. Thus naturalness is not a decisive criterion in this
case.

6. The Fodor et al. de�nition looks like the Killing form of surface gravity in that κ`b =
`a∇a`

b, where now `a is an outgoing null vector orthogonal to a trapped or marginally trapped
surface. This is because, as a rule, such null vectors are not a�nely parametrized, although
they can always be so parametrized that κ = 0. So one needs to �x the parametrization:
Fodor et al. choose

κ = −na`b∇b`a

with na a�nely parametrized and normalized to n · t = −1 at space-like in�nity, ta being
the asymptotic Killing �eld. Note that this de�nition is non local but looks like as a natural
generalization of the Killing surface gravity.

7. We postpone the discussion of the Visser and Visser-Nielsen surface gravity to the next
section.

8. Finally we have a local geometrical de�nition of this quantity for the trapping horizon of
a spherically symmetric black hole as [26] follows. One can introduce local null coordinates x±

in a tubular neighborhood of a FOTH such that n = −g+−∂− and ` = ∂+: then (shortening
θ(`) = θ+, θ(n) = θ−)

κ =
1
2
(g+−∂−θ+)|θ+=0 (7)

Later we will show that this κ �xes the expansion of the metric near the trapping outer horizon
along a future null direction. The de�nition may look somewhat arti�cial, but in fact it is very
natural and connected directly with what is known for the stationary black holes. To see this
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one notes, following Kodama [27], that any spherically symmetric metric admits a unique (up
to normalization) vector �eldKa such thatKaGab is divergence free, whereGab is the Einstein
tensor; for instance, using the double-null form, one �nds K = −g+−(∂+r∂− − ∂−r∂+). The
de�ning property of K shows that it is a natural generalization of the time translation Killing
�eld of a static black hole. Moreover, by Einstein equations KaT

ab will be conserved so for
such metrics there exists a natural localizable energy �ux and its conservation law. Now
consider the expression Ka∇[bKa]: it is not hard to see that on H it is proportional to Kb.
The proportionality factor, a function in fact, is the surface gravity: Ka∇[bKa] = −κKb. For
a Killing vector �eld ∇bKa is anti-symmetric so the de�nition reduces to the usual one.

3 Two examples: Vaidya and McVittie's metrics

We consider �rst spherically symmetric spacetimes which outside the horizon (if there is
one) are described by a metric of the form

ds2 = −e2Ψ(r,v)A(r, v)dv2 + 2eΨ(r,v)dvdr + r2dS2 . (8)

where the coordinate r is the areal radius commonly used in relation to spherical symmetry
and v is intended to be an advanced null coordinate. In an asymptotically �at context one
can always write (we use geometrized units in which the Newton constant G = 1)

A(r, v) = 1− 2m(r, v)/r (9)

which de�nes the active mass. This metric was �rst proposed by Vaidya [9], and studied
in an interesting paper during the classical era of black hole physics by Lindquist et al [29].
It has been generalized to Einstein-Maxwell systems and de Sitter space by Bonnor-Vaidya
and Mallet, respectively [30]. It was then extensively used by Bardeen [10] and York [11] in
their semi-classical analysis of the back reaction problem. We will call it the Vaidya-Bardeen
metric. A cosmological constant can be introduced by setting

A(r, v) = 1− 2m(r, v)/r − r2/L2 (10)

where L−2 ∝ Λ. If one wishes the metric can also be written in double-null form. In the
(v, r)-plane one can introduce null coordinates x± such that the dynamical Vaidya-Bardeen
space-time may be written as

ds2 = −2f(x+, x−)dx+dx− + r2(x+, x−)dS2
D−2 , (11)

for some di�erentiable function f . The remaining angular coordinates contained in dS2 do not
play any essential role. In the following we shall use both forms of the metric, depending on
computational convenience. The �eld equations of the Vaidya-Bardeen metric are of interest.
They read

∂m

∂v
= 4πr2T r

v,
∂m

∂r
= −4πr2T v

v,
∂Ψ
∂r

= 4πreΨT v
r (12)

The stress tensor can be written as

Tab =
ṁ

4πr2
∇av∇bv −

m
′

2πr2
∇(ar∇b)v (13)

If m only depends on v it describes a null �uid and obeys the dominant energy condition if
ṁ > 0.
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The second example we are interested in is the McVittie solution [12] for a point mass in a
Friedmann-Robertson-Walker �at cosmology. In D-dimensional spacetime in isotropic spatial
coordinates it is given by [31]

ds2 = −A(ρ, t)dt2 +B(ρ, t)(dρ2 + ρ2dS2
D−2) (14)

with

A(ρ, t) = (
1− ( m

a(t)ρ )D−3

1 + ( m
a(t)ρ )D−3

)2 , B(ρ, t) = a(t)2(1− (
m

a(t)ρ
)D−3)2/(D−3) . (15)

When the mass parameter m = 0, it reduces to a spatially �at FRW solution with scale factor
a(t); when a(t) = 1 it reduces to the Schwarzschild metric with mass m. In four dimensions
this solution has had a strong impact on the general problem of matching the Schwarzschild
solution with cosmology, a problem faced also by Einstein and Dirac. Besides McVittie, it
has been extensively studied by Nolan in a series of papers [32]. To put the metric in the
general form of Kodama theory, we use what may be called the Nolan gauge, in which the
metric reads

ds2 = −(As −H2(t)r2)dt2 +A−1
s dr2 − 2A−1/2

s H(t)r drdt+ r2dS2
D−2 (16)

where H(t) = ȧ/a is the Hubble parameter and, for example, in the charged 4-dimensional
case,

As = 1− 2m/r + q2/r2 (17)

or in D dimension As = 1 − 2m/rD−3 + q2/r2D−6. In passing to the Nolan gauge a choice
of sign in the cross term drdt has been done, corresponding to an expanding universe; the
transformation H(t) → −H(t) changes this into a contracting one. In the following we shall
consider D = 4 and q = 0; then the Einstein-Friedmann equations read

3H2 = 8πρ , 2A−1/2
s Ḣ(t) + 3H2 = −8πp . (18)

It follows that As = 0, or r = 2m, is a curvature singularity. In fact, it plays the role that
r = 0 has in FRW models, namely it is a big bang singularity. When H = 0 one has the
Schwarzschild solution. Note how the term H2r2 in the metric strongly resembles a varying
cosmological constant; in fact for H a constant, it reduces to the Schwarzschild-de Sitter
solution in Painlev�e coordinates. As we will see, the McVittie solution possesses in general
both apparent and trapping horizons, and the spacetime is dynamical. However, it is really
not a dynamical black hole in the sense we used it above, since the mass parameter is strictly
constant: for this reason we called it a fake dynamical BH. This observation prompts one
immediately for an obvious extension of the solution: to replace the mass parameter by a
function of time and radius, but this will not be pursued here.

The study of black holes requires also a notion of energy; the natural choice would be to
use the charge associated to Kodama conservation law, but this turns out to be the Misner-
Sharp energy, which for a sphere with areal radius r is the same as the Hawking mass [33],
given by E = r(1− 2−1r2g+−θ+θ−)/2. Using the metric (8) an equivalent expression is

gµν∂µr∂νr = 1− 2E/r (19)

In this form it is clearly a generalization of the Schwarzschild mass. As we said, E is just
the charge associated to Kodama conservation law; as showed by Hayward [34], in vacuum E
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is also the Schwarzschild energy, at null in�nity it is the Bondi-Sachs energy and at spatial
in�nity it reduces to the ADM mass.

Let us apply this general theory to the two classes of dynamical BH we have considered.
Using Eq. (8), we have θ(`) = A(r, v)/2r . The condition θ(`) = 0 leads to A(rh, v) = 0,
which de�nes a curve rh = rh(v) giving the location of the horizon; it is easy to show that
θ− < 0, hence the horizon is of the future type. Writing the solution in the Vaidya-Bardeen
form, that is with A(r, v) = 1 − 2m(r, v)/r, the Misner-Sharp energy of the black hole is
E = m(rh(v), v), and the horizon will be outer trapping if m

′
(rh, v) < 1/2, a prime denoting

the radial derivative. The geometrical surface gravity associated with the Vaidya-Bardeen
dynamical horizon is

κ(v) ∼=
A
′
(r, v)
2

=
m(rh, v)

r2h
− m

′
(rh, v)
rh

=
1

4m
(1− 2m

′
) (20)

the same as Eq. (6), wherem ≡ m(rh, v). We see the meaning of the outer trapping condition:
it ensures the positivity of the surface gravity.

As a comparison, Hayward's �rst de�nition would give κ =
√

1− 2m′/4m, while Fodor et
al. expression is

κ =
2Ψ

4m
(1− 2m

′
) + Ψ̇ (21)

The e�ective surface gravity of Ashtekar-Krishnan simply is κ = 1/4m, everything being
evaluated on the horizon. Note that some of them are not correct for the Reissner-Nordstr�om
black hole. We also note that κ (20) is inequivalent to the Nielsen-Visser surface gravity,
which in these coordinates takes the form

κ̃ =
1

4m
(1− 2m

′
− e−Ψṁ) (22)

though they coincide in the static case. Also, both are inequivalent to the Visser surface
gravity eΨκ̃, which was derived as a temperature by essentially the same tunneling method as
discussed below, but in Painlev�e-Gullstrand coordinates. Part of the di�erence can be traced
to a di�erent choice of time.

In the case of McVittie BHs, we obtain

θ± = ±(
√
As ∓Hr)/2rf±

where the functions f± are integrating factors determining null coordinates x± such that

dx± = f±[(
√
As ±Hr)dt ± A

−1/2
s dr]. One may compute from this the dual derivative �elds

∂±. The future dynamical horizon de�ned by θ+ = 0, has a radius which is a root of the
equation

√
As = Hrh , which in turn implies As = H2r2h. Hence the horizon radius is a

function of time. The Misner-Sharp mass and the related surface gravity are

E = m+
1
2
H(t)2r3h (23)

κ(t) =
m

r2h
−H2rh −

Ḣ

2H
=
E

r2h
− 3

2
H2rh −

Ḣ

2H
(24)

Note that E = rh/2. In the static cases everything agrees with the standard results. The
surface gravity has an interesting expression in terms of the sources of Einstein equations and
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the Misner-Sharp mass. Let T̃ be the reduced trace of the stress tensor in the space normal
to the sphere of symmetry, evaluated on the horizon H. For the Vaidya-Bardeen metric it is,
by Einstein's equations (12),

T̃ = T v
v + T r

r = − 1
2πrh

∂m

∂r |r=rh

For the McVittie's solution, this time by Friedmann's equations (18) one has

T̃ = −ρ+ p = − 1
4π

(3H2 +
Ḣ

Hrh
)

We have then the mass formula

κAH

4π
= E + 2πr3hT̃ (25)

where AH = 4πr2h. It is worth mentioning the pure FRW case, i.e. As = 1, for which

κ(t) = −(H(t) + Ḣ/2H) . One can easily see that (25) is fully equivalent to Friedmann's
equation. We feel that these expressions for the surface gravity are non trivial and display
deep connections with the emission process. Indeed it is the non vanishing of κ that is
connected with the imaginary part of the action of a massless particle, as we are going to
show in the next section.

4 Tunneling and instability

The essential property of the tunneling method is that the action I of an outgoing massless
particle emitted from the horizon has an imaginary part which for stationary black holes is
=I = πκ−1E, where E is the Killing energy and κ the horizon surface gravity. The imaginary
part is obtained by means of Feynman iε-prescription, as explained in [35, 36]. As a result
the particle production rate reads Γ = exp(−2=I) = exp(−2πκ−1E) . One then recognizes
the Boltzmann factor, from which one deduces the well-known temperature TH = κ/2π.
Moreover, an explicit expression for κ is actually obtained in terms of radial derivatives of
the metric on the horizon.

Let us consider now the case of a dynamical black hole in the double-null form [37]. We
have for a massless particle along a radial geodesic the Hamilton-Jacobi equation ∂+I∂−I = 0 .
Since the particle is outgoing ∂−I is not vanishing, and we arrive at the simpler condition
∂+I = 0. First, let us apply this condition to the Vaidya-Bardeen BH. One has then

2e−Ψ(r,v)∂vI +A(r, v) ∂rI = 0 . (26)

Since the particle will move along a future null geodesic, to pick the imaginary part we
expand the metric along a future null direction starting from an arbitrary event (rh(v0), v0)
on the horizon, i.e. A(rh(v0), v0) = 0. Thus, shortening rh(v0) = r0, we have A(r, v) =
∂rA(r0, v0)∆r + ∂vA(r0, v0)∆v + · · · = 2κ(v0)(r − r0) + . . . , since along a null direction at
the horizon ∆v = 0, according to the metric (8); here κ(v0) is the surface gravity, Eq. (20).
>From (26) and the expansion, ∂rI has a simple pole at the event (r0, v0); as a consequence

=I = =
∫
∂rIdr = −=

∫
dr

2e−Ψ(r,v)∂vI

A′(r0, v0)(r − r0 − i0)
=
πω(v0)
κ(v0)

. (27)
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where ω(v0) = e−Ψ(r0,v0)∂vI, is to be identi�ed with the energy of the particle at the time
v0. Note that the Vaidya-Bardeen metric has a sort of gauge invariance due to conformal
reparametrizations of the null coordinate v: the map v → ṽ(v), Ψ(v, r) → Ψ̃(ṽ, r)+ln(∂ṽ/∂v)
leaves the metric invariant, and the energy is gauge invariant too. Thus we see that the
Hayward-Kodama surface gravity appears to be relevant to the process of particles emission.
The emission probability, Γ = exp(−2πω(v)/κ(v)), has the form of a Boltzmann factor,
suggesting a locally thermal spectrum.

For the McVittie's BH, the situation is similar. In fact, the condition ∂+I = 0 becomes

∂rI = −F (r, t)−1∂tI

where

F (r, t) =
√
As(r)(

√
As(r)− rH(t))

As before, we pick the imaginary part by expanding this function at the horizon along a
future null direction, using the fact that for two neighbouring events on a null direction in
the metric (16), one has t− t0 = (2H2

0r
2
0)
−1(r − r0), where H0 = H(t0). We �nd the result

F (r, t) = (
1
2
A
′

s(r0)− r0H
2
0 −

Ḣ0

2H0
)(r − r0) + · · · = κ(t0)(r − r0) . . . (28)

where this time r0 = rh(t0). >From this equation we see that ∂rI has a simple pole at the
horizon; hence, making use again of Feynman iε-prescription, one �nds =I = πκ(t0)−1ω(t0),
where ω(t) = ∂tI is again the energy at time t, in complete agreement with the geometric
evaluation of the previous section. Obviously, if κ vanishes on the horizon there is no simple
pole and the black hole should be stable4. The kind of instability producing the Hawking
�ux for stationary black holes evidently persists in the dynamical arena, and so long as the
evolution is su�ciently slow the black hole seems to evaporate thermally. Note that the
imaginary part, that is the instability, is attached to the horizon all the time, con�rming the
Fredenhagen-Haag suggestion quoted in the introduction. It is worth mentioning the role of
κ in the analogue of the �rst law for dynamical black holes (contributions to this problem for
Vaidya black holes were given in [39]). Using the formulas of the projected stress tensor T̃
given above, and the expression of the Misner-Sharp energy, one obtains the di�erential law

dE =
κ dAH

8π
− T̃

2
dVH (29)

provided all quantities were computed on the trapping horizon. Here AH = 4πr2H is the
horizon area and VH = 4πr3H/3 is a formal horizon volume. If one interprets the �d� operator
as a derivative along the future null direction one gets Hayward's form of the �rst law. But
one can also interpret the di�erential operation more abstractly, as referring to an ensemble.
Indeed, to obtain Eq. (29) it is not necessary to specify the meaning of the �d�. It is to be
noted that the same law can be proved with other, inequivalent de�nitions of the surface
gravity, even maintaining the same meaning for the energy. Thus other considerations are
needed to identify one: the tunneling method has made one choice.

As thoroughly discussed in Hayward et al. [40], Eq. (8) is actually the most general form
of a spherically symmetric metric, so the above calculations works throughout. Of course
κ > 0 if the trapping horizon is of the outer type. Thus the method has derived a positive
temperature if and only if there is a future outer trapping horizon.

4However, charged extremal black holes can radiate [38].
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Extremal limit

We discuss only an example, the charged stringy black hole, which represents a non-
vacuum solution of Einstein-Maxwell dilaton gravity in the string frame [41, 42]:

ds2 = r2dΩ2 +
dr2

(1− a/r) (1− b/r)
−
(

1− a/r

1− b/r

)
dt2 (30)

where a > b > 0. The horizon radius is r = a.
For this example, the extremal limit as de�ned by global structure is b→ a. The Killing

surface gravity κ∞ ∼= 1/2a does not vanish in this limit. Gar�nkle et al. [42] noted this as
puzzling, since extremal black holes are expected to be zero-temperature objects.

Remarkably, the geometrical surface gravity (20)

κ ∼=
a− b

2a2
(31)

vanishes in the extremal limit. Thus the gravitational dressing e�ect lowers the temperature
to its theoretically expected value.

We conjecture that this is true in general. Indeed, past experience with extremal black
holes showed that the horizon of these objects is not only a zero but also a minimum of the
expansion θ+ = ∂+A/A of the radially outgoing null geodesics, θ+ becoming positive again
on crossing the horizon. Thus ∂−θ+ ∼= 0 should be the appropriate de�nition of an extremal
black hole. Since κ = −e−2ϕ∂−∂+r, this is equivalent to κ = 0.
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Abstract

In the present article we analyze, by means of the state�nder parameter formalism,
some universe models introduced by Brevik and co-workers. We determine constants
that earlier were left unspeci�ed, in terms of observable quantities. It is veri�ed that
a Big Bang universe model with a �uid having a certain non-linear equation of state
behaves in the same way as a model with a viscous �uid 1.

1 Introduction

The state�nder parameters were introduced into cosmology by Alam and co-workers[1] in
2003. They were then applied to �at universe models with dark energy and cold matter,
where the dark energy was either of the quintessence type or a Chaplygin gas. The latter
models were further investigated by Gorini and co-workers[2]. The formalism was generalized
to curved universe models by Evans et al.[3].
The formalism was later applied to several universe models with other properties such as
interaction between energy and matter[4-8] or other types of equation of state than that of
the quintessence energy, resulting from for example viscosity[9-16]. G. Panotopoulos[17] has
applied the state�nder diagnosis to brane universe models.
Iver Brevik and co-workers[21-31] have investigated the future behavior of several universe
models �lled with cosmic �uids with di�erent equations of state[32-34]. Some of the equations
of state may be relevant to �uids with viscosity[35]. They have in particular investigated
whether the models arrive at a �nal so-called Big Rip singularity.
In the present work we want to apply the state�nder formalism to some of the universe models
considered by Brevik and co-workers.

1This article is dedicated to 70th aniversary of Professor Iver Brevik
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2 Earlier applications of the state�nder formalism

Alam and co-workers[1] �rst considered �at universe models with cold matter (dust) and dark
energy in the form of quintessence obeying the equation of state

pX = wρX , (1)

where pX is the pressure of the dark energy and ρX its density (we use units so that c = 1).
Here w is a function of time. They de�ned the state�nder parameters r and s as

r =
...
a

aH3
, s =

r − 1
3 (q − 1/2)

, (2)

where

q = − ä

aH2
= −1− Ḣ

H2
(3)

is the deceleration parameter. In terms of the Hubble parameter and its derivatives with
respect to cosmic time the state�nder parameters are given by

r = 1 + 3
Ḣ

H2
+

Ḧ

H3
, s = − 2

3H
3HḢ + Ḧ

3H2 + 2Ḣ
. (4)

The deceleration parameter and the state�nder parameters can also be expressed in terms
of the Hubble parameter and its derivative with respect to the redshift, represented by x ≡
1 + z = 1/a,

q =
H ′

H
x− 1, (5)

r = 1− 2
H ′

H
x+

[
H ′′

H
+
(
H ′

H

)2
]
x2, (6)

s =
−2H ′x/H +

[
H ′′/H + (H ′/H)2

]
x2

3 [H ′x/H − 3/2]
. (7)

Calculating the deceleration parameter and the state�nder parameters for this class of universe
models one �nds

q =
1
2

(1 + 3w) , r = 1 +
9
2
w (1 + w) ΩX − 3

2
ẇ

H
ΩX , s = 1 + w − 1

3
ẇ

wH
. (8)

Where ΩX is the mass parameter of the dark energy. Hence

r = 1 +
9
2
wΩXs (9)

It should be noted that the �at ΛCDM universe model, which �ts all the cosmological obser-
vations, has w = −1 , ẇ = 0 and hence (r, s) = (1, 0).
For the type of dark energy called Chaplygin gas, obeying the equation of state

pC = −A/ρα
C , (10)
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where A and α are positive constants, the state�nder parameters are found by using the
relationships

q =
1
2

(
1 + 3

p

ρ

)
, r = 1 +

9
2
ρ+ p

ρ

ṗ

ρ̇
, s =

ρ+ p

p

ṗ

ρ̇
, (11)

where p and ρ are the total pressure and density, respectively. Hence,

r = 1 +
9
2
p

ρ
s. (12)

The formalism was generalized to curved universe models by Evans et. Al.[3]. Then the state
parameter s is de�ned by

s =
r − Ω

3 (q − Ω/2)
, (13)

and eqs.(11) take the form

q =
1
2

(
1 + 3

p

ρ

)
Ω , r =

(
1− 3

2
ṗ

Hρ

)
Ω , s = − 1

3H
ṗ

p
. (14)

Applied to a universe with only a Chaplygin gas this gives[2]

r = 1− 9
2α
s (1 + s) . (15)

If the source of the dark energy is a scalar �eld ϕ with the potential V (ϕ), the equation of
state factor w is

w =
ϕ̇2 − 2V (ϕ)
ϕ̇2 + 2V (ϕ)

. (16)

In this case the state�nder parameters are[3]

q =
Ω
2

+
κ

2H2

(
1
2
ϕ̇2 − V

)
, r = Ω +

3
2
κ
ϕ̇2

H2
+ κ

V̇

H3
, s = 2

ϕ̇2 + 2
3

V̇
H

ϕ̇2 − 2V
, (17)

where κ = 8πG is Einstein's constant of gravitation.
W. Zimdahl and D. Pavon[4], and X. Zhang with co-workers[6-9] applied the state�nder
formalism to universe models with two interacting �uids. The dark matter component M
interacts with the dark energy described by a scalar �eld ϕ by

ρ̇M + 3HρM = −Q , ρ̇ϕ + 3Hρϕ (1 + wϕ) = Q. (18)

The deceleration parameter of such a universe model is

q =
1
2

(1 + 3wϕΩϕ) . (19)

De�ning e�ective equations of state for the dark matter and energy by

weff
M =

Q

3HρM
, weff

ϕ = − Q

3Hρϕ
, (20)

the state�nder parameters may be written
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r = 1− 3
2

[
w′φ − 3wφ

(
1 + weff

φ

)]
Ωφ , s = 1− 1

3
w′φ
wφ

+ weff
φ , (21)

where w′ϕ is wϕ di�erentiated with respect to u = ln a = − ln (1 + z), where a is the scale
factor and zthe redshift. The relation between r and s is

r = 1 +
9
2
wϕs. (22)

M. G. Hu and X. H. Meng[17] have studied �at universe models with a viscous �uid. This
type of models shall be investigated in some detail in the next section. They also analyzed a
�at universe model with only dark energy obeying the inhomogeneous equation of state,

p = wρ+ p1, (23)

where w and p1 are both constant. De�ning the quantities

γ̃ = −p1

ρ0
, V = p1

(
1
ρ
− 1
ρ0

)
, (24)

where ρ0 is the present density, they �nd for the deceleration parameter and the state�nder
parameters,

q =
3
2
V − 1 , r = 1 +

9
2

(γ̃ − 1)V , s =
(γ̃ − 1)V
V − 1

. (25)

The ΛCDM universe model, that is consistent with all present observations and may be
considered the standard model of the universe, has (q, r, s) = (−1, 1, 0)which is ful�lled for
the above model if ρ = ρ0.

3 Viscous dark energy

In this section I will deduce the expressions for the state�nder parameters of �at universe
models with dust and viscous dark energy in terms of the Hubble parameter. The dark energy
is assumed to obey the usual equation of state, p = wρ, with constant value of w. Friedmann's
1. equation then takes the form

H2 = (κ/3) (ρm + ρx) = (κ/3) ρcr. (26)

where ρm , ρx , ρcr are the density of the matter, the dark energy and the critical density,
respectively. Friedmann's 2. equation is

ä

a
+
H2

2
= −κ

2
p̄x, (27)

where κ = 8πG and G is Newton's constant of gravitation, and

p̄x = wρx − 3ςH (28)

is the e�ective pressure of the dark energy. We shall assume that the viscosity coe�cient ς
is constant, and that the dust and the dark energy does not interact. Inserting eq.(28)into
eq.(27) we obtain,
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ä

a
= −H

2

2
− κ

2
wρx +

3
2
Hκς. (29)

By means of eq.(29) and introducing the mass parameters

Ωx =
κ

3H2
ρx , Ωm =

κ

3H2
ρm = 1− Ωx, (30)

where we have used that the universe is �at, the expression (3) of the deceleration parameter
can be written

q =
1
2

(1 + 3wΩx − 3κς/H) . (31)

>From eqs.(3) and (4) we get

r = q + 2q2 − q̇/H. (32)

The equation of continuity of the dark matter is

ρ̇m = −3Hρm, (33)

and of the dark energy

ρ̇x = −3H [(1 + w) ρx − 3Hς] . (34)

Di�erentiating eq.(26) and inserting eqs.(33) and (34) we obtain

Ḣ

H2
= −3

2

(
1 + wΩx −

κξ

H

)
. (35)

Di�erentiating the �rst of eqs.(26) and using eqs.(34) and (35) we �nd

Ω̇x = 3 (1− Ωx)κς. (36)

Integration with Ωx (0) = 0 gives

Ωx = 1− e−3κςt (37)

independently of the value of w.

Di�erentiating the expression (31) and using eqs.(35) and (36) then gives

q̇ = −9
4

(
1− 2w + 3wΩx −

κς

H

)
κς. (38)

Inserting the expressions (31) and (38) into eq.(32) �nally gives

r = 1 +
9
2
w (1 + w) Ωx −

9
4

(
1 + 2w + wΩx −

κξ

H

)
κς

H
. (39)
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4 Dark �uid with a non-linear equation of state

In ref. 21 Brevik and co-workers have studied, in their second case, a �at Friedmann-
Robertson-Walker universe model dominated by a dark energy with equation of state

p = wρ+A
√
ρ, (40)

where w and A are constants. Lorentz invariant dark energy, which may be represented by
a cosmological constant, has w = −1 and A = 0. For �at universe models with a single �uid
Friedmann's 1. equation reduces to

H2 =
κ

3
ρ, (41)

and with the equation of state (40) the equation of continuity takes the form

ρ̇+
√

3κ (1 + w) ρ3/2 +
√

3κAρ = 0. (42)

Integration of eq.(42) with ρ (0) = (A/w)2 gives

ρ =
A2[

e
√

3κ
2 At̄ − (1 + w)

]2 , (43)

where the time co-ordinate used by Brevik and co-workers[21] has been called t̄. Note that
ρ (t̄S) = ∞ for t̄S = −tA ln (1 + w) where

tA = −
(
2/
√

3κA
)
. (44)

The minus is included because a later comparison with observational data will show that
A < 0. Note also that t̄S > 0 for w < 0. I will interpret the singularity as the Big Bang of
this universe model. With this interpretation the points of time t̄ < t̄S are without physical
signi�cance. Introducing a cosmic time t = t̄− t̄S with origin at the Big Bang, the expression
of the density of the cosmic �uid becomes

ρ =
(

A

1 + w

)2 1(
1− e−t/tA

)2 . (45)

From eqs.(41), (44) and (45) follow that the Hubble parameter is

H =
HA

1− e−t/tA
, HA =

2
3 (1 + w) tA

. (46)

For t >> tA the behavior of the expansion approaches that of DeSitter space with a constant
Hubble parameter HA containing a cosmic �uid with density ρA = [A/ (1 + w)]2 . At the
initial singularity the Hubble parameter is in�nitely great. Normalizing the scale parameter
so that it has the value a (t0) = 1 at the present time t0 we �nd

a =
(
et/tA − 1
et0/tA − 1

) 2
3(1+w)

. (47)

Using that

HAtA =
2

3 (1 + w)
, (48)
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Figure 1: (r, s)-diagram for the universe model with state�nder parameters given in eqs.(52)
and (53) The curves are plotted for t ∈ [0,∞]. The lowest curve is for w = −2/3, the next
Lone for w = −1/3, and the upper one for w = 0.

the deceleration parameter is

q = −1 +
3
2

(1 + w) e−t/tA . (49)

Note that for t << tA the scale factor is to lowest order in t/tA

a (t) ≈
(
t

tA

) 2
3(1+w)

. (50)

which is the same behaviour as that of a universe dominated by a perfect �uid obeying the
homogeneous equation of state p = wρ. The late time behavior is that of a de Sitter universe
with accelerated expansion independently of the value of w. For w > −1/3 there is a transition
from decelerated to accelerated expansion at the point of time

t2 = tA ln
[
3
2

(1 + w)
]
. (51)

This behavior re�ects the fact that the �rst term of eq.(40) dominates initially when the
density is large, but the late time behavior is dominated by the second term in eq.(40). Using
eqs.(4) we �nd that the state�nder parameters for this universe model are

r = 1− 9
4
(
1− w2

)
e−t/tA +

9
4

(1 + w)2 e−2t/tA , (52)

s =
3
2

(1 + w)
1− w − (1 + w) e−t/tA

et/tA − 1− w
. (53)

These expressions are plottet in a (r, s)-diagram in Figure 1.
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The present values of the Hubble parameter, H0 = H (t0), and the deceleration parameter,
q0 = q (t0) are determined by observations, which show that H0t0 ≈ 1 and q0 ≈ −0.6. This
will be used to determine the quantities HA and tA. From eqs.(46) and (49) we �nd that HA

is determined by the equation

H0

HA
+

1 + q0

ln
(
1 + HA

H0

) = 1. (54)

Inserting q0 ≈ −0.6 and solving the equation numerically, we �nd HA = 0, 8H0. Hence,

tA = − t0

ln
(
1− HA

H0

) ≈ 0.6t0. (55)

With t0 = 13, 7 · 109 years we get tA ≈ 8.2 · 109 years, so that HAtA ≈ 0.8H0 · 0.6t0 ≈ 0.5.
According to eq.(48) the equation of state factor w then is

w =
2

3HAtA
− 1 ≈ 1

3
. (56)

This universe model thus contains a �uid behaving somewhat like a combination of electro-
magnetic radiation and dark energy with an equation of state with negative pressure (note
that A < 0).
The value s = 0 of the ΛCDM - model takes place at the point of time

t3 = tA ln
1 + w

1− w
. (57)

A positive value of t3 requires w > 0, which is compatible with the value of w obtained from
the present values of the Hubble parameter and the deceleration parameter.

5 Viscous cosmic �uid

I. Brevik and O. Gorbunova[24] have recently investigated some universe models dominated
by a viscous cosmic �uid with an e�ective pressure given by eq.(28). They were particularly
interested in the late time behaviour of the models and whether they would enter a so-called
Big Rip. Therefore they investigated models with w < −1. I will consider �at universe models
dominated by a viscous �uid with w > −1. Then ΩX = 1, and the expressions (31) and (39)
for the deceleration parameter and the state�nder parameter r take the form

q =
1
2
· (1 + 3w − 3κς/H) , (58)

r = 1 +
9
2
w (1 + w)− 9

4

(
1 + 3w − κς

H

) κς
H
. (59)

The expression (60) may be factorized as

r = 1− 9
4

(
1 + w − κς

H

)(
2w − κς

H

)
. (60)

For such universe models the state�nder parameter s is

s =
3
2
· (1 + w − κς/H) (2w − κς/H)

w − κς/H
. (61)
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The equation of motion of the cosmic expansion for the present class of models may be written

Ḣ +
3
2

(1 + w)H2 − 3
2
κςH = 0. (62)

For later comparison Brevik and Gorbunova �rst considered a universe model dominated by
a perfect �uid with no viscosity, and wrote the solution of eq.(63) for that case as[23]

a (t) = a0

[
1 +

3
2
H0 (1 + w) (t− t0)

]−2/3α

. (63)

In this paper I will consider Big Bang Universe models with a (0) = 0. This demands that

H0t0 =
2

3 (1 + w)
. (64)

Normalizing the scale factor to unity at the present time, we then obtain

a =
(
t

t0

) 2
3(1+w)

. (65)

The general solution of eq.(63) with viscosity was written by Brevik as[25]

a = a0

[
1 +

3
2

(1 + w)H0tς

(
e(t−t0)/tς − 1

)] 2
3(1+w)

, tς =
(

3
2
κς

)−1

. (66)

Demanding again a (0) = 0 requires

H0tς =
2

3 (1 + w)
(
1− e−t0/tς

) . (67)

With the normalization a (t0) = 1 the scale factor is

a =
(
et/tς − 1
et0/tς − 1

) 2
3(1+w)

. (68)

The corresponding Hubble parameter is

H = H0
1− e−t0/tς

1− e−t/tς
. (69)

Inserting eq.(70) in eqs.(60) and (62) and using eq.(68) give the expressions (52) and (53) for
the state�nder parameter with tA replaced by tς .
We see that the expansion behaviour of this model, dominated by a single viscous �uid, is
given by identical expressions to those of the model considered in section 4, dominated by a
�uid with a non-linear equation of state. This is, however, very natural. The viscous �uid
has an e�ective pressure given by eq.(28). The �rst Friedmann equation still has the form
(41). Hence the e�ective pressure is

p̄ = p− 3κςH = wρ− ςκ3/2
√

3ρ, (70)

and the equation of continuity is

ρ̇+
√

3κ (1 + w) ρ3/2 − 3κςρ = 0, (71)
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which has the same form as eq.(42).
The initial value of the Hubble parameter is H (0) = ∞. When t→∞ the Hubble-parameter
approaches the value.

H∞ = H0

(
1− e−t0/tς

)
=

2
3 (1 + w) tς

=
κς

1 + w
. (72)

The time tς depends upon the strength of the viscosity. From the expression of tς given in
eq.(68) follows that a small viscosity implies a large value of tς . Brevik[25] has estimated the
value of ς. At t = 1000s after the Big Bang he �nds that tς ≈ 1021y. Hence, we have that
et/tς ≈ 1 for the whole history of the universe up to now. Eq.(68) then gives to lowest order
in t/tς ,

w ≈ 2
3H0t0

− 1 ≈ −1
3
. (73)

For these models the observationally favoured values of the state�nder parameters, (r, s) =
(1, 0) take place at the points of time t41 and t42 given by

H (t41) =
κς

1 + w
, H (t42) =

κς

2w
. (74)

For w < 0 only t41 corresponds to an expanding universe. Comparing with eq.(73) we see
that H (t41) = H∞. Hence, the state�nder parameters of these universe models approach the
favoured value in the in�nite future.

6 Conclusion

Brevik and co-workers have investigated several classes of universe models with di�erent types
of dark energy. Two of these classes, one with dark energy having an inhomogeneous equation
of state, and one with viscous dark energy, have been considered in this paper, and it has
been demonstrated that they are closely related.
While Brevik and co-workers focused upon the late-time behaviour of these models with
special emphasis upon the question whether they would enter a so-called Big Rip singularity,
I have focused upon these universe models as Big Bang models and their behaviour up to the
present time.
The state�nder parameters of the models have been calculated, and some restrictions upon
the dark energy has been obtained by demanding that they should pass through an era where
the values of the state�nder parameter are not too far from the values (r, s) = (1, 0) of the
ΛCDM -model that are favoured by observations.
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Casimir densities for wedge-shaped

boundaries

A. A. Saharian1

Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

Abstract

The vacuum expectation values of the �eld squared and the energy-momentum ten-
sor are investigated for a scalar �eld with Dirichlet boundary conditions and for the
electromagnetic �eld inside a wedge with a coaxial cylindrical boundary. In the case
of the electromagnetic �eld perfectly conducting boundary conditions are assumed on
the bounding surfaces. By using the Abel-Plana-type formula for the series over the
zeros of the Bessel function, the vacuum expectation values are presented in the form of
the sum of two terms. The �rst one corresponds to the geometry without a cylindrical
boundary and the second one is induced by the presence of the cylindrical shell. The
additional vacuum forces acting on the wedge sides due the presence of the cylindrical
boundary are evaluated and it is shown that these forces are attractive for both scalar
and electromagnetic �elds 2.

PACS numbers: 11.10.Kk, 03.70.+k

1 Introduction

The Casimir e�ect has important implications on all scales, from cosmological to sub-
nuclear, and has become in recent decades an increasingly popular topic in quantum �eld
theory. Since the original work by Casimir [1] many theoretical and experimental works have
been done on this problem (see, e.g., [2, 3] and references therein). In particular, a great
deal of attention received the investigations of quantum e�ects for cylindrical boundaries. In
addition to traditional problems of quantum electrodynamics under the presence of material
boundaries, the Casimir e�ect for cylindrical geometries can also be important to the �ux tube
models of con�nement [4] and for determining the structure of the vacuum state in interacting
�eld theories [5]. The calculation of the vacuum energy of electromagnetic �eld with boundary

1E-mail: saharian@ictp.it
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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conditions de�ned on a cylinder turned out to be technically a more involved problem than
the analogous one for a sphere. First the Casimir energy of an in�nite perfectly conducting
cylindrical shell has been calculated in Ref. [6] by introducing ultraviolet cuto� and later the
corresponding result was derived by zeta function technique [7] (for a recent discussion of the
Casimir energy and self-stresses in the more general case of a dielectric-diamagnetic cylinder
see [8] and references therein). The local characteristics of the corresponding electromagnetic
vacuum such as energy density and vacuum stresses are considered in [9] for the interior and
exterior regions of a conducting cylindrical shell, and in [10] for the region between two coax-
ial shells (see also [11]). The vacuum forces acting on the boundaries in the geometry of two
cylinders are also considered in Refs. [12]. The scalar Casimir densities for a single and two
coaxial cylindrical shells with Robin boundary conditions are investigated in Refs. [13, 14].
Less symmetric con�guration of two eccentric perfectly conducting cylinders is considered in
[12]. Vacuum energy for a perfectly conducting cylinder of elliptical section is evaluated in
Ref. [15] by the mode summation method, using the ellipticity as a perturbation parameter.
The Casimir forces acting on two parallel plates inside a conducting cylindrical shell are in-
vestigated in Ref. [16]. The Casimir e�ect in more complicated geometries with cylindrical
boundaries is considered in [17].

Aside from their own theoretical and experimental interest, the problems with this type
of boundaries are useful for testing the validity of various approximations used to deal with
more complicated geometries. From this point of view the wedge with a coaxial cylindri-
cal boundary is an interesting system, since the geometry is nontrivial and it includes two
dynamical parameters, radius of the cylindrical shell and opening angle of the wedge. This
geometry is also interesting from the point of view of general analysis for surface divergences
in the expectation values of local physical observables for boundaries with discontinuities.
The nonsmoothness of the boundary generates additional contributions to the heat kernel
coe�cients (see, for instance, the discussion in [18] and references therein). In the present
paper we review the results of the investigations for the vacuum expectation values of the
�eld squared and the energy-momentum tensor for the scalar and electromagnetic �elds in
the geometry of a wedge with a coaxial cylindrical boundary. In addition to describing the
physical structure of the quantum �eld at a given point, the energy-momentum tensor acts
as the source of gravity in the Einstein equations. It therefore plays an important role in
modelling a self-consistent dynamics involving the gravitational �eld. Some most relevant
investigations to the present paper are contained in Refs. [2, 19, 20, 21, 22, 23, 24], where the
geometry of a wedge without a cylindrical boundary is considered for a conformally coupled
scalar and electromagnetic �elds in a four dimensional spacetime. The Casimir e�ect in open
geometries with edges is investigated in [25]. The total Casimir energy of a semi-circular
in�nite cylindrical shell with perfectly conducting walls is considered in [26] by using the
zeta function technique. The Casimir energy for the wedge-arc geometry in two dimensions is
discussed in [27]. For a scalar �eld with an arbitrary curvature coupling parameter the Wight-
man function, the vacuum expectation values of the �eld squared and the energy-momentum
tensor in the geometry of a wedge with an arbitrary opening angle and with a cylindrical
boundary are evaluated in [28, 29]. Note that, unlike the case of conformally coupled �elds,
for a general coupling the vacuum energy-momentum tensor is angle-dependent and diverges
on the wedge sides. The corresponding problem for the electromagnetic �eld, assuming that
all boundaries are perfectly conducting, is investigated in [30]. The scalar Casimir densities
in the geometry of a wedge with two cylindrical boundaries are discussed in [31]. The closely
related problem of the vacuum densities induced by a cylindrical boundary in the geometry
of a cosmic string is investigated in Refs. [32] for scalar, electromagnetic and fermionic �elds.

We have organized the paper as follows. The next section is devoted to the evaluation
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of the Wightman function for a scalar �eld with a general curvature coupling inside a wedge
with a cylindrical boundary. By using the formula for the Wightman function, in section 3 we
evaluate the vacuum expectation values of the �eld squared and the energy-momentum tensor
inside a wedge without a cylindrical boundary. The vacuum densities for a wedge with the
cylindrical shell are considered in section 4. Formulae for the shell contributions are derived
and the corresponding surface divergences are investigated. The vacuum expectation values
of the electric and magnetic �eld squared inside a wedge with a cylindrical boundary are
investigated in section 5, assuming that all boundaries are perfectly conducting. The corre-
sponding expectation values for the electromagnetic energy-momentum tensor are considered
in section 6. The results are summarized in section 7.

2 Wightman function for a scalar �eld

Consider a free scalar �eld ϕ(x) inside a wedge with the opening angle φ0 and with a cylin-
drical boundary of radius a (see �gure 1). We will use cylindrical coordinates (x1, x2, . . . , xD) =
(r, φ, z1, . . . , zN ), N = D−2, where D is the number of spatial dimensions. The �eld equation
has the form (

∇i∇i +m2 + ξR
)
ϕ(x) = 0, (1)

where R is the scalar curvature for the background spacetime and ξ is the curvature coupling
parameter. The special cases ξ = 0 and ξ = ξc = (D − 1)/4D correspond to minimally and
conformally coupled scalars respectively.

In this section we evaluate the positive frequency Wightman function 〈0|ϕ(x)ϕ(x′)|0〉
assuming that the �eld obeys Dirichlet boundary condition on the bounding surfaces:

ϕ|φ=0 = ϕ|φ=φ0 = ϕ|r=a = 0. (2)

The vacuum expectation value (VEV) of the energy-momentum tensor is expressed in terms
of the Wightman function as

〈0|Tik(x)|0〉 = lim
x′→x

∇i∇′
k〈0|ϕ(x)ϕ(x′)|0〉+

[(
ξ − 1

4

)
gik∇l∇l − ξ∇i∇k

]
〈0|ϕ2(x)|0〉. (3)

In addition, the response of a particle detector in an arbitrary state of motion is determined
by this function. In (3) we have assumed that the background spacetime is �at and the term
with the Ricci tensor is omitted. The Wightman function is presented as the mode sum

〈0|ϕ(x)ϕ(x′)|0〉 =
∑
α

ϕα(x)ϕ∗α(x′), (4)

where {ϕα(x), ϕ∗α(x)} is a complete orthonormal set of solutions to the �eld equation, satis-
fying the boundary conditions, α is a set of the corresponding quantum numbers.

2.1 Interior region

In the region 0 6 r 6 a (region I in �gure 1), the eigenfunctions satisfying the boundary
conditions (2) on the wedge sides φ = 0, φ0 have the form

ϕα(x) = βαJqn(γr) sin(qnφ) exp
(
ikr‖ − iωt

)
, (5)

ω =
√
γ2 + k2

m, k
2
m = |k|2 +m2, q = π/φ0, (6)
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Figure 1: Geometry of a wedge with the opening angle φ0 and cylindrical boundary of radius
a.

where α = (n, γ,k), −∞ < kj < ∞, n = 1, 2, · · · , k = (k1, . . . , kN ), r‖ = (z1, . . . , zN ),
and Jl(z) is the Bessel function. The normalization coe�cient βα is determined from the
standard Klein-Gordon scalar product with the integration over the region inside the wedge
and is equal to

β2
α =

2
(2π)Nωφ0a2J ′2qn(γa)

. (7)

The eigenvalues for the quantum number γ are quantized by the boundary condition (2) on
the cylindrical surface r = a. From this condition it follows that

γ = λn,j/a, j = 1, 2, · · · , (8)

where λn,j are the positive zeros of the Bessel function, Jqn(λn,j) = 0, arranged in ascending
order, λn,j < λn,j+1.

Substituting the eigenfunctions (5) into mode sum formula (4) with the set of quantum
numbers α = (n, j,k), for the positive frequency Wightman function one �nds

〈0|ϕ(x)ϕ(x′)|0〉 =
∫
dNk eik∆r‖

∞∑
n=1

sin(qnφ) sin(qnφ′)
∞∑

j=1

β2
αJqn(γr)Jqn(γr′)e−iω∆t, (9)

where γ = λn,j/a, and ∆r‖ = r‖ − r′‖, ∆t = t− t′. In order to obtain an alternative form for
the Wightman function we apply to the sum over j a variant of the generalized Abel-Plana
summation formula [33]

∞∑
j=1

2f(λn,j)
λn,jJ ′2qn(λn,j)

=
∫ ∞

0

f(z)dz +
π

4
Resz=0

[
f(z)

Yqn(z)
Jqn(z)

]
−

+
i

π

∫ ∞

0

dz
Kqn(z)
Iqn(z)

[e−qnπif(zeπi/2)− eqnπif(ze−πi/2)], (10)

where Yl(z) is the Neumann function, and Il(z), Kl(z) are the modi�ed Bessel functions. The
corresponding conditions for the formula (10) to be valid are satis�ed if r+ r′ + |t− t′| < 2a.
In particular, this is the case in the coincidence limit t = t′ for the region under consideration,
r, r′ < a. Formula (10) allows to present the Wightman function in the form

〈0|ϕ(x)ϕ(x′)|0〉 = 〈0w|ϕ(x)ϕ(x′)|0w〉+ 〈ϕ(x)ϕ(x′)〉cyl, (11)
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where

〈0w|ϕ(x)ϕ(x′)|0w〉 =
1
φ0

∫
dNk

(2π)N
eik∆r‖

∫ ∞

0

dz
ze−i∆t

√
z2+k2

m√
z2 + k2

m

×
∞∑

n=1

sin(qnφ) sin(qnφ′)Jqn(zr)Jqn(zr′), (12)

and

〈ϕ(x)ϕ(x′)〉cyl = − 2
πφ0

∫
dNk

(2π)N
eik∆r‖

∫ ∞

km

dz
z cosh(∆t

√
z2 − k2

m)√
z2 − k2

m

×
∞∑

n=1

sin(qnφ) sin(qnφ′)Iqn(zr)Iqn(zr′)
Kqn(za)
Iqn(za)

. (13)

In the limit a→∞ for �xed r, r′, the term 〈ϕ(x)ϕ(x′)〉cyl vanishes whereas the part (12) does
not depend on a. Hence, the term 〈0w|ϕ(x)ϕ(x′)|0w〉 is the Wightman function for the wedge
without a cylindrical boundary with the corresponding vacuum state |0w〉. Consequently, the
term 〈ϕ(x)ϕ(x′)〉cyl is induced by the presence of the cylindrical boundary. For points away
the cylindrical surface this part is �nite in the coincidence limit and the renormalization is
needed only for the part coming from the term (12).

2.2 Exterior region

In the region outside the cylindrical shell (region II in �gure 1): r > a, 0 6 φ 6 φ0, the
eigenfunctions satisfying boundary conditions (2) are obtained from (5) by the replacement

Jqn(γr) → gqn(γr, γa) ≡ Jqn(γr)Yqn(γa)− Jqn(γa)Yqn(γr). (14)

Now the spectrum for the quantum number γ is continuous and

β2
α =

(2π)2−Dγ

φ0ω
[
J2

qn(γa) + Y 2
qn(γa)

] . (15)

Substituting the corresponding eigenfunctions into the mode sum formula (4), the positive
frequency Whightman function in the exterior region is presented in the form

〈0|ϕ(x)ϕ(x′)|0〉 =
1
φ0

∫
dNk

(2π)N
eik∆r‖

∞∑
n=1

sin(qnφ) sin(qnφ′)

×
∫ ∞

0

dγ
γgqn(γr, γa)gqn(γr′, γa)
J2

qn(γa) + Y 2
qn(γa)

e−i∆t
√

γ2+k2
m√

γ2 + k2
m

. (16)

To �nd the part in the Wightman function induced by the presence of the cylindrical shell, we
subtract from (16) the corresponding function for the wedge without a cylindrical shell, given
by (12). This allows to present the Wightman function in the form (11) with the cylindrical
shell induced part

〈ϕ(x)ϕ(x′)〉cyl = − 2
πφ0

∫
dNk

(2π)N
eik∆r‖

∫ ∞

k

dz
z cosh(∆t

√
z2 − k2)√

z2 − k2

×
∞∑

n=1

sin(qnφ) sin(qnφ′)Kqn(zr)Kqn(zr′)
Iqn(za)
Kqn(za)

. (17)
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As we see, the expressions for the Wightman functions in the interior and exterior regions are
related by the interchange Iqn � Kqn of the modi�ed Bessel functions.

3 VEVs inside a wedge without a cylindrical boundary

In this section we consider the geometry of a wedge without a cylindrical boundary. For
integer values of q, after the explicit summation over n, the Wightman function is presented
in the form

〈0w|ϕ(x)ϕ(x′)|0w〉 =
m(D−1)/2

(2π)(D+1)/2

2∑
j=1

(−1)j+1

q−1∑
l=0

K(D−1)/2(m
√
u

(j)2
l + |∆r‖|2 − (∆t)2)[

u
(j)2
l + |∆r‖|2 − (∆t)2

](D−1)/4
,

(18)

where u
(j)
l = {r2 + r′2 − 2rr′ cos[2πl/q+ φ+ (−1)jφ′]}1/2. Note that the Wightman function

in the Minkowski spacetime coincides with the term j = 1, l = 0 in formula (18).
Taking the coincidence limit x′ → x, for the di�erence of the VEVs of the �eld squared,

〈ϕ2〉(w)
ren = 〈0w|ϕ2(x)|0w〉 − 〈0M |ϕ2(x)|0M 〉, (19)

where |0M 〉 is the amplitude for the vacuum state in the Minkowski spacetime without bound-
aries, we �nd

〈ϕ2〉(w)
ren =

mD−1

(2π)(D+1)/2

2∑
j=1

(−1)j+1

q−1∑′

l=0

K(D−1)/2(2mr sinφ(j)
l )

(2mr sinφ(j)
l )(D−1)/2

. (20)

In this formula, the prime means that the term j = 1, l = 0 has to be omitted, and we use
the notation

φ
(j)
l = πl/q + (1 + (−1)j)φ/2. (21)

For a massless �eld, from (20) we �nd

〈ϕ2〉(w)
ren =

Γ
(

D−1
2

)
(4π)

D+1
2 rD−1

2∑
j=1

q−1∑′

l=0

(−1)j+1

sinD−1 φ
(j)
l

, (22)

Note that the terms in this formula with j = 2, l = 0 and j = 2, l = q−1 are the corresponding
VEVs for the geometry of a single plate located at φ = 0 and φ = φ0, respectively. In the
case D = 3 for the renormalized VEV of the �eld square one �nds [20]

〈ϕ2〉(w)
ren =

q2 − 1− 3q2 csc2 (qφ)
48π2r2

. (23)

Near the wedge boundaries φ = φm, m = 0, 1 (φ1 = 0) the main contribution in (22)
comes from the terms j = 2, l = 0 and l = q − 1 for m = 0 and m = 1 respectively, and

the renormalized VEV of the �eld squared diverges with the leading behaviour 〈ϕ2〉(w)
ren ∝

|φ − φm|1−D. The surface divergences in the VEVs of the local physical observables are
well known in quantum �eld theory with boundaries and result from the idealization of the
boundaries as perfectly smooth surfaces which are perfect re�ectors at all frequencies. These
divergences are investigated in detail for various types of �elds and general shape of smooth
boundary [20, 34]. Near the smooth boundary the leading divergence in the �eld squared
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varies as (D − 1)th power of the distance from the boundary. It seems plausible that such
e�ects as surface roughness, or the microstructure of the boundary on small scales (the atomic
nature of matter for the case of the electromagnetic �eld [35]) can introduce a physical cuto�
needed to produce �nite values of surface quantities.

Now we turn to the VEVs of the energy-momentum tensor. By making use of formula
(3), for the non-zero components one obtains (no summation over i)

〈T i
i 〉(w)

ren = −
Γ
(

D+1
2

)
2D+2π

D+1
2 rD+1

2∑
j=1

q−1∑′

l=0

(−1)j+1f
(i)
jl

sinD+1 φ
(j)
l

, 〈T 1
2 〉(w)

ren =
D(ξc − ξ)Γ

(
D+1

2

)
2Dπ

D+1
2 rD

q−1∑
l=0

cosφ(2)
l

sinD φ
(2)
l

,

(24)
where i = 0, 1, . . . , D, and we use the following notations

f
(i)
jl = 1 + (4ξ − 1)

[
(D − 1)δj1 sin2 φ

(j)
l +Dδj2

]
, i = 0, 3, . . . , D, (25)

f
(1)
jl = f

(0)
jl − 4D(ξ − ξc) sin2 φ

(j)
l , f

(2)
jl = D

[
4 sin2 φ

(j)
l (ξ − ξcδj2)− δj1

]
. (26)

In the case φ0 = π/2 and for minimally and conformally coupled scalar �elds, it can be
checked that from formulae (24), after the transformation from cylindrical coordinates to the
cartesian ones, as a special case we obtain the result derived in [36]. For a conformally coupled

scalar �eld f
(i)
2l = 0 and from (24) one �nds

〈T k
i 〉(w)

ren = −
Γ
(

D+1
2

)
2D+2π

D+1
2 rD+1

q−1∑
l=1

D − (D − 1) sin2(πl/q)
D sinD+1(πl/q)

diag(1, 1,−D, 1, . . . , 1). (27)

In this case the vacuum energy-momentum tensor does not depend on the angular coordinate.
For a non-conformally coupled �eld the VEVs (24) diverge on the boundaries φ = φm and for
points away from the edge r = 0, these divergences are the same as those for the geometry of
a single plate.

In the most important case D = 3, for the components of the renormalized energy-
momentum tensor we �nd

〈T 0
0 〉(w)

ren = 〈T 3
3 〉(w)

ren =
1

32π2r4

{
1− q4

45
+

8
3
(
1− q2

)
(ξ − ξc)

+12
(ξ − ξc)q2

sin2(qφ)

[
q2

sin2(qφ)
− 2

3
q2 +

2
3

]}
, (28)

〈T 1
1 〉(w)

ren =
1

32π2r4

{
1− q4

45
− 4

3
(1− q2)(ξ − ξc)

+12
(ξ − ξc)q2

sin2 (qφ)

[
q2

sin2 (qφ)
− 2

3
q2 − 1

3

]}
, (29)

〈T 1
2 〉(w)

ren = −3(ξ − ξc)
8π2r3

q3 cos (qφ)
sin3 (qφ)

, (30)

〈T 2
2 〉(w)

ren =
1

8π2r4

[
q4 − 1

60
+ (ξ − ξc)

(
1− q2 +

3q2

sin2 (qφ)

)]
. (31)

Though we have derived these formulae for integer values of the parameter q, by the analytic
continuation they are valid for non-integer values of this parameter as well. For a conformally
coupled scalar �eld we obtain the result previously derived in the literature [19, 20]. The cor-
responding vacuum forces acting on the wedge sides are determined by the e�ective pressure

−〈T 2
2 〉

(w)
ren . These forces are attractive for the wedge with q > 1 and are repulsive for q < 1.
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4 Field squared and the energy-momentum tensor

We now turn to the geometry of a wedge with additional cylindrical boundary of radius
a. Taking the coincidence limit x′ → x in formula (11) for the Wightman function and
integrating over k, the VEV of the �eld squared is presented as the sum of two terms:

〈0|ϕ2|0〉 = 〈0w|ϕ2|0w〉+ 〈ϕ2〉cyl, (32)

where the part induced by the cylindrical boundary is given by the formula

〈ϕ2〉cyl = − 23−Dπ
1−D

2

Γ
(

D−1
2

)
φ0

∞∑
n=1

sin2(qnφ)
∫ ∞

m

dz z
(
z2 −m2

)D−3
2 Kqn(az)

Iqn(az)
I2
qn(rz). (33)

Note that this part vanishes at the wedge sides φ = φm, 0 6 r < a. Near the edge r = 0 the
main contribution into 〈ϕ2〉cyl comes from the term n = 1 and 〈ϕ2〉cyl behaves like r

2q. The
part 〈ϕ2〉cyl diverges on the cylindrical surface r = a. Near this surface the main contribution
into (33) comes from large values n and for |φ − φm| � 1 − r/a the leading behavior is the
same as that for a cylindrical surface of radius a.

Similarly, the VEV of the energy-momentum tensor for the situation when the cylindrical
boundary is present is written in the form

〈0|Tik|0〉 = 〈0w|Tik|0w〉+ 〈Tik〉cyl, (34)

where 〈Tik〉cyl is induced by the cylindrical boundary. This term is obtained from the cor-
responding part in the Wightman function, 〈ϕ(x)ϕ(x′)〉cyl, by using formula (3). For points
away from the cylindrical surface this limit gives a �nite result. For the corresponding com-
ponents of the energy-momentum tensor one obtains (no summation over i)

〈T i
i 〉cyl =

(4π)−
D−1

2

Γ
(

D−1
2

)
φ0

∞∑
n=1

∫ ∞

m

dz z3
(
z2 −m2

)D−3
2 Kqn(az)

Iqn(az)

×
{
a
(+)
i,qn[Iqn(rz)]− a

(−)
i,qn[Iqn(rz)] cos(2qnφ)

}
, (35)

〈T 1
2 〉cyl =

2(4π)−
D−1

2

Γ
(

D−1
2

)
φ0

∞∑
n=1

qn sin(2qnφ)
∫ ∞

m

dz z2(z2 −m2)
D−3

2
Kqn(az)
Iqn(az)

×Iqn(rz)
[
2ξ
rz
Iqn(rz) + (1− 4ξ)I ′qn(rz)

]
, (36)

with the notations

a
(±)
i,l [g(y)] = (4ξ − 1)

[
g′2(y) +

(
1± l2/y2

)
g2(y)

]
+ 2g2(y)

1−m2r2/y2

D − 1
,

a
(±)
1,l [g(y)] = g′2(y) + (4ξ/y)g(y)g′(y)− g2(y)

{
1± [1− 4ξ(1∓ 1)] l2/y2

}
, (37)

a
(±)
2,l [g(y)] = (4ξ − 1)

[
g′2(y) + g2(y)

]
− (4ξ/y)g(y)g′(y) + g2(y) (4ξ ± 1) l2/y2,

for a given function g(y), i = 0, 3, . . . , D. In accordance with the problem symmetry, the
expressions for the diagonal components are invariant under the replacement φ → φ0 − φ,
and the o�-diagonal component 〈T 1

2 〉cyl changes the sign under this replacement. Note that
the latter vanishes on the wedge sides φ = φm, 0 6 r < a and for φ = φ0/2. On the wedge
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sides for the diagonal components of the energy-momentum tensor we obtain (no summation
over i)

〈T i
i 〉cyl,φ=φm

=
22−Dπ

5−D
2 Ai

Γ
(

D−1
2

)
r2φ3

0

∞∑
n=1

n2

∫ ∞

m

dz z
(
z2 −m2

)D−3
2 Kqn(az)

Iqn(az)
I2
qn(rz), (38)

where Ai = 4ξ − 1, i = 0, 1, 3, . . . , D, A2 = 1. In particular, the additional vacuum e�ective
pressure in the direction perpendicular to the wedge sides, pa = −〈T 2

2 〉cyl,φ=φm
, does not

depend on the curvature coupling parameter and is negative for all values 0 < r < a. This
means that the vacuum forces acting on the wedge sides due to the presence of the cylindrical
boundary are attractive. The corresponding vacuum stresses in the directions parallel to
the wedge sides are isotropic and the energy density is negative for both minimally and
conformally coupled scalars.

For 0 < r < a the cylindrical parts (35) and (36) are �nite for all values 0 6 φ 6 φ0,
including the wedge sides. The divergences on these sides are included in the �rst term on
the right-hand side of (34) corresponding to the case without cylindrical boundary. Near the
edge r = 0 the main contribution into the boundary parts comes from the summand with
n = 1 and one has 〈T i

i 〉cyl ∝ r2q−2, 〈T 1
2 〉cyl ∝ r2q−1. The boundary part

〈
T k

i

〉
cyl

diverges

on the cylindrical surface r = a. Expanding over a − r, on the wedge sides for the diagonal
components one �nds

〈T i
i 〉cyl,φ=φm ≈

AiΓ
(

D+1
2

)
2(4π)

D+1
2 (a− r)D+1

, r → a, (39)

where the coe�cients Ai are de�ned in the paragraph after formula (38). It can be seen
that for the o�-diagonal component to the leading order one has 〈T 1

2 〉a ∝ (a − r)−D. For
angles 0 < φ < φ0, and for |φ − φm| � 1 − r/a, the leading divergence coincides with the
corresponding one for a cylindrical surface of the radius a.

Taking the coincidence limit of the arguments, from formula (17) we obtain the VEV of
the �eld squared in the region r > a:

〈ϕ2〉cyl = − 23−Dπ
1−D

2

Γ
(

D−1
2

)
φ0

∞∑
n=1

sin2(qnφ)
∫ ∞

m

dz z
(
z2 −m2

)D−3
2 Iqn(az)

Kqn(az)
K2

qn(rz). (40)

As for the interior region, the VEV (40) diverges on the cylindrical surface. For large distances
from the cylindrical surface, r � a, and for a massless �eld the main contribution comes from
the n = 1 term and to the leading order one �nds 〈ϕ2〉cyl ∝ (a/r)D−1+2q. For a massive �eld
and for mr � 1 the part 〈ϕ2〉cyl is exponentially suppressed.

For the part in the vacuum energy-momentum tensor induced by the cylindrical surface
in the region r > a, from (3), (17), (40) one has the following formulae

〈T i
i 〉cyl =

(4π)−
D−1

2

Γ
(

D−1
2

)
φ0

∞∑
n=1

∫ ∞

m

dz z3
(
z2 −m2

)D−3
2 Iqn(az)

Kqn(az)

×
{
a
(+)
i,qn[Kqn(rz)]− a

(−)
i,qn[Kqn(rz)] cos(2qnφ)

}
, (41)

〈T 1
2 〉cyl =

2(4π)−
D−1

2

Γ
(

D−1
2

)
φ0

∞∑
n=1

qn sin(2qnφ)
∫ ∞

m

dz z2(z2 −m2)
D−3

2
Iqn(az)
Kqn(az)

×Kqn(rz)
[
2ξ
rz
Kqn(rz) + (1− 4ξ)K ′

qn(rz)
]
, (42)



96 A. A. Saharian. Casimir densities for wedge-shaped boundaries

with the functions a
(±)
i,qn[g(y)] de�ned by (37). In the way similar to that used above for the

VEV of the �eld square, it can be seen that at large distances from the cylindrical surface,
r � a, the main contribution comes from the term with n = 1 and for a massless �eld
the components of the induced energy-momentum tensor behave as 〈T i

i 〉cyl ∝ (a/r)D+1+2q,
〈T 1

2 〉cyl ∝ (a/r)D+2q. As for the interior region, the vacuum forces acting on the wedge sides
due to the presence of the cylindrical shell are attractive and the corresponding energy density
is negative for both minimally and conformally coupled scalars.

In the limit φ0 → 0, r, a→∞, assuming that a− r and aφ0 ≡ b are �xed, from the results
given above we obtain the vacuum densities for the geometry of two parallel plates separated
by a distance b, perpendicularly intersected by the third plate. The vacuum expectation
values of the energy-momentum tensor for this geometry of boundaries are investigated in
[36] for special cases of minimally and conformally coupled massless scalar �elds.

5 VEVs for the electromagnetic �elds

5.1 Interior region

In this section we consider a wedge with a coaxial cylindrical boundary assuming that all
boundaries are perfectly conducting. For this geometry there are two di�erent types of the
eigenfunctions corresponding to the transverse magnetic (TM, λ = 0) and transverse electric
(TE, λ = 1) waves. In the Coulomb gauge, the vector potentials for these modes are given
by the formulae

Aα = βα

{
(1/iω)

(
γ2e3 + ik∇t

)
Jqn(γr) sin(qnφ) exp [i (kz − ωt)] , λ = 0

−e3 ×∇t {Jqn(γr) cos(qnφ) exp [i (kz − ωt)]} , λ = 1 , (43)

where e3 is the unit vector along the axis of the wedge, ∇t is the part of the nabla operator
transverse to this axis, and ω2 = γ2+k2. In Eq. (43), n = 1, 2, . . . for λ = 0 and n = 0, 1, 2, . . .
for λ = 1. From the normalization condition one �nds

β2
α =

4qTqn(γa)
πωaγ

δn, δn =
{

1/2, n = 0
1, n 6= 0 , (44)

where we have introduced the notation Tν(x) = x
[
J
′2
ν (x) + (1− ν2/x2)J2

ν (x)
]−1

. Eigenfunc-

tions (43) satisfy the standard boundary conditions on the wedge sides. From the boundary
conditions on the cylindrical shell it follows that the eigenvalues for γ are roots of the equation

J (λ)
qn (γa) = 0, λ = 0, 1, (45)

where J
(0)
ν (x) = Jν(x) and J (1)

ν (x) = J ′ν(x). We will denote the corresponding eigenmodes

by γa = λ
(λ)
n,j , j = 1, 2, . . ..

First we consider the VEVs of the squares of the electric and magnetic �elds inside the
shell. Substituting the eigenfunctions (43) into the corresponding mode-sum formula, we �nd

〈0|F 2|0〉 =
4q
πa3

∞∑′

m=0

∫ +∞

−∞
dk
∑

λ=0,1

∞∑
n=1

λ
(λ)3
n,j Tqm(λ(λ)

n,j)√
λ

(λ)2
n,j + k2a2

g(ηF λ)[Φ(λ)
qn (φ), Jqn(λ(λ)

n,jr/a)], (46)

where F = E,B with ηEλ = λ, ηBλ = 1− λ, and the prime in the summation over n means
that the term n = 0 should be halved. In formula (46) we have introduced the notations

g(0)[Φ(φ), f(x)] = (k2r2/x2)
[
Φ2(φ)f ′2(x) + Φ′2(φ)f2(x)/x2

]
+ Φ2(φ)f2(x),

g(1)[Φ(φ), f(x)] = (1 + k2r2/x2)
[
Φ2(φ)f ′2(x) + Φ′2(φ)f2(x)/x2

]
, (47)
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and
Φ(0)

ν (φ) = sin(νφ), Φ(1)
ν (φ) = cos(νφ). (48)

The expressions (46) corresponding to the electric and magnetic �elds are divergent. They
may be regularized introducing a cuto� function ψµ(ω) with the cutting parameter µ which
makes the divergent expressions �nite and satis�es the condition ψµ(ω) → 1 for µ→ 0. After
the renormalization the cuto� function is removed by taking the limit µ→ 0.

In order to further simplify the VEVs, we apply to the series over n the summation formula
(10) for the modes with λ = 0 and the similar formula from [33] for the modes with λ = 1. As
it can be seen, for points away from the shell the contribution to the VEVs coming from the
second integral terms on the right-hand sides of these formulae are �nite in the limit µ → 0
and, hence, the cuto� function in these terms can be safely removed. As a result the VEVs
are written in the form

〈0|F 2|0〉 = 〈0w|F 2|0w〉+
〈
F 2
〉
cyl
, (49)

where

〈0w|F 2|0w〉 =
q

π

∞∑′

n=0

∫ +∞

−∞
dk

∫ ∞

0

dγ
γ3ψµ(ω)√
γ2 + k2

{(
1 +

2k2

γ2

)[
J ′2qn(γr) +

q2n2

γ2r2
J2

qn(γr)
]

+J2
qn(γr)− (−1)ηF1 cos(2qnφ)

[
J ′2qn(γr)−

(
1 +

q2n2

γ2r2

)
J2

qn(γr)
]}

, (50)

and

〈F 2〉cyl =
2q
π

∞∑′

n=0

∑
λ=0,1

∫ ∞

0

dxx3K
(λ)
qn (xa)

I
(λ)
qn (xa)

G(ηF λ)[Φ(λ)
qn (φ), Iqn(xr)]. (51)

In formula (51) we have introduced the notations

G(0)[Φ(φ), f(x)] = Φ2(φ)f ′2(x) + Φ′2(φ)f2(x)/x2 + 2Φ2(φ)f2(x),
G(1)[Φ(φ), f(x)] = −Φ2(φ)f ′2(x)− Φ′2(φ)f2(x)/x2. (52)

The second term on the right-hand side of Eq. (49) vanishes in the limit a→∞ and the �rst
one does not depend on a. Thus, we can conclude that the term 〈0w|F 2|0w〉 corresponds to
the part in the VEVs when the cylindrical shell is absent.

First, let us concentrate on the part corresponding to the wedge without a cylindrical
shell. In (50) the part which does not depend on the angular coordinate φ is the same as in
the corresponding problem of the cosmic string geometry with the angle de�cit 2π − φ0 (see
[32]), which we will denote by 〈0s|F 2|0s〉. For this part we have

〈0s|F 2|0s〉 = 〈0M|F 2|0M〉 −
(q2 − 1)(q2 + 11)

180πr4
, (53)

where 〈0M|F 2|0M〉 is the VEV in the Minkowski spacetime without boundaries and in the last
expression we have removed the cuto�. To evaluate the part in (50) which depends on φ, we
�rstly consider the case when the parameter q is an integer. In this case, the summation over
n can be done explicitly and the integrals are evaluated by introducing polar coordinates in
the (k, γ)-plane. As a result, for the renormalised VEVs of the �eld squared in the geometry
of a wedge without a cylindrical boundary we �nd

〈F 2〉(w)
ren = − (q2 − 1)(q2 + 11)

180πr4
− (−1)ηF1q2

2πr4 sin2(qφ)

[
1− q2 +

3q2

2 sin2(qφ)

]
, (54)
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with ηE1 = 1 and ηB1 = 0. Though we have derived this formula for integer values of the
parameter q, by the analytic continuation it is valid for non-integer values of this parameter as
well. The expression on the right of formula (54) is invariant under the replacement φ→ φ0−φ
and, as we could expect, the VEVs are symmetric with respect to the half-plane φ = φ0/2.
Formula (54) for F = E was derived in Ref. [22] within the framework of Schwinger's source
theory.

Now, we turn to the investigation of the parts in the VEVs of the �eld squared induced
by the cylindrical boundary and given by formula (51). These parts are symmetric with
respect to the half-plane φ = φ0/2. The expression in the right-hand side of (51) is �nite for
0 < r < a including the points on the wedge sides, and diverges on the shell. To �nd the
leading term in the corresponding asymptotic expansion, we note that near the shell the main
contribution comes from large values of n. By using the uniform asymptotic expansions of the
modi�ed Bessel functions for large values of the order, up to the leading order, for the points
a − r � a| sinφ|, a| sin(φ0 − φ)| we �nd 〈F 2〉cyl ≈ −3(−1)ηF1/[4π(a − r)4]. These surface
divergences originate in the unphysical nature of perfect conductor boundary conditions. In
reality the expectation values will attain a limiting value on the conductor surface, which will
depend on the molecular details of the conductor. From the formulae given above it follows
that the main contribution to 〈F 2〉cyl are due to the frequencies ω . (a − r)−1. Hence, we
expect that formula (51) is valid for real conductors up to distances r for which (a−r)−1 � ω0,
with ω0 being the characteristic frequency, such that for ω > ω0 the conditions for perfect
conductivity fail.

Near the edge r = 0, assuming that r/a� 1, the asymptotic behavior of the part induced
in the VEVs of the �eld squared by the cylindrical shell depends on the parameter q. For
q > 1+ηF1, the dominant contribution comes from the lowest mode n = 0 and to the leading
order one has 〈F 2〉cyl ∝ r2ηF1 . In this case the quantity 〈B2〉cyl takes a �nite limiting value
on the edge r = 0, whereas 〈E2〉cyl vanishes as r

2. For q < 1 + ηF1 the main contribution
comes from the mode with n = 1 and the shell-induced parts diverge on the edge r = 0 with
〈F 2〉cyl ∝ r2(q−1). In accordance with (54), near the edge r = 0 the total VEV is dominated
by the part coming from the wedge without the cylindrical shell.

5.2 Exterior region

In the exterior region (region II in �gure 1), the corresponding eigenfunctions for the
vector potential are obtained from formulae (43) by the replacement

Jqn(γr) → g(λ)
qn (γa, γr) = Jqn(γr)Y (λ)

qn (γa)− Yqn(γr)J (λ)
qn (γa), (55)

where, as before, λ = 0, 1 correspond to the waves of the electric and magnetic types, respec-
tively. The eigenvalues for γ are continuous and

β−2
α = (8π/q)δnγω

[
J (λ)2

qn (γa) + Y (λ)2
qn (γa)

]
. (56)

Substituting the eigenfunctions into the corresponding mode-sum formula, for the VEV of
the �eld squared one �nds

〈0|F 2|0〉 =
2q
π

∞∑′

n=0

∫ +∞

−∞
dk

∫ ∞

0

dγ
∑

λ=0,1

γ3√
k2 + γ2

g(ηF λ)[Φ(λ)
qn (φ), g(λ)

qn (γa, γr)]

J
(λ)2
qn (γa) + Y

(λ)2
qn (γa)

, (57)

where the functions g(ηF λ)[Φ(φ), f(x)] are de�ned by relations (47) with f(x) = g
(λ)
qn (γa, x).

To extract from this VEV the part induced by the cylindrical shell, we subtract from the
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right-hand side the corresponding expression for the wedge without the cylindrical boundary.
As a result, the VEV of the �eld squared is written in the form (49), where the part induced
by the cylindrical shell is given by the formula

〈F 2〉cyl =
2q
π

∞∑′

n=0

∑
λ=0,1

∫ ∞

0

dxx3 I
(λ)
qn (xa)

K
(λ)
qn (xa)

G(ηF λ)[Φ(λ)
qn (φ),Kqn(xr)]. (58)

In this formula the functions G(ηF λ) [Φ(φ), f(x)] are de�ned by expressions (52). Comparing
this result with formula (51), we see that the expressions for the shell-induced parts in the
interior and exterior regions are related by the interchange Iqn � Kqn.

The VEV (58) diverges on the cylindrical shell with the leading term being the same
as that for the interior region. At large distances from the cylindrical shell we introduce a
new integration variable y = xr and expand the integrand over a/r. For q > 1 the main
contribution comes from the lowest mode n = 0 and up to the leading order we have

〈E2〉cyl ≈
4q (a/r)2

5πr4
, 〈B2〉cyl ≈ −

28q (a/r)2

15πr4
. (59)

For q < 1 the dominant contribution into the VEVs at large distances is due to the mode
n = 1 with the leading term

〈F 2〉cyl ≈ −
4q2(q + 1)

πr4

(a
r

)2q
[
cos(2qφ)
2q + 3

+ (−1)ηF1
q + 1
2q + 1

]
. (60)

For the case q = 1 the contributions of the modes n = 0 and n = 1 are of the same order and
the corresponding leading terms are obtained by summing these contributions. The latter
are given by the right-hand sides of formulae (59) and (60). As we see, at large distances the
part induced by the cylindrical shell is suppressed with respect to the part corresponding to
the wedge without the shell by the factor (a/r)2β with β = min(1, q).

6 Energy-momentum tensor for the electromagnetic �eld

Now let us consider the VEV of the energy-momentum tensor in the region inside the cylin-
drical shell. Substituting the eigenfunctions (43) into the corresponding mode-sum formula,
for the non-zero components we obtain (no summation over i)

〈0|T i
i |0〉 =

q

2π2a3

∞∑′

n=0

∫ +∞

−∞
dk
∑

λ=0,1

∞∑
j=1

λ
(λ)3
n,j Tqn(λ(λ)

n,j)√
λ

(λ)2
n,j + k2a2

f (i)[Φ(λ)
qn (φ), Jqn(λ(λ)

n,jr/a)],(61)

〈0|T 1
2 |0〉 =

−q2

4π2a

∂

∂r

∞∑′

n=0

n sin(2qnφ)
∫ +∞

−∞
dk
∑

λ=0,1

(−1)λ

×
∞∑

j=1

λ
(λ)
n,jTqn(λ(λ)

n,j)√
λ

(λ)2
n,j + k2a2

J2
qn(λ(λ)

n,jr/a), (62)

where i = 0, 1, 2, 3, and we have introduced the notations

f (j)[Φ(φ), f(x)] = (−1)i
(
2k2/γ2 + 1

) [
Φ2(φ)f ′2(x) + Φ′2(φ)f2(x)/y2

]
+ Φ2(φ)f2(x),

f (l)[Φ(φ), f(x)] = (−1)lΦ2(φ)f ′2(x)−
[
Φ2(φ) + (−1)lΦ′2(φ)/x2

]
f2(x), (63)
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with j = 0, 3 and l = 1, 2. As in the case of the �eld squared, in formulae (61) and (62) we
introduce a cuto� function and apply formula (10) for the summation over n. This enables
us to present the vacuum energy-momentum tensor in the form of the sum

〈0|T k
i |0〉 = 〈0w|T k

i |0w〉+ 〈T k
i 〉cyl, (64)

where 〈0w|T k
i |0w〉 is the part corresponding to the geometry of a wedge without a cylindrical

boundary and 〈T k
i 〉cyl is induced by the cylindrical shell. The latter may be written in the

form (no summation over i)

〈T i
i 〉cyl =

q

2π2

∞∑′

n=0

∑
λ=0,1

∫ ∞

0

dxx3K
(λ)
qn (xa)

I
(λ)
qn (xa)

F (i)[Φ(λ)
qn (φ), Iqn(xr)], (65)

〈T 1
2 〉cyl =

q2

4π2

∂

∂r

∞∑′

n=0

n sin(2qnφ)
∑

λ=0,1

(−1)λ

∫ ∞

0

dxx
K

(λ)
qn (xa)

I
(λ)
qn (xa)

I2
qn(xr), (66)

with the notations

F (i)[Φ(φ), f(y)] = Φ2(φ)f2(y), i = 0, 3,
F (i)[Φ(φ), f(y)] = −(−1)iΦ2(φ)f ′2(y)−

[
Φ2(φ)− (−1)iΦ′2(φ)/y2

]
f2(y), i = 1, 2.(67)

The diagonal components are symmetric with respect to the half-plane φ = φ0/2, whereas the
o�-diagonal component is an odd function under the replacement φ → φ0 − φ. As it can be
easily checked, the tensor 〈T k

i 〉cyl is traceless and satis�es the covariant continuity equation.
The o�-diagonal component 〈T 1

2 〉cyl vanishes at the wedge sides and for these points the VEV
of the energy-momentum tensor is diagonal. The vacuum energy density induced by the
cylindrical shell in the interior region is always negative.

The renormalized VEV of the energy density for the geometry without the cylindrical shell
is obtained by using the corresponding formulae for the �eld squared. Other components are
found from the tracelessness condition and the continuity equation and one has [2, 19, 20]

〈T k
i 〉(w)

ren = − (q2 − 1)(q2 + 11)
720π2r4

diag(1, 1,−3, 1). (68)

Formula (68) coincides with the corresponding result for the geometry of the cosmic string
with the angle de�cit 2π − φ0 and in the corresponding formula q = 2π/φ0.

The normal force acting on the wedge sides is determined by the component 〈T 2
2 〉ren of the

vacuum energy-momentum tensor evaluated for φ = 0 and φ = φ0. On the base of formula
(64) for the corresponding e�ective pressure one has

p2 = −〈T 2
2 〉ren|φ=0,φ0 = p2w + p2cyl, (69)

where p2w = −〈T 2
2 〉

(w)
ren is the normal force acting per unit surface of the wedge for the case

without a cylindrical boundary and the additional term

p2cyl = −〈T 2
2 〉cyl|φ=0,φ0 = − q

π2

∞∑′

n=0

∑
λ=0,1

∫ ∞

0

dxx3K
(λ)
qn (xa)

I
(λ)
qn (xa)

F (λ)
qn [Iqn(xr)], (70)

with the notations

F (0)
ν [f(y)] = ν2f2(y)/y2, F (1)

ν [f(y)] = −f
′2(y)− f2(y), (71)
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is induced by the cylindrical shell. Note that the normal force on the wedge sides is the
sum of the corresponding forces for Dirichlet and Neumann scalars corresponding to the
terms with λ = 0 and λ = 1 respectively. The �niteness of the normal stress on the wedge
sides is a consequence of the fact that for a single perfectly conducting plane boundary
this stress vanishes. Note that this result can be directly obtained from the symmetry of the
corresponding problem with combination of the continuity equation for the energy-momentum
tensor. It also survives for more realistic models of the plane boundary (see, for instance,
[37]) though the corresponding energy density and parallel stresses no longer vanish. So we
expect that the obtained formula for the normal force acting on the wedge sides will correctly
approximate the corresponding results of more realistic models in the perfectly conducting
limit. The corresponding vacuum forces are attractive for q > 1 and repulsive for q < 1. In
particular, the equilibrium position corresponding to the geometry of a single plate (q = 1)
is unstable. As regards to the part induced by the cylindrical shell, from (70) it follows that
p2cyl < 0 and, hence, the corresponding forces are always attractive. In �gure 2 we have
plotted the vacuum pressure on the wedge sides induced by the cylindrical boundary versus
r/a for Dirichlet scalar (left panel) and for the electromagnetic �eld (right panel). The full
(dashed) curves correspond to the wedge with φ0 = π/2 (φ0 = 3π/2).

Figure 2: The e�ective azimuthal pressure induced by the cylindrical shell on the wedge sides,
a4p2cyl, as a function of r/a for Dirichlet scalar (left panel) and for the electromagnetic �eld
(right panel). The full (dashed) curves correspond to q = 2 (q = 2/3).

Now, let us discuss the behavior of the boundary-induced part in the VEV of the energy-
momentum tensor in the asymptotic regions of the parameters. Near the cylindrical shell the
main contribution comes from large values of n and for the points a−r � a| sinφ|, a| sin(φ0−
φ)| the leading terms are the same as those for a cylindrical shell when the wedge is absent.
For points near the edges (r = a, φ = 0, φ0) the leading terms in the corresponding asymptotic
expansions are the same as for the geometry of a wedge with the opening angle φ0 = π/2.
Near the edge, r → 0, for the components (no summation over i) 〈T i

i 〉cyl, i = 0, 3, the main
contribution comes from the mode n = 0 and we �nd 〈T i

i 〉cyl ≈ −0.0590q/a4, i = 0, 3. For
the components (no summation over i) 〈T i

i 〉cyl, i = 1, 2, when q > 1 the main contribution
again comes form n = 0 term and one has 〈T i

i 〉cyl ≈ −〈T 0
0 〉cyl, i = 1, 2. For q < 1 the main

contribution into the components 〈T i
i 〉cyl, i = 1, 2, comes from the term n = 1 and we have (no

summation over i) 〈T i
i 〉cyl ∝ r2(q−1), i = 1, 2. In this case the radial and azimuthal stresses
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induced by the cylindrical shell diverge on the edge r = 0. For the o�-diagonal component
the main contribution comes from the n = 1 mode and 〈T 1

2 〉cyl behaves like r
2q−1.

Now we turn to the VEVs of the energy-momentum tensor in the exterior region. Sub-
tracting from these VEVs the corresponding expression for the wedge without the cylindrical
boundary, analogously to the case of the �eld square, it can be seen that the VEVs are pre-
sented in the form (64), with the parts induced by the cylindrical shell given by the formulae
(no summation over i)

〈T i
i 〉cyl =

q

2π2

∞∑′

n=0

∑
λ=0,1

∫ ∞

0

dxx3 I
(λ)
qn (xa)

K
(λ)
qn (xa)

F (i)[Φ(λ)
qn (φ),Kqn(xr)], (72)

〈T 1
2 〉cyl =

q2

4π2

∂

∂r

∞∑′

m=0

n sin(2qnφ)
∑

λ=0,1

(−1)λ

∫ ∞

0

dxx
I
(λ)
qn (xa)

K
(λ)
qn (xa)

K2
qn(xr). (73)

Here the functions F (i) [Φ(φ), f(y)] are de�ned by expressions (67). It can be seen that the
vacuum energy density induced by the cylindrical shell in the exterior region is positive.

In the way similar to that for the interior region, the force acting on the wedge sides is
presented in the form of the sum (69), where for the part due to the presence of the cylindrical
shell we have

p2cyl = −〈T 2
2 〉cyl|φ=0,φ0 = − q

π2

∞∑′

n=0

∑
λ=0,1

∫ ∞

0

dxx3 I
(λ)
qn (xa)

K
(λ)
qn (xa)

F (λ)
qn [Kqn(xr)]. (74)

In this formula, the function F
(λ)
ν [f(y)] is de�ned by relations (71) and the corresponding

forces are always attractive.

The leading divergence in the boundary induced part (72) on the cylindrical surface is
given by the same formulae as for the interior region. For large distances from the shell and
for q > 1 the main contribution into the VEVs of the diagonal components comes from the
n = 0, λ = 1 term and one has (no summation over i)

〈T i
i 〉cyl ≈ −

qci (a/r)2

15π2r4
, c0 = c3 = 2, c1 = 1, c2 = −5. (75)

In the case q < 1 the main contribution into the VEVs of the diagonal components at large
distances from the cylindrical shell comes from the n = 1 mode. The leading terms in the
corresponding asymptotic expansions are given by the formulae

〈T i
i 〉cyl ≈ −q2(q + 1)ci(q)

cos(2qφ)
π2r4

(a
r

)2q

, (76)

with the notations

c0(q) = c3(q) =
1

2q + 3
, c1(q) =

2q2 + q + 1
(2q + 1)(2q + 3)

, c2(q) = − q + 1
2q + 1

. (77)

In the case q = 1 the asymptotic terms are determined by the sum of the contributions
coming from the modes n = 0 and n = 1. The latter are given by formulae (75), (76). For
the o�-diagonal component, for all values q the main contribution at large distances comes
from the n = 1 mode and 〈T 1

2 〉cyl ∝ (a/r)2qr−3.
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7 Conclusion

We have investigated the polarization of the scalar and electromagnetic vacua by a wedge
with coaxial cylindrical boundary, assuming Dirichlet boundary conditions in the case of a
scalar �eld and perfectly conducting boundary conditions for the electromagnetic �eld. The
application of the Abel-Plana-type summation formula for the series over the zeros of the
Bessel function and its derivative allowed us to extract from the VEVs the parts due to
the wedge without a cylindrical boundary and to present the additional parts induced by
this boundary in terms of exponentially convergent integrals. The vacuum densities for the
geometry of a wedge without a cylindrical boundary are considered in section 3. We have
derived formulae for the renormalized VEVs of the �eld squared and the energy-momentum
tensor, formulae (22), (24). For a conformally coupled scalar the energy-momentum tensor is
diagonal and does not depend on the angular variable φ. The corresponding vacuum forces
acting on the wedge sides are attractive for φ0 < π and are repulsive for φ0 > π.

For a scalar �eld the parts in the Wightman function induced by the cylindrical boundary
are given by formulae (13) and (17) for the interior and exterior regions respectively. The
corresponding VEVs for the �eld squared and the energy-momentum tensor are investigated in
section 4. The �eld squared is given by formula (33) and vanishes on the wedge sides φ = φm

for all points away from the cylindrical surface. The energy-momentum tensor induced by
the cylindrical surface is non-diagonal and the corresponding components are determined by
formulae (35), (36). The o�-diagonal component vanishes on the wedge sides. The additional
vacuum forces acting on the wedge sides due to the presence of the cylindrical surface are
determined by the 2

2-component of the corresponding stress and are attractive for all values φ0.
On the wedge sides the corresponding vacuum stresses in the directions parallel to the wedge
sides are isotropic and the energy density is negative for both minimally and conformally
coupled scalars. The formulae in the exterior region di�er from the corresponding formulae
for the interior region by the interchange Iqn(z) � Kqn(z). For large distances from the
cylindrical surface, r � a, the VEVs behave as (a/r)D−1+2q for the �eld squared and as
(a/r)D+1+2q for the diagonal components of the energy-momentum tensor.

In the second part of the paper we have evaluated the VEVs of the �eld squared and the
energy-momentum tensor for the electromagnetic �eld. For the wedge without the cylindrical
shell the VEVs of the �eld squared are presented in the form (54). The �rst term on the right
of this formula corresponds to the VEVs for the geometry of a cosmic string with the angle
de�cit 2π − φ0. The parts induced by the cylindrical shell are presented in the form (51)
for the interior region and in the form (58) for the exterior region. We have discussed these
general formulae in various asymptotic regions of the parameters. In section 6 we consider the
VEV of the energy-momentum tensor. For the geometry of a wedge without the cylindrical
boundary the vacuum energy-momentum tensor does not depend on the angle φ and is the
same as in the geometry of the cosmic string. The corresponding vacuum forces acting on the
wedge sides are attractive for φ0 < π and repulsive for φ0 > π. In particular, the equilibrium
position corresponding to the geometry of a single plate is unstable. For the region inside
the shell the part in the VEV of the energy-momentum tensor induced by the presence of
the cylindrical shell is non-diagonal and the corresponding components are given by formulae
(65), (66) for the interior region and by (72), (73) for the exterior region. The vacuum energy
density induced by the cylindrical shell is negative in the interior region and is positive in the
exterior region. For a wedge with φ0 < π the part in the vacuum energy-momentum tensor
induced by the shell is �nite on the edge r = 0. For φ0 > π the shell-induced parts in the
energy density and the axial stress remain �nite, whereas the radial and azimuthal stresses
diverge as r2(π/φ0−1). The corresponding o�-diagonal component behaves like r2π/φ0−1 for all
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values φ0. For points near the edges (r = a, φ = 0, φ0), the leading terms in the corresponding
asymptotic expansions are the same as for the geometry of a wedge with the opening angle
φ0 = π/2. The presence of the shell leads to additional forces acting on the wedge sides. The
corresponding e�ective azimuthal pressures are given by formulae (70), (74) and these forces
are always attractive.
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From multiple scattering to van der

Waals interactions: exact results for

eccentric cylinders

Kimball A. Milton1, Prachi Parashar2 and Jef Wagner3

Oklahoma Center for High Energy Physics and Homer L. Dodge Department
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Abstract

In this paper, dedicated to the career of Iver Brevik, we review the derivation of
the retarded van der Waals or Casimir-Polder interaction between polarizable molecules
from the general multiple scattering formulation of Casimir interactions between bodies.
We then apply this van der Waals potential to examine the interaction between tenuous
cylindrical bodies, including eccentric cylinders, and revisit the vanishing self-energy of
a tenuous dielectric cylinder. In each case, closed-form expressions are obtained 4.

1 Introduction

Since the earliest calculations of �uctuation forces between bodies [1], that is, Casimir or
quantum vacuum forces, multiple scattering methods have been employed. Rather belatedly,
it has been realized that such methods could be used to obtain accurate numerical results in
many cases [2, 3, 4, 5]. These results allow us to transcend the limitations of the proximity
force theorem (PFT) [6, 7], and so make better comparison with experiment, which typically
involve curved surfaces. (For a review of the experimental situation, see Ref. [8].)

These improvements in technique were inspired in part by the development of the numer-
ical Monte-Carlo worldline method of Gies and Klingm�uller [9, 10, 11, 12] but the di�culty
with this latter method lies in the statistical limitations of Monte Carlo methods and in the
complexity of incorporating electromagnetic boundary conditions. Optical path approxima-
tions have been studied extensively for many years, with considerable success [13, 14, 15, 16].
However, there always remain uncertainties because of unknown errors in excluding di�ractive
e�ects. Direct numerical methods [17, 18], based on �nite-di�erence engineering techniques,

1E-mail: milton@nhn.ou.edu
2E-mail: prachi@nhn.ou.edu
3E-mail: wagner@nhn.ou.edu
4This article is dedicated to 70th aniversary of Professor Iver Brevik
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may have promise, but the requisite precision of 3-dimensional calculations may prove chal-
lenging [19].

The multiple scattering formalism, which is in principle exact, dates back at least into
the 1950s [20, 21]. Particularly noteworthy is the seminal work of Balian and Duplantier
[22]. (For more complete references see Ref. [23].) This technique, which has been brought
to a high state of perfection by Emig et al. [5], has concentrated on numerical results for
the Casimir forces between conducting and dielectric bodies such as spheres and cylinders.
Recently, we have noticed that the multiple-scattering method can yield exact, closed-form
results for bodies that are weakly coupled to the quantum �eld [24, 23]. This allows an
exact assessment of the range of applicability of the PFT. The calculations there, however, as
those in recent extensions of our methodology [25], have been restricted to scalar �elds with
δ-function potentials, so-called semitransparent bodies. (These are closely related to plasma
shell models [3, 26, 27, 28].) The technique was recently extended to dielectric bodies [29],
characterized by a permittivity ε. Strong coupling would mean a perfect metal, ε→∞, while
weak coupling means that ε is close to unity.

In this paper we will give details of the formalism, and show how in weak coupling (dilute
dielectrics) we recover the sum of Casimir-Polder or retarded van der Waals forces between
atoms. Exact results have been found in the past in such summations, for example for
the self-energy of a dilute dielectric sphere [30] or a dilute dielectric cylinder [31]. Thus
it is not surprising that exact results for the interaction of di�erent dilute bodies can be
obtained. It is only surprising that such results were not found much earlier. (We note that
the additive approximation has been widely used in the past, for example, see Ref. [32], but
here the method is exact. Also, there are many exact computations for non-retarded London
forces betwen bodies, e.g., Ref. [33], but these results can only apply to very tiny objects
on the nanometer scale.) In our previous letter [29] we considered the force and torque on
a slab of �nite extent above an in�nite plane, and the force between spheres and parallel
cylinders outside each other. Here we will examine further cylindrical geometries, such as
concentric cylinders, and eccentric circular cylinders with parallel axes, in cases where the
dielectric materials do not overlap. We will prove that the results can be obtained by analytic
continuation of the energies found earlier for non-contained bodies. Finally, we will re-examine
the self-energy of a dielectic cylinder [31].

2 Green's dyadic formalism

For electromagnetism, we can start from the formalism of Schwinger [34], which is based
on the electric Green's dyadic Γ. This object can be identi�ed as the one-loop vacuum
expectation value of the correlation function of electric �elds,

Γ(r, t; r′, t′) = i〈T{E(r, t)E(r′, t′)}〉. (1)

Alternatively, we regard the Green's dyadic as the propagator between a polarization source
P and a phenomenological �eld E (where xµ = (r, t)):

E(x) =
∫

(dx′)Γ(x, x) ·P(x′). (2)

We will only be contemplating static geometries, so it is convenient to consider a speci�c
frequency ω, as introduced through a Fourier transform,

Γ(x, x′) =
∫
dω

2π
e−iω(t−t′)Γ(r, r′;ω), (3)
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in terms of which the Maxwell equations in a region where the permittivity ε(ω) and the
permeability µ(ω) are constant in space read

∇× Γ = iωΦ, ∇ · Φ = 0, (4a)

1
µ

∇×Φ = −iωεΓ′, ∇ · Γ′ = 0, (4b)

where we have introduced Γ′ = Γ + 1/ε, where the unit dyadic includes a spatial δ function.
The two Green's dyadics given here satisfy the following inhomogenous Helmholtz equations,

(∇2 + ω2εµ)Γ′ = −1
ε
∇× (∇× 1), (5a)

(∇2 + ω2εµ)Φ = iωµ∇× 1. (5b)

In the following, it will prove more convenient to use, instead of Eq. (5a),(
1
ω2µ

∇ × ∇ ×−ε
)

Γ = 1. (6)

In the presence of a polarization source, the action is, in symbolic form,

W =
1
2

∫
P · Γ ·P, (7)

so if we consider the interaction between bodies characterized by particular values of ε and
µ, the change in the action due to moving those bodies is

δW =
1
2

∫
P · δΓ ·P = −1

2

∫
E · δΓ−1 ·E, (8)

where the symbolic inverse dyadic, in the sense of Eq. (6), is

Γ−1 =
1
ω2µ

∇ × ∇ ×−ε, (9)

that is,
δΓ · Γ−1 = −Γ · δΓ−1. (10)

By comparing with the iterated source term in the vacuum-to-vacuum persistence amplitude
exp iW , we see that an in�nitesimal variation of the bodies results in an e�ective source
product,

P(r)P(r′)
∣∣∣∣
eff

= iδΓ−1, (11)

from which we deduce from Eq. (7) that

δW =
i

2
TrΓ · δΓ−1 = − i

2
Tr δΓ · Γ−1 = − i

2
δTr lnΓ, (12)

where the trace includes integration over space-time coordinates. We conclude, by ignoring
an integration constant,

W = − i
2
Tr lnΓ. (13)

This is in precise analogy to the expression for scalar �elds. Another derivation of this result
is given in the Appendix. Incidentally, note that the �rst equality in Eq. (12) implies for
dielectric bodies (µ = 1)

δW = − i
2

∫
dω

2π

∫
(dr) δε(r, ω)Γkk(r, r′;ω), (14)

which is the starting point for the derivation of the Lifshitz formula [35] in Ref. [34].
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3 Rederivation of Casimir-Polder formula

Henceforth, let us consider pure dielectrics, that is, set µ = 1. The free Green's dyadic,
in the absence of dielectric bodies, satis�es the equation[

1
ω2

∇×∇×−1
]
Γ0 = 1, (15)

so the equation satis�ed by the full Green's dyadic is

(Γ−1
0 − V )Γ = 1, (16)

where V = ε− 1 within the body. From this we deduce immediately that

Γ = (1− Γ0V )−1Γ0. (17)

From the trace-log formula (13) we see that the energy for a static situation (W = −
∫
dtE)

relative to the free-space background is

E =
i

2
Tr lnΓ−1

0 · Γ = − i
2
Tr ln(1− Γ0V ). (18)

The trace here is only over spatial coordinates. We will now consider the interaction between
two bodies, with non-overlapping potentials, V = V1+V2, where Va = εa−1 is con�ned to the
interior of body a, a = 1, 2. Although it is straightforward to proceed to write the interaction
between the bodies in terms of scattering operators, for our limited purposes here, we will
simply treat the potentials as weak, and retain only the �rst, bilinear term in the interaction:

E12 =
i

2
TrΓ0V1Γ0V2. (19)

Here, as may be veri�ed by direct calculation [36],

Γ0(r, r′) = ∇×∇× 1G0(r− r′)− 1 = (∇∇− 1ζ2)G0(r− r′), (20)

where the scalar Helmholtz Green's function which satis�es causal or Feynman boundary
conditions is

G0(r− r′) =
e−|ζ|R

4πR
, R = |r− r′|, (21)

the Fourier transform of the Euclidean Green's function, which obeys the di�erential equation

(−∇2 + ζ2)G0(r− r′) = δ(r− r′), (22)

and ζ = −iω.
Thus the interaction between the two potentials is given by

E12 = −1
2

∫
dζ

2π

∫
(dr)(dr′)

[
(∇i∇j − ζ2δij)

e−|ζ||r−r′|

4π|r− r′|

]2

V1(r)V2(r′). (23)

The derivatives occurring here may be easily worked out:

(Γ0)ij = (∇i∇j−ζ2δij)
e−|ζ|R|

4πR
=
[
−δij(1 + |ζ|R+ ζ2R2) +

RiRj

R2
(3 + 3|ζ|R|+ ζ2R2)

]
e−|ζ|R

4πR3
,

(24)
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and then contracting two such factors together gives

(∇i∇j − ζ2δij)
e−|ζ|R

4πR
(∇i∇j − ζ2δij)

e−|ζ|R

4πR
= (6 + 12t+ 10t2 + 4t3 + 2t4)

e−2t

(4πR3)2
, (25)

where t = |ζ|R. Inserting this into Eq. (23), we obtain for the integral over ζ

− 1
64π3R7

∫ ∞

0

du e−u

(
6 + 6u+

5
2
u2 +

1
2
u3 +

1
8
u4

)
= − 23

64π3R7
, (26)

or

E12 = − 23
(4π)3

∫
(dr)(dr′)

V1(r)V2(r′)
|r− r′|7

, (27)

which is the famous Casimir-Polder potential [37]. This formula is valid for bodies, which are
presumed to be composed of material �lling nonoverlapping volumes v1 and v2, respectively,
characterized by dielectric constants ε1 and ε2, both nearly unity. We emphasize that this
formula is exact in the limit ε1,2 → 1, as discussed in Ref. [32].

4 Energy of cylinder parallel to a plane

In Ref. [29] we derived the energy of two uniform dilute cylinders, of radius a and b
respectively, the parallel axes of which are separated by a distance R, R > a+ b. In terms of
the constant

N =
23

640π2
(ε1 − 1)(ε2 − 1). (28)

the energy of interaction per unit length is

Ecyl−cyl = −32πN
3

a2b2

R6

1− 1
2

(
a2+b2

R2

)
− 1

2

(
a2−b2

R2

)2

[(
1−

(
a+b
R

)2)(
1−

(
a−b
R

)2)]5/2
. (29)

If we take R and b to in�nity, such that Z = R − b is held �xed, we describe a cylinder of
radius a parallel to a dielectric plane, where Z is the distance between the axis of the cylinder
and the plane. That limit gives the simple result

Ecyl−pl = −Nπa
2

Z4

1
(1− a2/Z2)5/2

. (30)

This is to be compared to the corresponding result for a sphere of radius a a distance Z above
a plane:

Esph−pl = −N v

Z4

1
(1− a2/Z2)2

, (31)

where v is the volume of the sphere.
As an illustration of how the calculation is done, let us rederive this result directly from

Eq. (27). We see immediately that the energy between an in�nite halfspace (of permittivity
ε1) and a parallel slab (of permittivity ε2) of area A and thickness dz separated by a distance
z is

dE

A
= −N dz

z4
, (32)

so the energy per length between the cylinder and the plane is

Ecyl−pl = −2Na2

∫ 1

−1

d cos θ
sin θ

(Z + a cos θ)4
= − Nπa2Z

(Z2 − a2)5/2
, (33)

which is the result (30).
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Figure 1: Dielectric ε2 hollowed out by a cylindrical cavity which contains an o�set parallel
dielectric cylinder ε1.

5 Eccentric cylinders

As a second illustration, consider two coaxial cylinders, of radii a and b, a < b. The
inner cylinder is �lled with material of permittivity ε1, while the outer cylinder is the inner
boundary of a region with permittivity ε2 extending out to in�nity. An easy calculation from
the van der Waals interaction (27)

Eco−cyl = −64N
3

∫ a

0

dρ ρ

∫ ∞

b

dρ′ρ′
∫ 2π

0

dθ

(ρ2 + ρ′2 − 2ρρ′ cos θ)3

= −32πN
3

∫ a2

0

dx

∫ ∞

b2
dy
x2 + y2 + 4xy

(y − x)5

= − 16Nπa2b2

3(b2 − a2)3
. (34)

This reduces to the dilute Lifshitz formula for the interaction between parallel plates if we
take the limit b→∞, a→∞, with b− a = d held �xed:

Eco−cyl → −2Nπb
3d3

, or
E

A
= − N

3d3
. (35)

Note that the result (34) may be obtained by analytically continuing the energy between two
externally separated cylinders, given by Eq. (29). We simply take R to zero there, and choose
the sign of the square root so that the energy is negative. That suggests that the same thing
can be done to obtain the energy of interaction between two parallel cylinders, one inside the
other, but whose axes are displaced by an o�set R, with R+ a < b, as shown in Fig. 1:

Eecc−cyl = −16πN
3

a2

b4
(1− a2/b2)2 + (1 + a2/b2)R2/b2 − 2R4/b4

[(1− a2/b2)2 +R4/b4 − 2(1 + a2/b2)R2/b2]5/2
. (36)

We can verify this is true by carrying out the integral from the Casimir-Polder formula (27)

Eecc−cyl = −32N
3π

∫ a

0

ρ dρ

∫ ∞

b

ρ′ dρ′
∫ 2π

0

dθ

∫ 2π

0

dθ′

×
[
ρ2 + ρ′2 − 2ρρ′ cos(θ − θ′) +R2 − 2R(ρ cos θ − ρ′ cos θ′)

]−3
. (37)
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The angular integrals can be done, but the remaining integrals are rather complicated. There-
fore, let us simply expand immediately in the quantities x = ρ/ρ′ and y = R/ρ′, which are
both less than one. Then we can carry out the four integrals term by term. In this way we
�nd

Eecc−cyl = −16πNa2

3b4

∞∑
n,m=0

(
a2

b2

)n(
R2

b2

)m (m+ 1)2

2

(
n+m+ 1
m+ 1

)(
n+m+ 2
m+ 1

)
,(38)

which is exactly the series expansion of Eq. (36) for small a/b and R/b.
By di�erentiating this energy with respect to the o�set R, we obtain the force of interaction

between the inner cylinder and the outer one, F = −∂E/∂R. Evidently, that force is zero for
coaxial cylinders, since that is a point of unstable equilibrium. For small R, F grows linearly
with R with a positive coe�cient. The inner cylinder is attracted to the closest point of the
opposite cylinder. Similar considerations for conducting cylinders were given in Refs. [38, 39],
with the idea that the cylindrical geometry might prove to be a useful proving ground for
Casimir experiments.

6 Self-energy of dilute cylinder

This is a rederivation of the result found by dimensional continuation in Ref. [31]. The
summation of the Casimir-Polder forces between the molecules in a single cylinder of radius
a is given by (in N ε1 = ε2)

Ecyl = −32N
3

∫ a

0

dρ ρ

∫ a

0

dρ′ ρ′
∫ 2π

0

dθ

(ρ2 + ρ′2 − 2ρρ′ cos θ)3

= −16N
3

∫ a2

0

dx

x2

∫ 1

0

du

(
1
u3
− 6
u4

+
6
u5

)
. (39)

This is, of course, terribly divergent. We can regulate it by analytic continuation: replace the
highest power of (ρ2 − ρ′2)−1 = (xu)−1, 5, by β, and regard β as less than 1. Then,

Ecyl = −16N
3

∫ a2

0

dxx3−β

∫ 1

0

du
(
u2−β − 6u1−β + 6u−β

)
= −16N

3
(a2)4−β (5− β)

(1− β)(2− β)(3− β)
. (40)

Now if we analytically continue to β = 5 we get an vanishing self-energy to order (ε − 1)2.
This result was �rst discovered by Romeo (private communication), veri�ed in Ref. [31], and
con�rmed later by full Casimir calculations [40, 41].
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8 Derivation of Green's dyadic formalism from canonical

theory

Here we begin by sketching the development of the Green's dyadic equation from canon-
ical quantum electrodynamics. For simplicity of the discussion, we will consider a medium
without dispersion, so that ε and µ are constant. First we must state the canonical equal-time
commutation relations. We will require (only transverse �elds are relevant)

[Ei(r, t), Ej(r′, t)] = 0. (41)

In a medium, it is the electric displacement �eld which is canonically conjugate to the vector
potential, so we have the equal-time commutation relation (Coulomb gauge)

[A(r, t), ∂0A(r′, t)] =
i

ε

(
1− ∇∇

∇2

)
δ(r− r′). (42)

Now in view of Eq. (1), and the Maxwell equations

∇×E = − ∂

∂t
B, (43a)

∇× 1
µ
B =

∂

∂t
εE, (43b)

we deduce from Eq. (1)

∇ × ∇ × Γ′ + εµ
∂2

∂t2
Γ′ = iεµδ(t− t′)〈[Ė(r, t),E(r′, t)]〉. (44)

But according to Maxwell's equations and Eq. (42)

[Ė(r, t),E(r′, t)] =
1
εµ

∇ × ∇ × [A(r, t),−∂0A(r′, t)] = − i

ε2µ
∇ × ∇ × 1δ(r− r′). (45)

If we now insert this into Eq. (44) we obtain for the Fourier transform of the Green's dyadic
(3)

(∇ × ∇ ×−εµω2)Γ′ =
1
ε
∇ × ∇ × 1, (46)

which is indeed the equation satis�ed by the solenoidal Green's dyadic, Eq. (5a).
It is equally easy to derive the trace-log formula. We have the variational statement, for

in�nitesimal changes in the permittivity and the permeability [42],

δE = −1
2

∫
(dr)〈δεE2 + δµH2〉. (47)

Given Eqs. (1) and (43a) we can write this in terms of the coincident-point limit of Green's
dyadic,

δE =
i

2

∫
(dr)

[
δε− δ

(
1
µ

)
1
ω2

∇ × ∇×
]
Γ(r, r′)

∣∣∣∣
r′→r

= − i
2
Tr δΓ−1 · Γ, (48)

according to Eq. (9), which involves an integration by parts, and coincides with the �rst
equality in Eq. (12).
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Casimir force for electrolytes
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Abstract

The Casimir force between a pair of parallell plates �lled with ionic particles is
considered. We use a statistical mechanical approach and consider the classical high
temperature limit. In this limit the ideal metal result with no transverse electric (TE)
zero frequency mode is recovered. This result has also been obtained by Jancovici and
�Samaj earlier. Our derivation di�ers mainly from the latter in the way the Casimir force
is evaluated from the correlation function. By our approach the result is easily extended
to electrolytes more generally. Also we show that when the plates are at contact the
Casimir force is in accordance with the bulk pressure as follows from the virial theorem
of classical statistical mechanics 2.

1 Introduction

It is a pleasure to contribute this work to a festshrift volume for Professor Iver Brevik. We
have had an extensive collaboration through many years on problems connected to the Casimir
e�ect. In our works we have fruitfully utilized methods from di�erent �elds of research. In
particular we have explored the statistical mechnanical aspects of the Casimir problem. The
present contribution is a work that continues in the statistical mechanical direction.

A pair of metallic or dielectric plates attract each other. This is the well known Casimir
e�ect, and it is commonly regarded to be due to �uctuations of the quantum electrodynamic
�eld in vacuum. However, Høye and Brevik considered this in a di�erent way by regarding
the problem as a statistical mechanical one of interacting �uctuating dipole moments of
polarizable particles. In this way the Casimir force between a pair of polarizable point particles
was recovered [1]. To do so the path integral formulation of quantized particle systems was
utilized [2]. Before that this method was fruitfully utilized for a polarizable �uid [3]. With
this approach the role of the electromagnetic �eld is to mediate the pair interaction between
polarizable particles. Later this type of evaluation was generalized to a pair of parallell plates,
and the well known Lifshitz result was recovered [4]. Similar evaluations were performed for
other situations [5, 6].

1E-mail: johan.hoye@ntnu.no
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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The statistical mechanical approach opens new perspectives for evaluations of the Casimir
force. Instead of focusing upon the quantization of the electromagnetic �eld itself one can
regard the problem as one of polarizable particles interacting via the electromagnetic �eld. It
is found that these two viewpoints are equivalent [1, 4, 6, 7].

Metals are materials that have electrons that can be regarded as free. When deriving the
Lifshitz formula they are regarded as dielectric media that have in�nite dielectric constant
for zero frequency. Jancovici and �Samaj realized that it should be possible to evaluate the
Casimir force for metals by regarding an electron plasma. Thus they considered parallell
plates �lled with charged particles at low density in a neutralizing background [8]. Further
they considered the classical case, i.e. the high temperature limit. In this situation the Debye-
H�uckel theory of electrolytes is fully applicable. Then they use the Ornstein-Zernike equation
(OZ) equation, and utilize its equivalence with the di�erential equation for the screened
Coulomb potential to obtain the pair correlation function. This function is used to obtain
the local ionic density at the surfaces of the plates. The di�erence between local and bulk
densities is attributed to the Casimir force in accordance with the ideal gas law. The result
obtained coincides with a result for ideal metals in the high temperature limit. The latter has
been a dispute of controversy [9]. The ionic plasma result coincides with the one where there
is no transverse electric mode at zero frequency. This is also in accordance with Maxwell's
equations of electromagnetism.

The ionic plasma has also been extended to the quantum mechanical case by use of the
path integral formalism from a statistical mechanical viewpoint, and it has been shown that
magnetic interactions do not contribute in the classical high temperature limit [13].

In the present work we reconsider the ionic plasma in the classical limit. We arrive at the
the same pair correlation function as in Ref. [8]. But we use a di�erent approach to obtain
the Casimir force. As we see it, our method better utilizes the methods of classical statistical
mechanics especially for possible further developments. Thus we use the correlation function
to directly evaluate the average force between pairs of particles in the two plates and then
integrate to obtain the total force. This is the method used in Refs. [1, 4]. In this way the
result of Ref. [8] is recovered. A noteable feature of this comparison is that it demonstrates
that the modi�cation of the density pro�le at the surface is a perturbing e�ect that can be
neglected to leading order by our approach.

With our approach the evaluations are extended in a straightforward way to electrolytes
of more arbitrary density. To do so known properties of the direct correlation function is
utilized. The main change with this extension is that the large distance inverse shielding
length is modi�ed while the Casimir force remains unchanged for large separations.

An additional result of our approach is that it is shown that when the plates are at contact
the Casimir pressure more generally is nothing but the contribution to the bulk pressure (with
opposite sign) that follows from the virial theorem of classical statistical mechnanics.

2 General expressions

Consider a pair of harmonic oscillators with static polarizability α. They interact via a
potential ψs1s2 where s1 and s2 are �uctuating polarizations. This interaction creates a shift
in the free energy of the system. This is easily evaluated to be [1]

−βF = −1
2

ln[1− (αψ)2] =
1
2

∞∑
n=1

1
n

(αψ)2n (1)
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with β = 1/(kBT ) where T is temperature and kB is Boltzmanns constant. The last sum is the
expansion performed in Ref. [4] where the two particles were replaced with two plane parallell
plates. In the latter case the terms can be interpreted as the sum of graph contributions due
to the mutual interaction ψ. The α will represent correlations within each plate separately
while each ψ gives a link between the plates while 2n is the symmetry factor of the graphs
that form closed rings. With plates the endpoints of each link ψ should be integrated over
the plates. In the quantum mechanical case there is also a sum over Matzubara frequencies
upon which α and ψ may depend.

The parallell plates are separated by a distance a. Due to the interaction there will be an
attractive force K between the plates. This force is found from [4]

K = −∂F
∂a

=
1
β

αψα

1− (αψ)2
∂ψ

∂a
. (2)

The fraction in the middle of this expression represents the graph expansion of the pair
correlation function with the endpoints in separate plates. These graphs form chains where
each ψ forms a link between the plates. Thus we can write

K = ρ2

∫
h(r2, r1)ψ′z(r2 − r1) dr1dr2 (3)

where ρ is number density, h(r2, r1) is the pair correlation function, and ψ′z(r2−r1) = ∂ψ/∂a
with the z-direction normal to the plates. For polarizable particles integral (3) will also
contain integrations with respect to polarizations [4].

For in�nite plates integral (3) diverges, so as usual we will consider the force f per unit
area which then will be

f =
ρ2

(2π)2

∫
z1<0,z2>0

ĥ(k⊥, z2, z1)ψ̂′z(k⊥, z2 − z1) dkxdkydz1dz2 (4)

where the hat denotes Fourier transform with respect to the x- and y-coordinates. (Here we

have used
∫
fg dxdy =

∫
f̂ ĝ dkxdky/(2π)2 and translational symmetry along the xy-plane.

Now we can introduce

q2 = k2
⊥ = k2

x + k2
y, with dkxdky = 2πq dq. (5)

Further with z2 = u2 + a and z1 = −u1 we then get

f =
ρ2

2π

∫
u1,u2>0

ĥ(q, z2, z1)ψ̂′z(q, z2 − z1)q dqdz1dz2 (6)

An interesting feature of result (6) or (4) is that it is fully consistent with the virial
theorem in statistical mechanics. This means that when the plates are at contact for a = 0
the Casimir force equals the contribution to the pressure from the virial integral with pair
interaction ψ. With a = 0 translational symmetry is also present in the z-direction, so we
have

f = ρ2

∫
z1<0,z2>0

h(|r2 − r1|)ψ′z(|r2 − r1|) dxdydz1dz2. (7)

With new variable z = z2 − z1 one can �rst integrate with respect to z2 which then will be
con�ned to the region 0 ≤ z2 ≤ z. Thus with

∫ z

0
dz2 = z we obtain (r = r2 − r1)

f = ρ2

∫
z>0

h(r)ψ′z(r) dr =
ρ2

6

∫
h(r)r∇ψ(r) dr (8)
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where symmetry with respect to the x-, y-, and z-directions and with respect to positive and
negative z is used. (It may be noted that the above is correct if the average of ψ is zero.
Otherwise the pair distribution function 1 + h should be used. But for neutral plates as for
dielectric plates with dipolar interaction this average will be zero.)

3 Pair correlation function

To obtain the correlation function we use the Ornstein-Zernike (OZ) equation

h(r2, r1) = c(r2, r1) +
∫
c(r2, r′)ρ(r′)h(r′, r1) dr′ (9)

which here has been extended to non-homogeneous �uids. The c(r) is the direct correla-
tion function. For week long-range forces [14] or to leading order the c(r) is related to the
interaction in a simple way

c(r2, r1) = −βψ. (10)

For plate separations beyond interparticle distances the ψ will be small anyway. For a plasma
at low density we can write for all r

c(r2, r1) = c(r) = −β q
2
c

r
, (r = r2 − r1) (11)

where qc is the ionic charge assuming one component for simplicity. (Here Gaussian units are
used.) To keep the system neutral a uniform background is assumed. As noted in Ref. [8] the
OZ-equation is now equivalent to Maxwells equation of electrostatics. The similar situation
was utilized in Ref. [4] for dipolar interactions.

Since ψ is the electrostatic potential from a charge one has

∇2c(r) = 4πβq2δ(r). (12)

With this Eq. (9) can be rewritten as

∇2Φ− 4πβq2cρ(r)Φ = −4πδ(r− r0), h(r, r0) = −βq2cΦ, (13)

where r2 and r1 have been replaced by r and r0 respectively. In the present case with parallell
plates the number density is

ρ(r) =

 ρ, z < 0
0, 0 < z < a
ρ, a < z

(14)

with equal densities ρ = const. on both plates. By Fourier transform in the x- and y-directions
Eq. (11) becomes (

∂2

∂z2
− k2

⊥ − κ2
z

)
Φ̂ = −4πδ(z − z0) (15)

where the hat denotes Fourier transform and with κ = 4πβq2cρ

κ2
z = κ

 1, z < 0
0, 0 < z < a
1, a < z,

(16)
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The κ is the inverse Debye-H�uckel shielding length in the media. Solution of Eq. (13) can be
written in the form

Φ̂ = 2πeqκz0


1
qκ
e−qκz +Beqκz, z0 < z < 0

Ce−qz + C1e
qz, 0 < z < a

De−qκz, a < z

(17)

where q = k⊥, qκ =
√
k2
⊥ + κ2. (For z < z0 the solution is the �rst line of Eq. (15) where the

resulting exponent of �rst exponential has changed sign.)
With continuous Φ̂ and ∂Φ̂/∂z as conditions, one �nds for the coe�cient of interest

D =
4qe(qκ−q)a

(qκ + q)2(1−Ae−2qa)
, A =

(
qκ − q

qκ + q

)2

=
κ4

(qk + q)4
. (18)

With this the pair correlation function for z0 < 0 and z > a is

ĥ(k⊥, z, z0) = −2πβq2cDe
−qκ(z−z0). (19)

4 Casimir force

Besides ĥ the ψ̂′z is needed to obtain the Casimir force f . In accordance with Eq. (10) the
ionic pair interaction is ψ = q2c/r. Its full Fourier transform is ψ̃ = q2c/k

2 which is consistent
with Eq. (10). With k2 = k2

⊥ + k2
z this can be transformed backwards to obtain (q = k⊥)

ψ̂(k⊥, z − z0) = −2πβq2ce
−qκ(z−z0). (20)

This is consistent with solution (15) for Φ. The derivative of (20) with respect to z is now
together with expression (19) inserted in Eq. (6) to �rst obtain (z−z0 → z2−z1 = u1+u2+a)

f =
ρ2

2π

∞∫
0

(−2πβq2c )D(−2πq2c )

∞∫
0

∞∫
0

e−(qκ+q)(u1+u2+a) du1du2 q dq

=
κ4

8πβ

∞∫
0

De−(qκ+q)a

(qκ + q)2
q dq =

1
2πβ

∞∫
0

Ae−2qa

1−Ae2qa
q2 dq. (21)

First one can note that this result is precisely result (3.44) in Ref. [8]. This is seen by some
rearrangement of the latter result with the substitutions κ0 → κ, k → q/κ, and d → a for
dimensionality ν = 3.

Expression (16) and result (21 may be simpli�ed further with new variable of integration

q = κ sinh t, dq = κ cosh t dt.

With this we have qκ + q = κ(cosh t + sinh t) = κet, qκ − q = κe−t, and A = e−4t by which
the Casimir force becomes

f =
κ3

2πβ

∞∫
0

e−g(t)

1− e−g(t)
sinh2 t cosh t dt. (22)

where g(t) = 4t+ 2κa sinh t.
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For large separation a only small values of t will contribute, and one can put

g(t) = (2κa+ 4)t and sinh2 t cosh t = t2.

With this and expansion of the denominator the force becomes

f =
κ3

2πβ
2ζ(3)

(2κa+ 4)3
=

kBTζ(3)
8πa3(1 + 2/(κa))3

=
kBTζ(3)

8πa3

(
1− 6

κa
+ · · ·

)
. (23)

The ζ(3) is the Riemann ζ-function, ζ(p) =
∑∞

n=1 1/np.
As noted earlier [8, 10, 11] this is the ideal metal result for high temperatures when the

transverse electric mode is absent. Also one sees that for large a the e�ective separation
between the plates is increasesd by twice the Debye shielding length, i. e. a → a + 2/κ.
Thus for semiconductors the in�uence of free ions vanishes due to the increase of e�ective
separation for decreasing ionic density. The small conductivity of semiconductors has been
an issue of some controversy [15]. It has been argued that small concentrations of free ions in
semiconductors should be neglected [16]. However, result (20) suggests that lack of in�uence
for small ionic concentration is due to increased e�ective separation for vanishing κ.

When the plates are in contact, a = 0, the integral (19) can be evaluated exlicitly. With
1− e−4t = 4e−2t sinh t cosh t one �nds

f =
κ3

8πβ

∞∫
0

e−2t sinh t dt =
κ3

24πβ
. (24)

For an ionic system at low density this is precisely the contribution to the pressure (with
opposite sign) from the ionic interaction (beyond the ideal gas pressure) in accordance with
the virial integral (8).

5 Electrolytes in general

For higher densities and lower temperatures the direct correlation function c given by
Eq. (10) will be modi�ed. However, the crucial point is that for large r →∞ this expression
is still valid while for small r there will be changes. On the scale of plate separation this
change will be a term that can be regarded as a δ-function in r-space such that

c(r2, r1) = c0(r) + τδ(r2 − r1) (25)

where c0(r) = −βq2c/r and τ is a constant that will depend upon the local density. When the
local density varies the OZ-equation (9) can be regarded as a matrix equation. Multiplying
it from both left and right with ρ and adding ρ on both sides of it the equation after some
rearrangement becomes

(1− ρc)ρ(1 + hρ) = ρ. (26)

Insertion of expression (25) then yields

(1− ρτ − ρc0)ρ(1 + hρ) = ρ.

ρ(1 + hρ) =
ρe

1− ρec0
, ρe =

ρ

1− ρτ
. (27)

Thus the only change in the resulting pair corrrelation function ρhρ is that ρ is replaced by
an e�ective density ρe on the right hand side. In this way only the inverse shielding length is
a�ected by which we get κ2 = 4πβρeq

2
c . But for large plate separations the Casimir force (23)

does not depend upon κ by which the ideal metal result is generally valid for large separations
for any electrolyte.
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6 Summary

The Casimir force between a pair of parallell plates �lled with ionic particles has been
evaluated in the classical high temperature limit. To do so methods of classical statistical
mechanics have been used. The pair correlation function is evaluated from which the average
force between pairs of particles in di�erent plates is found. When the plates are at contact the
magnitude of the force equals the contribution to the pressure from the virial theorem. This
latter result makes the force consistent with bulk pressure. The force found is the same as the
one found earlier in Ref. [8] for charged particles at low density. There the force was evaluated
on basis of the di�erence between surface and bulk densities. By the present approach it thus
follows that this di�erence in densities can be neglected to leading order.
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Shear viscosity, relaxation and collision

times in spherically symmetric spacetimes
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Abstract

We interpret as shear viscosity the anisotropic pressure that emerges in inhomoge-
neous spherically symmetric spacetimes described by the Lema��tre�Tolman�Bondi (LTB)
metric in a comoving frame. By assuming that local isotropic pressure and energy den-
sity satisfy a generic ideal gas equation of state, we reduce the �eld equations to a set of
evolution equations based on auxiliary quasi�local variables. We examine the transport
equation of shear viscosity from Extended Irreversible Thermodynamics and use a nu-
merical solution of the evolution equations to obtain the relaxation times for the full and
�truncated� versions. Considering a gas of cold dark matter WIMPS after its decoupling
from the cosmic �uid, we show that the relaxation times for the general equation are
qualitatively analogous to collision times, while the truncated version is inadequate to
describe transient phenomena of transition to equilibrium 2.

1 Introduction.

It is a well known fact that dissipative e�ects in the context of General Relativity must
comply with causality and stability requirements [1, 2, 3, 4]. Also, there is an evident theo-
retical connection between dissipative phenomena and anisotropy or inhomogeneity of self�
gravitating sources. This emerges from the fact that heat �ux and shear viscosity couple with
the 4�acceleration, shear and spacelike gradients in their corresponding evolution (or trans-
port) equations. Since bulk viscosity is the only dissipative stress compatible with global
isotropy and homogeneity, most articles on dissipative cosmological sources deal with the ef-
fects of this stress in a Friedman�Lema��tre�Robertson�Walker (FLRW) context [5]. However,
the literature contains also a large number of studies of dissipative cosmological sources un-
der anisotropic and inhomogeneous conditions, using Bianchi or Kantowski�Sachs models [6],
involving heat �ux [7] or shear viscosity with the Lemaitre�Tolman�Bondi metric [8, 9, 10]
(see also [11] for inhomogeneous spacetimes with dissipative sources).

1E-mail: sussman@nucleares.unam.mx
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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Besides mathematical simplicity, the main justi�cation for preferring a FLRW framework,
or linear perturbations on a FLRW background, in cosmological studies is the conjecture
(supported by observations) that the universe is approximately FLRW at a large �homogene-
ity� scale of 150-300 Mpc [12]. Thermal dissipation might play a minor role in these scales,
as observations seem to reveal that cosmic dynamics is presently dominated by (apparently)
non�thermal sources (cold dark matter and dark energy [12]). While dissipative phenomena
of a thermal nature are relevant for understanding early universe interactions, inhomogeneity
can be safely assumed to be very small in these conditions. Dissipative phenomena also arise
in self�gravitating (and inhomogeneous) sources at local scales, either stellar or galactic [1].
In some cases (inter�stelar or inter�galactic clouds of ionized gas), characteristic velocities
and energies are basically non�relativistic, but in other cases (gas accretion to compact ob-
jects or AGN's, jets, photon or neutrino transport) we can have non�trivial relativistic and
ultra-relativistic e�ects in conditions of non�linear inhomogeneity [13]. However, as long as
we ignore the fundamental physics of dark matter and dark energy, we can still try to probe
theoretically the possibility of some forms of thermal dissipation in these sources and/or their
interactions at the cosmic scale.

Fully general inhomogeneity requires numerical codes of high complexity, hence we o�er
in this article a compromise by looking at dissipative phenomena in spherically symmetric
sources, which in spite of their obviously idealized nature, are still useful to examine non�
linear phenomena that cannot be studied in a FLRW framework or with linear perturbations.
By considering �LTB spacetimes� that generalize to nonzero pressure the well known LTB dust
solutions [14], we obtain a class of spacetimes that can be fully described by autonomous �rst
order evolution equations that can be well handled by simple numerical methods. These mod-
els are quite general and readily allow for an inhomogeneous generalization of a large number
of known FLRW solutions. The reader can consult [14] for an extended and comprehensive
discussion on these spacetimes and their physical and geometric properties.

The plan of the article is as follows. We describe in section 2 the basic features of
LTB spacetimes [11, 14], in which the anisotropic pressure is considered as a shear viscous
stress [8, 9, 10]. Assuming a conserved particle current and the entropy current associated
with Extended Irreversible Thermodynamics, we derive in section 3 the full causal transport
equation for shear viscosity [1, 2, 3, 4]. In section 4, we provide the ��uid �ow� evolution
equations for LTB spacetimes [15], equivalent to the �eld equations, in terms of suitably de-
�ned quasi�local variables [14]. In this description, the local thermodynamical state variables
are gauge invariant �exact� perturbations of their quasi�local equivalents. In section 5 we
specialize the evolution equations for a local equation of state corresponding to a generic
ideal gas that covers the cases of (i) a classical ideal gas and (ii) the coupled mixture of a
non�relativistic gas and radiation (the �radiative gas� [1, 3, 9, 10]). In section 6 we specialize
the evolution and transport equations for the ideal gas, as a model of a gas of non�relativistic
WIMPS after their decoupling from the cosmic �uid [1, 13, 16], when particle numbers are con-
served. We evaluate the relaxation times for the full transport equation and for its �truncated�
version (the Maxwell�Cattaneo equation). In section 7 we compare numerically these times
with mean collision times, showing that they are qualitatively analogous in the relaxation
time scale. These numerical examples also show that the truncated equation is inadequate to
describe the transient phenomena of transition to equilibrium for gas of WIMPS. This result
is analogous to that obtained for the decoupling of matter and radiation in the radiative
gas [10]. We summarize the results obtained in section 8.
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2 LTB spacetimes in the ��uid �ow� description.

Spherically symmetric inhomogeneous dust sources are usually described by the well
known Lema��tre�Tolman�Bondi metric [11, 14]

ds2 = −c2dt2 +
R′2

1−K
dr2 +R2

(
dθ2 + sin2 θdφ2

)
. (1)

where R = R(ct, r), R′ = ∂R/∂r and K = K(r). A large class of spherically symmetric
spacetimes follow at once by considering the most general source for (1) in a comoving frame
(ua = δa

0 ), which is the energy�momentum tensor

T ab = µuaub + p hab + Πab, (2)

where µ and p are the matter�energy density and the isotropic pressure, hab = uaub + gab is
the induced metric of hypersurfaces T orthogonal to ua, and Πab is the symmetric traceless
tensor of anisotropic pressure. We will call �LTB' spacetimes� to all solutions of Einstein's
equations for (1) and (2).

Besides the scalars µ and p, and the tensor Πab, the remaining basic covariant objects of
LTB spacetimes are:

Θ = ∇̃au
a =

2Ṙ
R

+
Ṙ′

R′
, Expansion scalar, (3)

3R =
2(KR)′

R2R′
, Ricci scalar of the T, (4)

σab = ∇̃(aub) −
Θ
3
hab, Shear tensor, (5)

Eab = ucudC
abcd, Electric Weyl tensor, (6)

where Ṙ = ua∇aR, ∇̃a = hb
a∇b, and C

abcd is the Weyl tensor.
For spherically symmetric spacetimes, the symmetric traceless tensors σab, Πab and Eab

can be expressed in terms of single scalar functions as

σab = ΣΞab, Πab = P Ξab, Eab = E Ξab, (7)

where Ξab = hab − 3ηaηb and ηa =
√
hrrδa

r is the unit vector orthogonal to ua and to the
2�spheres orbits of SO(3) parametrized by (θ, φ).

The �eld equations Gab = κT ab (with κ = 8πG/c4) for (1) and (2) are numparts

κµR2R′ =
[
R(Ṙ2 +K)

]′
, (8)

κ pR2R′ = −1
3

[
R(Ṙ2 +K) + 2R2R̈

]′
, (9)

κP R′

R
= −1

6

[
Ṙ2 +K

R2
+

2Ÿ
Y

]′
, (10)

endnumpartsFrom (3), (8)�(10) and (7) we obtain the expressions for E and Σ in terms of
metric functions

Σ =
1
3

[
Ṙ

R
− Ṙ′

R′

]
, E = −κ

2
P − κ

6
µ+

Ṙ2 +K

2R2
. (11)
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The energy�momentum balance equations ∇bT
ab = 0 for (2) are numparts

µ̇ = −(µ+ p) Θ− σabΠab = −(µ+ p) Θ− 6 ΣP, (12)

∇̃ap = −∇̃bΠb
a, ⇒ p′ − 2P ′ = 6P R′

R
, (13)

endnumpartsso that pressure gradients are e�ectively supported by the anisotropic pressure.
Bearing in mind (7) and the remaining previous equations, all covariant objects (scalars

and proper tensors) in LTB spacetimes can be fully characterized by the following set of local
covariant scalars:

{µ, p, P, Θ, Σ, E , 3R}. (14)

Given the covariant �1+3� time slicing a�orded by ua, the evolution of these scalars can
be completely determined by the following set of ��uid �ow� scalar evolution equations [15]
numparts

Θ̇ = −Θ2

3
− κ

2
(µ+ 3p )− 6 Σ2, (15)

µ̇ = − (µ+ p) Θ− 6 ΣP, (16)

Σ̇ = −2Θ
3

Σ + Σ2 − E +
κ

2
P, (17)

Ė = −κ
2
Ṗ − κ

2
(µ+ p− 2P) Σ− 3

(
E +

κ

6
P
)(Θ

3
+ Σ

)
,

(18)

endnumpartstogether with the spacelike constraints numparts

(p− 2P) ′ − 6P R′

R
= 0, (19)(

Σ +
Θ
3

)′
+ 3 Σ

R′

R
= 0, (20)

κ

6

(
µ+

3
2
P
)′

+ E ′ + 3 E R
′

R
= 0, (21)

endnumpartsand the Friedman equation (or �Hamiltonian� constraint)(
Θ
3

)2

=
κ

3
µ−

3R
6

+ Σ2, (22)

The system (15)�(22) is equivalent to the �eld plus conservation equations ∇bT
ab = 0 (equa-

tions (16) and (19)). However, this system requires an equation of state linking µ, p and P to
become determined, and the time and radial derivatives (in general) do not decouple. Hence,
we will consider in section 5 another set of equivalent (but easier to handle) scalar evolution
equations.

3 Extended Irreversible Thermodynamics.

In order to arrive to a determined set of evolution equations, we need to prescribe an
equation of state that is suitable for a given physical model. If the desired model is a thermal
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system, it is necessary to consider µ and p as thermodynamical scalars. In particular, a very
useful system is the ideal gas associated with the following equilibrium equation of state [1, 8]

µ = mc2 n+
p

γ − 1
, k T =

p

n
(23)

where n is the particle number density for a gas whose particles have mass m, T is the
temperature, k is Boltzmann's constant and γ is a constant.

For γ = 5/3, the generic equation of state (23) becomes [1, 8, 9, 10]

µ = mc2 n+
3
2
p, k T =

p

n
(24)

which is the equation of state of a non�relativistic limit of the classical ideal gas (Maxwell�
Boltzmann gas). Another system that can be described by (23) is a suitable approximation
to a mixture a non�relativistic and an ultra�relativistic gas [1, 3, 4, 8, 9, 10]:

µ = m(nr)n(nr)c
2 +m(ur)c

2n(ur) +
3
2
p(nr) + 3p(ur),

k T(nr) =
p(nr)

n(nr)
, k T(ur) =

p(ur)

n(ur)
,

(25)

where subindices (nr) and (ur) respectively stand for non�relativistic and ultra�relativistic. If
we assume that p(nr) � p(ur), but the non�relativistic gas provides the major contribution to
rest mass (m(nr)n(nr) � m(ur)n(ur)), then (25) becomes

µ = m(nr)c
2 n(nr) + 3 p(ur), k T(ur) =

p(ur)

n(ur)
, (26)

which is the equation of state (23) with γ = 4/3. In practice, one uses (26) to describe the
so�called �radiative gas�, which is a tightly coupled mixture of baryons and photons described
as a single �dust plus radiation� �uid. In particular, since we neglect thermal motions of
non�relativistic particles, m(nr)c

2 n(nr) could be the rest mass density of cold or �warm� dark
matter and non�relativistic baryons, and so m(nr) could be taken as the mass of a neutralino
or another supersymmetric DM particle candidate.

For either form (24) or (26), we will assume particle number conservation

na = nua, ∇an
a = 0, ⇒ ṅ+ nΘ = 0, (27)

hence, if we consider a dark or warm DM gas described by (24), we would be necessarily
looking at dissipative e�ects after the �freeze out� era, when thermal equilibrium is no longer
kept by particle annihilation [12, 13, 16]. On the other hand, considering the radiative gas
model, then (26) with particle conservation is appropriate to describe the photon�electron
interaction associated with Thomson or Compton scattering.

Since (2) contains anisotropic pressure, which is not involved in the equation of state
(23), it is natural to consider this pressure as a shear viscous stress associated to irreversible
processes, whether in the classical ideal gas of WIMPS (24) or in the radiative gas (26).
Considering the fact that Extended Irreversible Thermodynamics (EIT) provides the most
advanced theory complying with causality and stability [1, 2, 3, 4], we construct an entropy
current Sa within the framework of this theory. Since u̇a = 0 for LTB spacetimes and the
only dissipative stress is shear viscosity, the entropy current is

Sa = S na =
[
S(eq) − c τ ΠabΠab

2η nT

]
na =

[
S(eq) − 3 c τ P2

η nT

]
nua (28)



130 Roberto A. Sussman. Gauge theory in in�ationary ...

where we used (7), and τ, η are, respectively, the relaxation time and the coe�cient of shear
viscosity, while the speci�c entropy, S(eq), is given by the equilibrium Gibbs equation

TdS(eq) = d
(µ
n

)
+ pd

(
1
n

)
, (29)

so its projection with respect to ua and the balance equation (12) yield

nT Ṡ(eq) = −σabΠab = −6 ΣP. (30)

The condition ∇aS
a ≥ 0, together with (30), leads to the transport equation for shear vis-

cosity [1, 2, 3, 4]

c τ hc
ah

d
b Π̇cd + Πab

[
1 + η T ∇̃c

(
c τ

2 η T
uc

)]
+ 2 η σab = 0, (31)

where ε0 = 0, 1 is a �switch�, so that (31) is the complete transport equation if ε0 = 1, and
we get the �truncated� or Maxwell�Cattaneo equation if ε0 = 0. Using (3) and (7), equation
(31) becomes the following scalar equation

c τ Ṗ + P + 2 ηΣ +
ε0 c τ P

2

[
τ̇

τ
− η̇

η
− Ṫ

T
+ Θ

]
= 0. (32)

To apply EIT to the non�relativistic and radiative gases, we need to substitute the equation
of state (23) and utilize the forms of the coe�cient of shear viscosity for these gases. From
[1, 2, 3, 4], we have

η = αp c τ, α =
{

1, non�relativistic ideal gas
4
5 , radiative gas

(33)

Hence, inserting p = nkT and the particle conservation law (27), the transport equation (32)
becomes

c τ

[
Ṗ + 2αpΣ + ε0P

Ṫ

T

]
+ P = 0, (34)

which clearly reveals how the di�erence between the complete and truncated equations can
be dynamically signi�cant, as it involves the term P Ṫ /T . The entropy production subjected
to the conservation law (27) follows readily from (28) and (30) as

∇aS
a = nṠ = 3 k n

[
1
c τ

+ (1− ε0)
ṗ

p

]
P2

αp2
, (35)

where we used (33) and (34) to eliminate Ṗ.
In order to examine (28) and (34) we need to solve the �eld equations, or their equivalent

��uid �ow� evolutions equations (15)�(22), which would render the functional forms of the
involved thermodynamical scalars. We look at this matter in the following section.

4 Quasi�local evolution equations.

We can obtain an alternative set to the evolution equations (15)�(22) that is completely
equivalent, but easier to deal with numerically [14]. This follows from using instead of the
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local scalars (14), the scalar representation given by quasi�local variables A∗ de�ned by the
map

J∗ : X(D) → X(D), A∗ = J∗(A) =

∫ r

0
AR2R′dx∫ r

0
R2R′dx

. (36)

where X(D) is the set of all smooth integrable scalar functions A de�ned in any spherical
comoving region D of the hypersurfaces T orthogonal to ua, containing a symmetry center
marked by r = 0. The functions A∗ : D → R that are images of J∗ will be denoted by
�quasi�local� (QL) scalars. In particular, we will call A∗ the QL dual of A. See [14] for a
comprehensive discussion of of the map (36).

Applying the map (36) to the scalars Θ and 3R in (3) and (4) we obtain their QL duals

Θ∗ =
3Ṙ
R
, 3R∗ =

6K
R2

. (37)

Applying now (36) to µ and p, comparing with (8)�(9), and using (37), these two �eld
equations transform into numparts(

Θ∗

3

)2

=
κ

3
µ∗ −

3R∗

6
, (38)

Θ̇∗ = −Θ2
∗

3
− κ

2
(µ∗ + 3p∗) . (39)

endnumpartswhich are identical to the FLRW Friedman and Raychaudhuri equations, but
among QL scalars. These equations can be further combined to yield identically the FLRW
energy balance equation:

µ̇∗ = − (µ∗ + p∗) Θ∗. (40)

so that the QL scalars {µ∗, p∗, Θ∗} e�ectively satisfy FLRW evolution laws.
In order to relate local scalars to their and QL duals, we introduce the following �relative

deviations� or �perturbations�

δ(A) ≡ A−A∗
A∗

, ⇒ A = A∗

[
1 + δ(A)

]
. (41)

Therefore, all scalars A in (14) can be expressed in terms of their duals A∗ and perturbations
δ(A):

µ = µ∗

[
1 + δ(µ)

]
, p = p∗

[
1 + δ(p)

]
, Θ = Θ∗

[
1 + δ(Θ)

]
, 3R = 3R∗

[
1 + δ(

3R)
]
,

(42)

whereas Σ, P and E follow as numparts

Σ = −1
3

[Θ−Θ∗] = −1
3

Θ∗ δ
(Θ), (43)

P =
1
2

[p− p∗] =
1
2
p∗ δ

(p), (44)

E = −κ
6

[
µ− µ∗ +

3
2
(p− p∗)

]
= −κ

6

[
µ∗δ

(µ) +
3
2
p∗δ

(p)

]
, (45)

endnumpartswhich leads to an alternative QL scalar representation {A∗, δ(A)} that it is fully
equivalent to the local representation. We derive now the evolution and constraint equations
for this representation.
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From di�erentiating both sides of (36) and using (41), we can relate radial gradients of
µ∗, p∗ and H∗ with their corresponding δ functions by

Θ∗
′

Θ∗
=

3R′

R
δ(Θ),

µ∗
′

µ∗
=

3R′

R
δ(µ),

p∗
′

p∗
=

3R′

R
δ(p), (46)

while (39) and (40) are evolution equations for µ̇∗ and Θ̇∗. Hence, the evolution equations
for δ(µ) and δ(Θ) follow from the consistency condition [A′∗]˙= [Ȧ∗]′ applied to (39), (40) and
(46) for A = Θ∗ and µ∗. The result is the following set of autonomous evolution equations
for the QL scalar representation {A∗, δ(A)}: numparts

µ̇∗ = − [ 1 + w ] µ∗ Θ∗, (47)

Θ̇∗ = −Θ2
∗

3
− κ

2
[ 1 + 3w ] µ∗, (48)

δ̇(µ) = Θ∗

[(
δ(µ) − δ(p)

)
w −

(
1 + w + δ(µ)

)
δ(Θ)

]
, (49)

δ̇(θ) = −Θ∗

3

(
1 + δ(Θ)

)
δ(Θ) +

κµ∗
6 (Θ∗/3)

[
δ(Θ) − δ(µ) + 3w

(
δ(Θ) − δ(p)

)]
, (50)

endnumpartswhere w ≡ p∗/µ∗.

The constraints associated with these evolution equations are simply the spatial gradients
(46), while the Friedman equation (or Hamiltonian constraint) is (38). Notice that (46) follow
directly from di�erentiating the integral de�nition (36), so by using the QL variables we do
not need to solve these constraints in order to integrate (47)�(50).

It is straightforwards to prove that the evolution equations (47)�(50) and the constraints
(38) and (46) are wholly equivalent to the evolution equations (15)�(22) of the �uid �ow
formalism of Ellis, Bruni and Dunsbury [15]. It is also important to mention that the QL
representation {A∗, δ(A)} leads to a characterization of LTB spacetimes as exact, non�linear,
gauge invariant and covariant perturbations over a FLRW formal background de�ned by the
QL scalars A∗, which satisfy FLRW dynamics. See [14] for details.

5 Evolution equations for the generic ideal gas.

In order to integrate the system (47)�(50) we need to prescribe a relation between µ∗, p∗
and δ(µ), δ(p). Since we are interested in thermal dissipative phenomena characteristic of a
hydrodynamical regime of short range interactions, the physically meaning full equation of
state (23) is that relating local variables µ and p, and not QL variables. However, (23) is a
linear functional relation, hence its validity as a local relation and the assumption of particle
current conservation (27) are su�cient conditions to render (47)�(50) a fully determined
system in which the QL variables are basically auxiliary variables (and the physical variables
are the local ones).

Assuming the local equation of state (23) and using (41) with A = µ, n, p leads to the
following conditions on the QL variables numparts

µ∗ = mc2 n∗ +
p∗

γ − 1
, (51)

δ(µ) =
mc2 n∗
µ∗

δ(n) +
p∗

(γ − 1)µ∗
δ(p), (52)
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endnumpartsUsing the particle numbers conservation law (27) with n = n∗(1+δ(n)), together
with (51)�(52), transforms (47)�(50) into the fully determined system numparts

ṅ∗ = −n∗ Θ∗, (53)

ṗ∗ = −γ p∗ Θ∗, (54)

Θ̇∗ = −Θ2
∗

3
− κ

2
[
mc2 n∗ + γ1 p∗

]
, (55)

δ̇(n) = −
(
1 + δ(n)

)
Θ∗ δ

(Θ), (56)

δ̇(p) = −
(
γ + δ(p)

)
Θ∗ δ

(Θ), (57)

δ̇(θ) = −1
3

(
1 + δ(Θ)

)
Θ∗ δ

(Θ) − κ

6

[
mc2 n∗

(
δ(n) − δ(Θ)

)
+ γ1 p∗

(
δ(p) − δ(Θ)

)]
,

(58)

endnumpartswith γ1 ≡ (3γ−2)/(γ−1). Once the system (53)�(58) is solved numerically for
appropriate initial conditions (see appendices of [14]), we obtain the local variables p, Θ, Σ, P
from (42), (43) and (44), while the temperature T follows readily as

k T =
p

n
=
p∗
[
1 + δ(p)

]
n∗
[
1 + δ(n)

] , (59)

With the help from (42), (43), (44), (53)�(58) and (59), the transport equation (34) reduces
to the following two algebraic constraints de�ning the relaxation times for the full (ε = 1)
and truncated (ε = 0) cases:

cτ =
3δ(p)

(
1 + δ(p)

)
Θ∗δ(Θ)

[
4α(δ(p))2 + (3 + 8α)δ(p) + 3γ + 4α

] , ε = 1, (60)

cτ =
3δ(p)

Θ∗
[
((4α+ 3)δ(Θ) + 3γ)δ(p) + (4α+ 3γ)δ(Θ)

] , ε = 0, (61)

while the entropy production law (35) leads to

Ṡ =
3k(δ(p))2

4α [1 + δ(p)]2

[
1
cτ

+
(ε0 − 1)Θ∗[(γ + δ(Θ))δ(p) + (1 + δ(Θ))γ

1 + δ(p)

]
. (62)

However, substituting τ from either (60) or (61) into (62) we obtain the same expression of
Ṡ for the full and truncated cases:

Ṡ =
kΘ∗ δ

(Θ) δ(p) [ 4α (δ(p))2 + (3 + 8α) δ(p) + 4α+ 3γ]
4α [1 + δ(p)]3

. (63)

Dissipative e�ects associated with shear viscosity for thermal systems associated with (23)
can be now examined by using the numerical solution of (53)�(58) to calculate the relaxation
time scale given by (60) or (61), as well as the entropy production nṠ from (62).

6 The gas of WIMPS

Dissipative phenomena associated with shear viscosity in spacetimes with LTB metrics
have been studied mostly on the radiative gas model [9, 10] (but see [8]). In particular, the
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Figure 1: Coldness parameter β. The �gure displays the function β = mc2/(kT ) given
by (71) for the ideal gas of WIMPS con�guration described in section 7. The layers near
the center (r = 0) bounce and collapse to a black hole where thermal motions dominate rest
mass (β → 0), though the hydrodynamical regime is no longer valid in this stage.
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Figure 2: Relaxation vs Hubble times. The �gure depicts the logarithm of τ for the full
transport equation (A), for the truncated version (B), the Hubble time 3/Θ (C) and Ṡ (D).
The vertical dotted line depicts the extension of the relaxation time scale up to τ ∼ 3/Θ.
Notice how for central (over�density) layers (left panel), with more thermal energy (lesser
β), this time scale has a much larger extent than in the layers corresponding to the cosmic
background (right panel).
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Figure 3: Relaxation vs collision times. The �gure depicts the logarithm of τ for the full
transport equation (A), the Hubble time 3/Θ (C) and collision times (dotted curves) given
by (66) with the numbers indicating the exponent s0, and with the WIMP mass�energy of
100 GeV. Notice how τ is qualitatively analogous to collision times with cross section areas
σ ∼ 10−36cm2 consistent with weak interactions of cold dark matter WIMPS. As in �gure 2,
the relaxation time scale has a larger extent in layers in the over�density (left panel) than in
the cosmic background (right panel).
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comparison between relaxation and collision times was examined in [10] for this model in the
context of the cosmological radiative era. In this article we consider the same issue, but for
a gas of non�relativistic cold dark matter particles (WIMPS) after its decoupling or �freeze
out� from the cosmic �uid, when thermal equilibrium is no longer maintained by particle
annihilation [12, 13, 16]. Since cold dark matter has no e�ect on cosmic nucleosynthesis, this
decoupling must have happened before nucleosynthesis at around t ∼ 200 sec, and so the gas
of WIMPS can be described as an ideal gas in the non�relativistic limit, corresponding to the
equation of state (24). Hence, the expressions for the coe�cient of shear viscosity, relaxation
times and entropy production are (33), (51)�(63), for the the values γ = 5/3 and α = 1.

The relaxation time is a mesoscopic quantity that could be, in principle, obtained by
means of collision integrals [2], but cannot be given in terms of an �equation of state� relating
macroscopic thermodynamical scalars. Usually, this quantity is taken simply as a mean
collision time, or it is assumed to have the same order of magnitude value as these times.
However, as shown by the results of [10] in the radiative gas model, there is no reason for
this to be the case. Since these two time scales follow from physically distinct concepts, they
must be di�erent functions that could exhibit qualitatively analogous behavior and/or could
be of the same order of magnitude.

For an ideal gas the mean collision time is given as [1, 13, 16]

ctcol =
1
σ n

=
1

σ n∗ (1 + δ(n))
, (64)

where σ = σ(n, T ) is the collision cross section area, whose precise functional form follows
from the speci�c particle interactions involved in the gas model. For a gas of WIMPS, we can
identify a decoupling stage as cosmic times ct = ctD for which the reaction times compare
with the Hubble expansion time tH

nσ(n, T ) ≈ c tH ∼ 3
Θ
, (65)

so that for t < tD, before its decoupling from the cosmic �uid, σ is associated with particle pair
annihilations and its form follows from theoretical considerations pertinent to supersymmetric
cold dark matter candidate particles [13, 16]. Moreover, we will examine dissipative e�ects
in the gas of WIMPS for t > tD, after this freeze out when particle numbers are conserved.
The justi�cation for these after freeze out dissipative processes comes from the assumption
that there could have been dissipation in the earlier stage t < tD, and so it is reasonable to
assume that once particle annihilations stop at (65), there should be a short timed relaxation
process characterized by a weak self�interaction associated with very small cross section areas,
so that after this process the �uid becomes completely non�collisional. Since this relaxation
should be of short duration, we can model these cross section areas empirically by the simple
ansatz [16, 13]

σ ∼ 10s0 cm2, −40 < s0 < −34. (66)

Hence, we expect τ in (60) and (61) to exhibit a qualitatively analogous behavior as (64)
for cross section areas having magnitudes given by (66). In particular, the existence of an
interaction that can be associated with shear viscosity requires that these time scales are of
lesser magnitude than the Hubble time: cτ < 3/Θ and ctcol < 3/Θ, with the relaxation time
scale given by the cosmic time ct such that cτ ∼ 3/Θ and ctcol ∼ 3/Θ, and thus, c τ ∼ ctcol at
these cosmic time values. Hence, when cτ > 3/Θ the gas expands in a non�collisional stage.
However, for earlier times cτ and ctcol need not be the same function, just have comparable
magnitudes. Also, for the relaxation time scale in which cτ < 3/Θ, we must have necessarily
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Ṡ > 0, so that there is entropy production with Ṡ → 0 as cτ and ctcol overtake 3/Θ and
entropy becomes a maximum associated with equilibrium conditions.

In order to test numerically these conditions, we de�ne the following dimensionless vari-
ables associated with n∗, p∗ and Θ∗ in (53)�(58) (notice that the δ functions are already
dimensionless):

x ≡ κmc2 n∗
3H2

i

, y ≡ κp∗
3H2

i

, z ≡ Θ
3Hi

, (67)

where Hi ∼ 1/(cti) is taken as the Hubble scale factor for the initial time surface ti ∼ 200
sec., and we will consider mc2 = 100 GeV to be the rest mass�energy of the WIMP. In terms
of (67), the collision time (64) is given by

ctcol =
κmc2

σ x (1 + δ(n))
= 4.3× 10−26 × mc2

GeV
× cm2

10s0
× 1
x (1 + δ(n))

. (68)

We will examine in the following section these di�erent time scales associated with the relax-
ation scale using the numeric solutions of (53)�(58).

7 Relaxation time scales: numeric results.

In order to set up appropriate initial conditions for x, y and z, we use equations (38) and
(51) for γ = 5/3, leading to

z2
i (r) = xi(r) + yi(r)− ki(r), ki(r) =

[3R∗]i
6H2

i

, (69)

where the subindex i denotes evaluation at t = ti. Initial conditions for a central over�
density with small positive curvature that smoothy blends to a cosmic background with small
negative spatial curvature can be achieved by choosing ki(r) as any smooth function for which
ki(0) = 0.1 and ki(r) → −0.1 for r → ∞. Central and asymptotic values for xi and yi are
given by

xi(0) = 1.5, xi(∞) = 0.9, yi(0) = 0.08, yi(∞) = 0.02. (70)

The form of zi follows from (69) and (70), while the forms for the initial value functions
[δ(n)]i, [δ(p)]i and [δ(Θ)]i can be obtained from xi, yi, zi by means of (46) evaluated at t = ti
(see the appendices of [14]).

An important parameter in thermal systems is the �coldness� parameter

β =
mc2

k T
=
x [1 + δ(n)]
y [1 + δ(p)]

, (71)

which, with the numeric values of (70), takes initial values βi(0) ∼ 20 and βi(∞) ∼ 40,
which are reasonable values for cold dark matter WIMPS that are non�relativistic when they
decouple at t = tD [12, 16, 13]. We display in �gure 1 the function β that results from
the numeric solution of (53)�(58) for the con�guration outlined above. As the con�guration
expands we can see how β increases for all r to clear non�relativistic values β � 1, but layers
in the over-density region (around r = 0) collapse to a black hole at around Hict ∼ 150, with
β → 0, indicating dominance of internal energy density over rest mass energy density near
the �nal collapse. However, the hydrodynamical regime is no longer a valid approximation in
this stage, as WIMP con�gurations do not evolve to black holes. In more realistic structure
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formation scenarios the WIMP gas becomes non�collisional and undergoes non�collisional
relaxation phenomena, such as virialization [13], leading to stable bound structures.

The relaxation of a viscous dissipative stress requires that Ṡ > 0 while c τ < 3/Θ, but both
τ and tcol must overtake 3/Θ as Ṡ → 0. We test these conditions numerically in �gure 2, for
two di�erent values of r (at the over�density in the left panel and at the cosmic background
in the right panel), and for the relaxation times of the full (60) and truncated (61) transport
equations and for Ṡ given by (63). As shown by this �gure, we have c τ < 3/Θ for all times
for the relaxation time (61) of the truncated equation. Therefore, the relaxation time for
the truncated (Maxwell�Cattaneo) does not exhibit the appropriate behavior of a relaxation
parameter, which means that the full transport equation is needed to provide an adequate
description of the transient dissipative phenomena for the ideal gas of WIMPS. The same
result was obtained for the radiative gas model in [10]. On the other hand, the relaxation time
(60) of the full transport equation exhibits the expected behavior and overtakes the Hubble
time 3/Θ as Ṡ → 0. We show in �gure 3 how the relaxation time (60) of the full transport
equation (for mc2 = 100 GeV) in the whole relaxation time scale is qualitatively analogous to
collision times with cross sections given by (66) with s0 ∼ −36, which characterize expected
weak interactions for decoupled WIMPS [12, 13, 16].

8 Conclusion

We have examined causal dissipation from shear viscosity in the context of a large class
of inhomogeneous spherically symmetric spacetimes described by the LTB metric (1). A
generic equation of state was suggested, which contains as particular cases the classical, non�
relativistic, ideal gas, as well as the radiative gas in the approximation in which thermal
motions of the non�relativistic species are ignored. We obtained a set of evolution equations
equivalent to the �eld and balance equations, whose numeric solutions can be used to compute
the relaxation times for the full and truncated transport equations, the rate of change of
speci�c entropy and collision times for suitable cross section areas. We considered the non�
relativistic ideal gas as an appropriate equation of state for a gas of cold dark matter WIMPS
undergoing a transition to equilibrium soon after their freeze out and decoupling from the
cosmic �uid at the outset of cosmic nucleosynthesis. The comparison between relaxation and
collision times yielded similar results as those obtained in [10] with the radiative gas model,
namely, that only the relaxation time from the full transport equation exhibits the expected
behavior of a relaxation parameter, being also qualitatively analogous and of the same order
of magnitude as collision times with reasonable cross sections for a gas of WIMPS. This result
is shown in �gures 2 and 3.

It is evident that the study of shear viscosity without other dissipative �uxes (heat �ux
and bulk viscosity) is an idealized situation which follows from the constraints of the LTB
metric. Although the inhomogeneous conditions provided by this metric are mathematically
tractable, they are not trivial and contain enough structure to examine non�linear e�ects that
cannot be studied in a FLRW context or with linear perturbation. Another shortcoming is
the use the transport equation itself to de�ne the relaxation times, as it was done in [8, 9, 10],
instead of using it as a free parameter to be speci�ed. The resulting expressions (60) and
(61) are, evidently, approximations to the actual relaxation times, but this approximation
will be reasonable if the obtained quantities behave as a relaxation parameters. As shown
in section 7 and in �gures 2 and 3, the relaxation time for the full equation does exhibit the
expected behavior, and so this approximation is reasonable. Future work along these lines
would necessarily require a more general metric framework and more elaborated numerical
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methods. This work is presently under consideration.
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Finite-time future singularities in

modi�ed gravity

Kazuharu Bamba1

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

Abstract

We review �nite-time future singularities in modi�ed gravity. We reconstruct an ex-
plicit model of modi�ed gravity realizing a crossing of the phantom divide and show that
the Big Rip singularity appears in the modi�ed gravitational theory. It is also demon-
strated that the (�nite-time) Big Rip singularity in the modi�ed gravity is transformed
into the in�nite-time singularity in the corresponding scalar �eld theory obtained through
the conformal transformation. Furthermore, we study several models of modi�ed gravity
which produce accelerating cosmologies ending at the �nite-time future singularities of
all four known types 2.

1 Introduction

Recent observations con�rmed that the current expansion of the universe is accelerating.
There are two approaches to explain the current accelerated expansion of the universe. One is
to introduce some unknown matter, which is called �dark energy� in the framework of general
relativity. The other is to modify the gravitational theory, e.g., to study the action described
by an arbitrary function of the scalar curvature R. This is called �F (R) gravity�, where F (R)
is an arbitrary function of the scalar curvature R (for reviews, see [1, 2]).

According to the recent various observational data, there exists the possibility that the
e�ective equation of state (EoS) parameter, which is the ratio of the e�ective pressure of
the universe to the e�ective energy density of it, evolves from larger than −1 (non-phantom
phase) to less than −1 (phantom one, in which superacceleration is realized), namely, crosses
−1 (the phantom divide) currently or in near future. Various attempts to realize the crossing
of the phantom divide have been made in the framework of general relativity. Recently, a
crossing of the phantom divide in modi�ed gravity has also been investigated [1, 3, 4, 5].
Moreover, it is known that modi�ed gravity may lead to the e�ective phantom/quintessence
phase [1], while the phantom/quintessence-dominated universe may end up with �nite-time
future singularities, which can be categorized into four types [6].

1E-mail: bamba@phys.nthu.edu.tw
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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In the present article, we review �nite-time future singularities in modi�ed gravity. Fol-
lowing the considerations in Ref. [5], we reconstruct an explicit model of modi�ed gravity
realizing a crossing of the phantom divide by using the reconstruction method proposed in
Refs. [7, 8]. We show that the Big Rip singularity appears in this modi�ed gravitational the-
ory, whereas that the (�nite-time) Big Rip singularity in the modi�ed gravity is transformed
into the in�nite-time singularity in the corresponding scalar �eld theory. Next, following
the investigations in Ref. [9], we explore several examples of F (R) gravity which predict the
accelerating cosmological solutions ending at the �nite-time future singularities. It is demon-
strated that not only the Big Rip but other three types of the �nite-time future singularities
may appear.

This article is organized as follows. In Sec. II we explain the reconstruction method of
modi�ed gravity [7, 8]. Using this method, we reconstruct an explicit model of modi�ed
gravity in which a crossing of the phantom divide can be realized. We also consider the
corresponding scalar �eld theory. In Sec. III we present several models of F (R) gravity
which predict accelerating cosmologies ending at the �nite-time future singularities by using
the reconstruction method. Finally, summary is given in Sec. IV. We use units in which
kB = c = ~ = 1 and denote the gravitational constant 8πG by κ2, so that κ2 ≡ 8π/MPl

2,
where MPl = G−1/2 = 1.2× 1019GeV is the Planck mass.

2 Modi�ed gravitational theory realizing a crossing of

the phantom divide

We investigate modi�ed gravity in which a crossing of the phantom divide can be realized
by using the reconstruction method.

2.1 Reconstruction of modi�ed gravity

First, we review the reconstruction method of modi�ed gravity proposed in Refs. [7, 8]
(for the related study of reconstruction in F (R) gravity, see [10]).

The action of F (R) gravity with general matter is given by

S =
∫
d4x

√
−g
[
F (R)
2κ2

+ Lmatter

]
, (1)

where g is the determinant of the metric tensor gµν and Lmatter is the matter Lagrangian.
The action (1) can be rewritten to the following form by using proper functions P (φ) and

Q(φ) of a scalar �eld φ:

S =
∫
d4x

√
−g
{

1
2κ2

[P (φ)R+Q(φ)] + Lmatter

}
. (2)

The scalar �eld φ may be regarded as an auxiliary scalar �eld because φ has no kinetic term.
Taking the variation of the action (2) with respect to φ, we obtain

0 =
dP (φ)
dφ

R+
dQ(φ)
dφ

, (3)

which may be solved with respect to φ as φ = φ(R). Substituting φ = φ(R) into the action
(2), we �nd that the expression of F (R) in the action of F (R) gravity in Eq. (1) is given by

F (R) = P (φ(R))R+Q(φ(R)) . (4)



144 Kazuharu Bamba. Finite-time future singularities in...

Taking the variation of the action (2) with respect to the metric gµν , we �nd that the �eld
equation of modi�ed gravity is given by

1
2
gµν [P (φ)R+Q(φ)]−RµνP (φ)− gµν2P (φ) +∇µ∇νP (φ) + κ2T (matter)

µν = 0 , (5)

where ∇µ is the covariant derivative operator associated with gµν , 2 ≡ gµν∇µ∇ν is the

covariant d'Alembertian for a scalar �eld, and T
(matter)
µν is the contribution to the matter

energy-momentum tensor.
We assume the �at Friedmann-Robertson-Walker (FRW) space-time with the metric ds2 =

−dt2 + a2(t)d~x2, where a(t) is the scale factor. In this background, the (µ, ν) = (0, 0)
component and the trace part of the (µ, ν) = (i, j) component of Eq. (5), where i and j run
from 1 to 3, read

−6H2P (φ(t))−Q(φ(t))− 6H
dP (φ(t))

dt
+ 2κ2ρ = 0 , (6)

2
d2P (φ(t))

dt2
+ 4H

dP (φ(t))
dt

+
(
4Ḣ + 6H2

)
P (φ(t)) +Q(φ(t)) + 2κ2p = 0 , (7)

respectively, where H = ȧ/a is the Hubble parameter. Here, ρ and p are the sum of the
energy density and pressure of matters with a constant EoS parameter wi, respectively, where
i denotes some component of the matters.

Eliminating Q(φ) from Eqs. (6) and (7), we obtain

d2P (φ(t))
dt2

−H
dP (φ(t))

dt
+ 2ḢP (φ(t)) + (8)

κ2 (ρ+ p) = 0 .

We note that the scalar �eld φ may be taken as φ = t because φ can be rede�ned properly.
We now consider that a(t) is described as a(t) = ā exp (g̃(t)), where ā is a constant and

g̃(t) is a proper function. In this case, Eq. (9) is reduced to

d2P (φ)
dφ2

− dg̃(φ)
dφ

dP (φ)
dφ

+ 2
d2g̃(φ)
dφ2

P (φ)

+κ2
∑

i

(1 + wi) ρ̄iā
−3(1+wi) exp [−3 (1 + wi) g̃(φ)] = 0 , (9)

where ρ̄i is a constant and we have used H = dg̃(φ)/ (dφ). Moreover, it follows from Eq. (6)
that Q(φ) is given by

Q(φ) = −6
[
dg̃(φ)
dφ

]2
P (φ)− 6

dg̃(φ)
dφ

dP (φ)
dφ

+ 2κ2
∑

i

ρ̄iā
−3(1+wi) exp [−3 (1 + wi) g̃(φ)] . (10)

Hence, if we obtain the solution of Eq. (9) with respect to P (φ), then we can �nd Q(φ).
Consequently, using Eq. (4), we can reconstruct F (R) gravity for any cosmology expressed by
a(t) = ā exp (g̃(t)). In Refs. [7, 11, 12], speci�c models unifying the sequence: the early-time
acceleration, radiation/matter-dominated stage and dark energy epoch have been constructed.

Next, using the above method, we reconstruct an explicit model in which a crossing of the
phantom divide can be realized. We start with Eq. (9) without matter:

d2P (φ)
dφ2

− dg̃(φ)
dφ

dP (φ)
dφ

+ 2
d2g̃(φ)
dφ2

P (φ) = 0 . (11)
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By rede�ning P (φ) as P (φ) = eg̃(φ)/2p̃(φ), Eq. (11) is rewritten to

1
p̃(φ)

d2p̃(φ)
dφ2

= 25eg̃(φ)/10 d
2
(
e−g̃(φ)/10

)
dφ2

. (12)

We explore the following model: g̃(φ) = −10 ln
[
(φ/t0)

−γ − C (φ/t0)
γ+1
]
, where C and γ

are positive constants, and t0 is the present time. In this case, Eq. (12) is reduced to
(1/p̃(φ))

[
d2p̃(φ)/

(
dφ2
)]

= 25γ(γ + 1)/φ2, which can be solved as p̃(φ) = p̃+φ
β+ + p̃−φ

β− .

Here, p̃± are arbitrary constants and β± are given by β± =
[
1±

√
1 + 100γ(γ + 1)

]
/2. From

the above expression of g̃(φ), we �nd that g̃(φ) diverges at �nite φ when φ = ts ≡ t0C
−1/(2γ+1),

which tells that there could be the Big Rip singularity at t = ts. We only need to consider
the period 0 < t < ts because g̃(φ) should be real number. In this case, the Hubble rate H(t)
is given by

H(t) =
dg̃(φ)
dφ

=
(

10
t0

)[
γ

(
φ

t0

)−γ−1

+ (γ + 1)C
(
φ

t0

)γ
][(

φ

t0

)−γ

− C

(
φ

t0

)γ+1
]−1

,

(13)
where it is taken φ = t.

In the �at FRW background, even for modi�ed gravity described by the action (1), the
e�ective energy-density and pressure of the universe are given by ρeff = 3H2/κ2 and peff =
−
(
2Ḣ + 3H2

)
/κ2, respectively. The e�ective EoS parameter weff = peff/ρeff is de�ned as

weff ≡ −1 − 2Ḣ/
(
3H2

)
[1]. For the case of H(t) in Eq. (13), weff is expressed as weff =

−1 + U(t), where

U(t) ≡ − 2Ḣ
3H2

= − 1
15

[
−γ + 4γ (γ + 1)

(
t

ts

)2γ+1

+ (γ + 1)
(
t

ts

)2(2γ+1)
]
× (14)

[
γ + (γ + 1)

(
t

ts

)2γ+1
]−2

.

For the case of Eq. (13), the scalar curvature R = 6
(
Ḣ + 2H2

)
is expressed as

R = 60

[
γ (20γ − 1) + 44γ (γ + 1)

(
t

ts

)2γ+1

+ (γ + 1) (20γ + 21)
(
t

ts

)2(2γ+1)
]
× (15)

t−2

[
1−

(
t

ts

)2γ+1
]−2

.

In deriving Eqs. (15) and (16), we have used ts = t0C
−1/(2γ+1).

When t → 0, i.e., t � ts, H(t) behaves as H(t) ∼ 10γ/t. In this limit, it follows from
weff = −1 − 2Ḣ/

(
3H2

)
that the e�ective EoS parameter is given by weff = −1 + 1/ (15γ).

This behavior is identical with that in the Einstein gravity with matter whose EoS parameter
is greater than −1.

On the other hand, when t→ ts, we �ndH(t) ∼ 10/ (ts − t). In this case, the scale factor is
given by a(t) ∼ ā (ts − t)−10

. When t→ ts, therefore, a→∞, namely, the Big Rip singularity
appears. In this limit, the e�ective EoS parameter is given by weff = −1 − 1/15 = −16/15.
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This behavior is identical with the case in which there is a phantom matter with its EoS
parameter being smaller than −1. Thus, we have obtained an explicit model showing a
crossing of the phantom divide.

It follows from weff = −1 − 2Ḣ/
(
3H2

)
that the e�ective EoS parameter weff becomes

−1 when Ḣ = 0. Solving weff = −1 with respect to t by using weff = −1 + U(t), namely,
U(t) = 0, we �nd that the e�ective EoS parameter crosses the phantom divide at t = tc

given by tc = ts

[
−2γ +

√
4γ2 + γ/ (γ + 1)

]1/(2γ+1)

. From Eq. (15), we see that when t < tc,

U(t) > 0 because γ > 0. Moreover, the time derivative of U(t) is given by

dU(t)
dt

= − 1
15

[
2γ (γ + 1) (2γ + 1)2

] [
γ + (γ + 1)

(
t

ts

)2γ+1
]−3

× (16)

(
1
ts

)(
t

ts

)2γ
[
1−

(
t

ts

)2γ+1
]
.

Eq. (17) tells that the relation dU(t)/ (dt) < 0 is always satis�ed because we only consider
the period 0 < t < ts as mentioned above. This means that U(t) decreases monotonously.
Thus, the value of U(t) evolves from positive to negative. From weff = −1 + U(t), we see
that the value of weff crosses −1. Once the universe enters the phantom phase, it stays in
this phase, namely, the value of weff remains less than −1, and �nally the Big Rip singularity
appears because U(t) decreases monotonically.

As a consequence, P (t) is given by P (t) =
{

(t/t0)
γ
/
[
1− (t/ts)

2γ+1
]}5∑

j=± p̃jt
βj . Us-

ing Eqs. (10), we obtainQ(t) = −6H
{

(t/t0)
γ
/
[
1− (t/ts)

2γ+1
]}5∑

j=± (3H/2 + βj/t) p̃jt
βj .

When t→ 0, from H(t) ∼ 10γ/t, we �nd t ∼
√

60γ (20γ − 1) /R. In this limit, it follows
from Eqs. (4) that the form of F (R) is given by

F (R) ∼


[

1
t0

√
60γ (20γ − 1)R−1/2

]γ
1−

[
1
ts

√
60γ (20γ − 1)R−1/2

]2γ+1


5

× (17)

R
∑
j=±

{(
5γ − 1− βj

20γ − 1

)
p̃j [60γ (20γ − 1)]βj/2

R−βj/2

}
.

On the other hand, when t→ ts, from H(t) ∼ 10/ (ts − t), we obtain t ∼ ts − 3
√

140/R.
In this limit, it follows from Eqs. (4) that the form of F (R) is given by

F (R) ∼

[
(J/t0)

γ

1− (J/ts)
2γ+1

]5

R
∑
j=±

p̃jJ
βj

{
1−

√
20
7

[√
15
84
ts + (βj − 15)R−1/2

]
1
J

}
, (18)

where J ≡ ts − 3
√

140/R. The above modi�ed gravity may be considered as some approx-
imated form of more realistic, viable theory. From Eq. (16), we see that in the above limit
the scalar curvature diverges, and that the expression of F (R) in (18) can be approximately
written as

F (R) ≈ 2
7

[
1

3
√

140 (2γ + 1)

(
ts
t0

)γ]5∑
j=±

p̃jt
βj
s

 t5sR
7/2 . (19)
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2.2 Corresponding scalar �eld theory

In this subsection, motivated by the discussion in Ref. [13], we consider the corresponding
scalar �eld theory to modi�ed gravity realizing a crossing of the phantom divide, which is
obtained by making the conformal transformation of the modi�ed gravitational theory. (In
Ref. [14], the relations between scalar �eld theories and F (R) gravity have been studied.) By
introducing two scalar �elds ζ and ξ, we can rewrite the action (1) to the following form [1]:

S =
∫
d4x

√
−g
{

1
2κ2

[ξ (R− ζ) + F (ζ)] + Lmatter

}
. (20)

The form in Eq. (20) is reduced to the original expression in Eq. (1) by using the equation
ζ = R, which is derived by taking variation of the action (20) with respect to one auxiliary
�eld ξ. Taking the variation of the form in Eq. (20) with respect to the other auxiliary �eld ζ,
we obtain ξ = F ′(ζ), where the prime denotes di�erentiation with respect to ζ. Substituting
this equation into Eq. (20) and eliminating ξ from Eq. (20), we �nd

S =
∫
d4x

√
−g
[

1
2κ2

(F ′(ζ)R+ F (ζ)− F ′(ζ)ζ) + Lmatter

]
. (21)

This is the action in the Jordan-frame, in which there exists a non-minimal coupling between
F ′(ζ) and the scalar curvature R. We make the following conformal transformation of the
action (21): gµν → ĝµν = eσgµν , where e

σ = F ′(ζ). Here, σ is a scalar �eld and a hat
denotes quantities in the Einstein frame, in which the non-minimal coupling between F ′(ζ)
and the scalar curvature R in the �rst term on the right-hand side of Eq. (21) disappears.
Consequently, the action in the Einstein frame is given by [15, 16]

SE =
∫
d4x
√
−ĝ
[

1
2κ2

(
R̂− 3

2
ĝµν∂µσ∂νσ − V (σ)

)
+ e−2σLmatter

]
, (22)

where V (σ) = e−σζ(σ)− e−2σF (ζ(σ)) = ζ/F ′(ζ)− F (ζ)/ (F ′(ζ))2 and ĝ is the determinant
of ĝµν . In deriving Eqs. (22), we have used eσ = F ′(ζ). In addition, ζ(σ) is obtained by
solving eσ = F ′(ζ) with respect to ζ as ζ = ζ(ϕ). De�ning ϕ as ϕ ≡

√
3/2σ/κ, the action

(22) is reduced to the following form of the canonical scalar �eld theory:

SST =
∫
d4x
√
−ĝ

[
R̂

2κ2
− 1

2
ĝµν∂µϕ∂νϕ− V (ϕ) + e−2

√
2/3κϕLmatter

]
. (23)

Taking the variation of the action (1) with respect to the metric gµν , we �nd that the
�eld equation of modi�ed gravity is given by F ′(R)Rµν − (1/2) gµνF (R) + gµν2F ′(R) −
∇µ∇νF

′(R) = κ2T
(matter)
µν . When there is no matter, using the (µ, ν) = (0, 0) component

and the trace part of the (µ, ν) = (i, j) component of the above gravitational �eld equation,
in the �at FRW background, we obtain

2ḢF ′(R) + 6
(
−4H2Ḣ + 4Ḣ2 + 3HḦ +

...
H
)
F ′′(R) + 36

(
4HḢ + Ḧ

)2

F ′′′(R) = 0 . (24)

We now investigate the case in which F (R) is given by F (R) = c1M
2
(
R/M2

)−n
, where

c1 is a dimensionless constant and M denotes a mass scale. The form of F (R) in Eq. (19)
corresponds to the above expression with n = −7/2. In this case, the scale factor a(t) and the
scale curvature R are given by [13] a(t) = ā (ts − t)(n+1)(2n+1)/(n+2)

and R = 6n(n+ 1)(2n+
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1)(4n + 5)(n + 2)−2 (ts − t)−2
, respectively. It follow from dt̂ = ±eσ/2dt that the relation

between the cosmic time in the Einstein frame t̂ and one in the Jordan frame is given by t̂ =
∓
√
−nc1 (n+ 2)n [6n(n+ 1)(2n+ 1)(4n+ 5)]−(n+1)/2

Mn+1 (ts − t)n+2
. If n < −2, the limit

of t→ ts corresponds to that of t̂→ ∓∞. For the case of Eq. (19), n = −7/2. Thus, we see
that the Big Rip singularity does not appear in �nite time for the scalar �eld theory, although
it emerges in the corresponding modi�ed gravitational theory. The metric in the Einstein
frame is expressed as dŝ2 = eσds2 = −dt̂2+â

(
t̂
)
d~x2, where â(t) is the scale factor in the scalar

�eld theory given by â(t) = ˆ̄at̂3[(n+1)/(n+2)]2 , where ˆ̄a is a constant. For n = −7/2, because
when t → ts, t̂ → ∓∞, the scale factor in the scalar �eld theory â(t) diverges at in�nite
time. Consequently, the (�nite-time) Big Rip singularity in F (R) gravity is transformed into
the in�nite-time singularity in the scalar �eld theory. This shows the physical di�erence of
late-time cosmological evolutions between two mathematically equivalent theories.

3 Finite-time future singularities in F (R) gravity

In this section, we examine several models of F (R)-gravity with accelerating cosmological
solutions ending at the �nite-time future singularities by using the reconstruction technique
explained in the preceding section.

First, we consider the case of the Big Rip singularity [17], in which H behaves as H =
h0/ (ts − t). Here, h0 and ts are positive constants and H diverges at t = ts. In this case, if
we neglect the contribution from the matter, the general solution of (9) is given by

P (φ) = P+ (ts − φ)α+ + P− (ts − φ)α− , α± ≡
−h0 + 1±

√
h2

0 − 10h0 + 1
2

, (25)

when h0 > 5 + 2
√

6 or h0 < 5− 2
√

6 and

P (φ) = (ts − φ)−(h0+1)/2 × (26)(
A1 cos

(
(ts − φ) ln

−h2
0 + 10h0 − 1

2

)
+B1 sin

(
(ts − φ) ln

−h2
0 + 10h0 − 1

2

))
,

when 5 + 2
√

6 > h0 > 5 − 2
√

6. Here, P+, P−, A1 and B1 are constants. Using Eqs. (3),
(4) and (10), we �nd that when R is large, the form of F (R) is given by F (R) ∝ R1−α−/2

for h0 > 5 + 2
√

6 or h0 < 5 − 2
√

6 case and F (R) ∝ R(h0+1)/4 × (oscillating parts) for
5 + 2

√
6 > h0 > 5− 2

√
6 case.

Next, we investigate more general singularity H ∼ h0 (ts − t)−β
[18], where h0 and β

are constants, and h0 is assumed to be positive and t < ts because it should be for the
expanding universe. Even for non-integer β < 0, some derivative of H and therefore the
curvature becomes singular. We should also note that in this case the scale factor a behaves

as a ∼ exp
{

[h0/ (β − 1)] (ts − t)−(β−1) + · · ·
}
, where · · · expresses the regular terms. From

this expression, we �nd that if β could not be any integer, the value of a, and therefore the
value of the metric tensor, would become complex number and include the imaginary part
when t > ts, which is unphysical. This could tell that the universe could end at t = ts even
if β could be negative or less than −1. We assume β 6= 1 because the case β = 1 corresponds
to the Big Rip singularity, which has been investigated. Furthermore, because the case β = 0
corresponds to de Sitter space, which has no singularity, we take β 6= 0. When β > 1,
the scalar curvature R behaves as R ∼ 12H2 ∼ 12h2

0 (ts − t)−2β
. On the other hand, when

β < 1, the scalar curvature R behaves as R ∼ 6Ḣ ∼ 6h0β (t0 − t)−β−1
. We may obtain the

asymptotic solution for P when φ→ ts:
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(i) For β > 1, P (φ) ∼ exp
{

[h0/2 (β − 1)] (ts − φ)−β+1
}

(ts − φ)β/2×

×
(
A2 cos

(
ω (ts − φ)−β+1

)
+B2 sin

(
ω (ts − φ)−β+1

))
, where ω ≡ h0/ [2 (β − 1)], and

A2 and B2 are constants. When φ→ ts, P (φ) tends to vanish.

(ii) For 1 > β > 0, P (φ) ∼ B3 exp
{
− [h0/2 (1− β)] (ts − φ)1−β

}
(ts − φ)(β+1)/8

, where

B3 is a constant.

(iii) For β < 0, P (φ) ∼ A3 exp
{
− [h0/2 (1− β)] (ts − φ)1−β

}
(ts − φ)−(β2−6β+1)/8

, where

A3 is a constant. Using Eqs. (3), (4) and (10), we �nd the behavior of F (R) (at large R) as
summarized in Table II.

In the above investigations, we found the behavior of the scalar curvature R from that
of H. Conversely, we now consider the behavior of H from that of R. When R evolves
as R ∼ 6Ḣ ∼ R0 (ts − t)−γ

, if γ > 2, which corresponds to β = γ/2 > 1, H behaves

as H ∼
√
R0/12 (t0 − t)−γ/2

, if 2 > γ > 1, which corresponds to 1 > β = γ − 1 >

0, H is given by H ∼ {R0/ [6 (γ − 1)]} (ts − t)−γ+1
, and if γ < 1, which corresponds

to β = γ − 1 < 0, we obtain H ∼ H0 + {R0/ [6 (γ − 1)]} (ts − t)−γ+1
, where H0 is an

arbitrary constant and it does not a�ect the behavior of R. H0 is chosen to vanish in

H ∼ h0 (ts − t)−β
. If γ > 2, we �nd a(t) ∝ exp

[
(2/γ − 1)

√
R0/12 (ts − t)−γ/2+1

]
, when

2 > γ > 1, a(t) behaves as a(t) ∝ exp
(
{R0/ [6γ (γ − 1)]} (ts − t)−γ

)
, and if γ < 1,

a(t) ∝ exp
(
H0t+ {R0/ [6γ (γ − 1)]} (ts − t)−γ

)
. In any case, there appears a sudden fu-

ture singularity [19] at t = ts.

Since the second term in H ∼ H0 + {R0/ [6 (γ − 1)]} (ts − t)−γ+1
is smaller than the �rst

one, we may solve Eq. (9) asymptotically as P ∼ P0

{
1 + [2h0/ (1− β)] (ts − φ)1−β

}
with

a constant P0, which gives F (R) ∼ F0R + F1R
2β/(β+1), where F0 and F1 are constants.

When 0 > β > −1, we �nd 2β/ (β + 1) < 0. On the other hand, when β < −1, we obtain
2β/ (β + 1) > 2. As we saw in F (R) ∝ R1−α−/2 above, for β < −1, H diverges when t→ ts.
Since we reconstruct F (R) so that the behavior of H could be recovered, the F (R) generates
the Big Rip singularity when R is large. Thus, even if R is small, the F (R) generates a
singularity where higher derivatives of H diverge.

We assume that H behaves as H ∼ h0 (ts − t)−β
. For β > 1, when t → ts, a ∼

exp
[
h0 (ts − t)1−β

/ (β − 1)
]
→ ∞ and ρeff , |peff | → ∞. If β = 1, we �nd a ∼ (ts − t)−h0 →

∞ and ρeff , |peff | → ∞. If 0 < β < 1, a goes to a constant but ρ, |p| → ∞. If −1 < β < 0,
a and ρ vanish but |peff | → ∞. When β < 0, instead of H ∼ h0 (ts − t)−β

, one may assume

H ∼ H0 + h0 (ts − t)−β
. Hence, if −1 < β < 0, ρeff has a �nite value 3H2

0/κ
2 in the limit

t → ts. If β < −1 but β is not any integer, a is �nite and ρeff and peff vanish if H0 = 0 or
ρeff and peff are �nite if H0 6= 0 but higher derivatives of H diverge. We should note that the
leading behavior of the scalar curvature R does not depend on H0 in H ∼ H0 +h0 (ts − t)−β

,
and that the second term in this expression is relevant to the leading behavior of R. We should
note, however, that H0 is relevant to the leading behavior of the e�ective energy density ρeff

and the scale factor a.
In Ref. [6], the �nite-time future singularities has been classi�ed as shown in Table I. The

Type I corresponds to β > 1 or β = 1 case, Type II to −1 < β < 0 case, Type III to 0 < β < 1
case, and Type IV to β < −1 but β is not any integer number. Thus, we have constructed
several examples of F (R) gravity showing the above �nite-time future singularities of any
type. It also follows from the reconstruction method that there appears Type I singularity
for F (R) = R + α̃Rn with n > 2 and Type III singularity for F (R) = R − β̃R−n with
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Table 1: Finite-time future singularities. Type I includes the case of ρ and p being �nite at
ts. In case of Type IV, higher derivatives of H diverges. Type IV also includes the case in
which p (ρ) or both of them tend to some �nite values while higher derivatives of H diverge.
Here, ts is the time when a singularity appears and as is the value of a(t) at t = ts.

Type Limit a ρ |p|
Type I (�Big Rip") t→ ts a→∞ ρ→∞ |p| → ∞
Type II (�sudden") t→ ts a→ as ρ→ ρs |p| → ∞
Type III t→ ts a→ as ρ→∞ |p| → ∞
Type IV t→ ts a→ as ρ→ 0 |p| → 0

Table 2: Summary of the behavior of F (R) gravity in case of H ∼ h0 (ts − t)−β
. Here,

c1 = [h0/2 (β − 1)] (12h0)
−(β−1)/(2β)

and c2 = [h0/2 (1− β)] (−6h0β)(β−1)/(β+1)
. We note

that −6h0βR > 0 when h0, R > 0.

Type I (�Big Rip") Type II (�sudden")
β β > 1 −1 < β < 0

F (R) F (R) ∝ ec1R
β−1
2β
R−

1
4 F (R) ∝ e−c2R

β−1
β+1

R
β2+2β+9
8(β+1)

Type III Type IV
0 < β < 1 β < −1, β : not integer

F (R) ∝ e−c2R
β−1
β+1

R
7
8 F (R) ∝ e−c2R

β−1
β+1

R
β2+2β+9
8(β+1)
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n > 0, where α̃ and β̃ are constants. In fact, however, even if some speci�c model contains
the �nite-time future singularity, one can always reconstruct the model in the remote past
in such a way that the �nite-time future singularity could disappear. Positive powers of the
curvature (polynomial structure) usually help to make the e�ective quintessence/phantom
phase become transient and to avoid the �nite-time future singularities. The corresponding
examples have been examined in Refs. [18, 3].

4 Conclusion

In the present article, we have reviewed �nite-time future singularities in modi�ed grav-
ity. We have reconstructed an explicit model of modi�ed gravity realizing a crossing of the
phantom divide. It has been shown that the Big Rip singularity appears in this modi�ed
gravitational theory, whereas that the (�nite-time) Big Rip singularity in the modi�ed grav-
ity is transformed into the in�nite-time singularity in the corresponding scalar �eld theory.
In addition, we have examined several models of modi�ed gravity which predict accelerating
cosmologies ending at the �nite-time future singularities of all four known types.
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Abstract

The Casimir e�ect is strongly dependent on the shape and structure of space bound-
aries. This dependence is encoded in the variation of vacuum energy with the di�erent
types of boundary conditions. The e�ect can be either atractive or repulsive. In the
interfase between the both regimes we found a very interesting family of boundary con-
ditions without Casimir e�ect. We characterize the types of boundary conditions for
that do not induce any type of Casimir forces. The analytical characterization of all
boundary conditions which do not generate any Casimir phenomenon of attraction or
repulsion shows that the phenomenon is connected with the topological structure of the
space of boundary conditons 4.

1 Introduction

Since the discovery of the Casimir e�ect [10] it is known that the phenomenon is highly
dependent not only on the shape of the boundaries but also in the physical structure of the
boundaries. Although the physical origin of the Casimir e�ect as a vacuum energy e�ect is
well established [2, 3, 4, 5], there is not a clear intuition about the origin of the attractive or
repulsive character of Casimir forces.

In this paper we analyze boundary conditions which are at the interface between attractive
and repulsive regimes of the Casimir force, i.e. boundaries which do not undergo the Casimir
e�ect. The analysis may be an useful tool for understanding the nature and origin of the
Casimir force. The set boundary conditions without Casimir e�ect de�nes a subspace in the
space of all consistent boundary conditions which was �rst introduced in QFT in Ref. [6].

This space of boundary conditions has a very interesting non-trivial topology with impli-
cations in the behavior of the Casimir energy [6]. In particular, for scalar �eld theories the

1E-mail: asorey@unizar.es
2E-mail: marmo@infn.na.it
3E-mail: jmmc@unizar.es
4This article is dedicated to 70th aniversary of Professor Iver Brevik
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variation of the Casimir energy under changes of boundary conditions reveals the existence
of singularities generically associated to boundary conditions which either involve topology
changes of the underlying physical space or edge states with unbounded below classical en-
ergy. The e�ect can be understood in terms of a new type of Maslov index associated to
the non-trivial topology of the space of boundary conditions. In this space there are two
subspaces (Cayley submanifolds) which are crossed by all non-contractible loops of boundary
conditions. This fact permits the introduction of a Maslov index by bookkeeping the indexed
number of such crossings by closed loops.

The new subspaces of boundary conditions with vanishing Casimir energy provide another
splitting of the space of boundary conditions in two connected and simply connected sectors.
In this sense the physical splitting of the space of boundary conditions in the sectors with
attractive or repulsive Casimir forces is directly related to its topology.

2 Space of boundary conditions

In quantum theories the unitarity principle, imposes severe constraints on the boundary
behaviour of quantum states in systems restricted to bounded domains [6]. The consistency of
the quantum �eld theory requires, thus, a very stringent condition on the type of acceptable
boundary conditions even in the case of massive theories in order to prevent this type of
pathological behaviour of vacuum energy. In relativistic �eld theories, causality imposes
further requirements [7]. The space of boundary conditions compatible with both constraints
has interesting global geometric properties.

For a massless complex scalar free �eld φ the vacuum energy density is given by

E0 =
1
2
tr
√

∆ (1)

∆ is the Laplace-Beltami operator ∆ = − ∂µ∂ν . When the �eld theory is con�ned in a
bounded domain Ω with smooth boundary ∂Ω the boundary conditions have to guarantee
that ∆ is a selfadjoint operator. The set M of all self-adjoint realizations of ∆ is in one-
to-one correspondence with the group of unitary operators of the boundary Hilbert space
L2(∂Ω,CN ). This correspondence is de�ned for any unitary operator U ∈ U(L2(∂Ω,CN )), by
imposing on the �elds the boundary condition

ϕ− i∂nϕ = U (ϕ+ i∂nϕ) . (2)

where ϕ. denotes the boundary value of φ and ∂nϕ its normal derivative at the boundary ∂Ω.
This boundary condition de�nes a domain where ∆ is a selfadjoint operator. Reciprocally,
any selfadjoint realization of ∆ on Ω is de�ned on this way [6].

In relativistic �eld theories, unitarity imposes further requirements [7, 8]. In particular ∆
has not only to be a selfadjoint operator but also a positive operator. Otherwise, the quantum
Hamiltonian

H =
1
2

∫
d3x

(
|π(x)|2 + ϕ(x)∆ϕ(x)

)
(3)

will not be a selfadjoint operator and the theory will be not unitary [8]. Two widely used
boundary conditions, Dirichlet and Neumann, which correspond to U = ∓II, respectively,
satisfy these requirements. In the case of 1+1 dimensional theories de�ned on the space
interval Ω = [0, L] ⊂ IR, one �nds in the space of self-adjoint boundary conditionsM = U(2)
periodic boundary conditions which correspond to U = σx and also de�ne a positive selfadjoint
Laplacian ∆.
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The identi�cation of the space of boundary conditionsM which de�ne selfadjoints Lapla-
cians with the unitary group U(L2(∂Ω,CN )) implies that it has a non-trivial fundamental
homotopy group

π1 (M) = π1

[
U( L2(∂Ω,CN ))

]
= ZZ. (4)

The non-simply connected structure of M disappears if we exclude any of the two Cayley
submanifolds C± de�ned by the unitary operators with al least one ±1 eigenvalue. In fact, the
generalized Maslov index of any loop of boundary conditions can be de�ned as the oriented
sum of its crossings of the Cayley submanifold C−. However the subspace M\C− is still a
connected subspace of M. Moreover, the two Cayley submanifolds are not disjoint because
of the boundary conditions with eigenvalues +1 and −1, which includes boundary conditions
that identify points of the boundary. The transition from normal boundary conditions to any
of these conditions involves a topology change. Now, one interesting feature of the boundary
conditions in the Cayley subspace C− is that in its vicinity there exist a family of bound-
ary conditions of Laplacians with unbounded below negative eigenvalues which correspond
boundary states. This type of boundary conditions are not valid for quantum �eld theory
because they will destroy unitarity of time evolution.

The subset of boundary conditions which are compatible with the general principles of
quantum �eld theory is the subspace M+ of M which corresponds to positive hermitian
Laplacian operators ∆ ≥ 0. This is given by unitary matrices U whose eigenvalues λ = eiα

are on the upper unit semi-circumference 0 ≤ α ≤ π. For a single real scalar �eld de�ned
on the two-dimensional space-time IR× [0, L] the set of compatible boundary conditions is a
four-dimensional manifold which can be covered by two charts parametrised by

L

(
ϕ̇(0)
ϕ̇(L)

)
= A

(
ϕ(0)
ϕ(L)

)
(5)

where A = −i(II− U)/(II + U) is any hermitian matrix with A ≥ 0 , and(
ϕ(L)
Lϕ̇(L)

)
= B

(
ϕ(0)
Lϕ̇(0)

)
(6)

where B =
(
a b
c d

)
is any real matrix with ad+ bc = −1, ac ≤ 0 and bd ≤ 0.

Notice that due to the bounded character of Ω the pathologies associated to massless
theories in 1 + 1 dimensions [10] do not appear [9, 11] for most of boundary conditions.

3 Casimir Energy

A scalar free �eld theory de�ned by a boundary condition of M+ has a unique vacuum
state which in the functional Schr�odinger representation corresponds to the Gaussian state

Ψ(φ) = N e
−1

2
(φ,
√

∆φ)
(7)

where N is a normalization constant. The corresponding energy density given by (1) is
ultraviolet divergent but there are �nite volume corrections to the vacuum energy density are
which give rise to the Casimir e�ect.

The infrared properties of quantum �eld theory are very sensitive to boundary conditions
[12]. In particular, the physical properties of the quantum vacuum state and the vacuum
energy exhibit a very strong dependence on the type of boundary conditions.
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In 1 + 1 dimensions the space of physically consistent boundary conditions of a massless
free �eld theory de�ned on the interval [0, L] are given by the subspaceM+ unitary matrices
of of U(2) with eigenvalues λ = eiα lying in the upper unit semi-circumference with 0 ≤ α ≤ π
[13]. In that case the energy levels of the Laplacian operator ∆ are given by the zeros kn of
the spectral function

hU (k) = 4k detU cos kL− 2i(1 + k2) detU sin kL+ 4k(U21 + U12)

−2i(1 + k2) sin kL− 4k cos kL+ 2i(1− k2)trU sin kL
(8)

where λ = k2. Notice that the spectral function is not only dependent on the invariants of the
boundary unitary matrix detU and trU but also in the entries (U21+U12), which implies that
the spectrum of the quantum theory will be di�erent for matrices with the same spectrum if
they are non-equivalent as matrices. Therefore the vacuum energy can be given by

E0 =
1

4πi

∮
dz z ∂z log hU (z) (9)

or equivalently

E0 = − 1
2π

∫ ∞

0

dk k
d

dx
log hU (ik). (10)

The Casimir energy which is the �nite volume correction of order O(1/L) of vacuum energy
can be calculated by removing the leading order corrections of order O(L) and O(1) by
subtracting the vacuum energy at a given reference size L = L0 [14]

EL
U − EL0

U = − 1
2π

∫ ∞

0

dk

(
k
d

dk
log

hL
U (ik)

(hL0
U (ik))

L
L0

− L0 − L

L
log( detU + 1 + trU)

) (11)

when detU +1+ trU 6= 0. In the cases where this factort vanishes there is an similar formula
which permits to obtain the Casimir. The calculation is straightforward in most of the cases.
For instance, in the case of pseudo-periodic boundary conditions

Up = cos θσx + sin θσy =
(

0 eiθ

e−iθ 0

)
;ϕ(L) = eiθϕ(0) (12)

we have that
hp = −8k(cos kL− cos θ) (13)

and the Casimir energy

E0 = − π

6L
(14)

is given by (e.g. see Ref. [15] and references therein)

Ep =
π

L

(
1
12
− min

n∈ZZ

(
θ

2π
+n− 1

2

)2
)

(15)

which vanishes for θ = π
(
1± 1√

3

)
(mod 2π). This is the simplest case of a boundary

condition without Casimir e�ect. In the case of Dirichlet boundary conditions

UD = −II (16)
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hD = −8i sin kL (17)

the Casimir energy is non null

ED =
π

24L
(18)

as in the case of Neumann

U = II (19)

hN = −8ik2 sin kL (20)

where the Casimir energy

EN = DD =
π

24L
(21)

is the same.

A di�erent family of boundary conditions is provided by quasi-periodic boundary condi-
tions

Uq = cosασz + sinασx

ϕ(L) = tan
α

2
ϕ(0); ∂nϕ(0) =

(
tan

α

2

)−1

ϕ(0),
(22)

where

hq = −8k(cos kL− sinα). (23)

The Casimir energy

Eq =
π

L

(
1
12
− min

n∈ZZ

(
α

2π
+n+

1
4

)2
)

(24)

shows the existence of a boundary condition with α = π
(

1
2 ±

1√
3

)
(mod 2π) which do not

undergoes the Casimir e�ect.

Another family of quasi-periodic boundary conditions

UR =
(

0 eiα

−e−iα 0

)
∂nϕ(0) = −ieiα ϕ(L), ∂nϕ(L) = ie−iα ϕ(0)

(25)

have an spectral function

hR = −4i(1 + k2) sin kL+ 8ik sinα (26)

which induce a non-trival dependence of the Casimir energy on the parameter α which never
vanishes.

Robin boundary conditions are de�ned by an unitary matrix which is proportional to the
identity.

Ur = eiαII : ∂nϕ(0) = tan
α

2
ϕ(0), ∂nϕ(L) = tan

α

2
ϕ(L) (27)

which smoothly interpolate between Dirichlet (α = π) and Neumann (α = 2π) boundary
conditions. They are only physically consistent when α is restricted to the interval α ∈ [π, 2π].
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Figure 1. Casimir Energy for Robin boundary conditions

The spectral function in this case

hr = 4eiαi
(
2 sinα cos kL− (1 + k2) cosα sin kL+ (1− k2) sin kL

)
(28)

gives rise to the the following dependence of the Casimir energy in terms of the α parameter
[16, 17, 18, 8], which again does not present any case with vanishing Casimir energy.

4 Boundary conditions with vanishing Casimir energy

The Casimir energy has a continuous dependence on the physical parameters which de-
scribe the space of compatible boundary conditions M+. The dependence is not completely
smooth because of the presence of cusps for instance on the case of pseudo-periodic boundary
conditions.

In the case of a single real massless scalarM+ is given by the boundary conditions (5)(6).
The subspace of boundary conditions without Casimir e�ect is given by the unitary matrices
in M+ which satisfy that

lim
L→∞

∫ ∞

0

dk

2π

(
Lk

d

dk
log

hL0
U (ik)

L
L0

hL
U (ik)

+ log( detU + 1 + trU)(L0−L)

)
= 0 (29)

Since the condition (29) is one single condition, the corresponding subspaceM0
+ is a subspace

of co-dimension one. We have explicitly found some boundary conditions belonging to this

space. In particular, pseudo-periodic boundary conditions with θ = π
(
1± 1√

3

)
and quasi-

periodic boundary conditions with α = π
(

1
2 ±

1√
3

)
satisfy that property.

M0
+ is a 3-dimensional subspace of M+ which has a topological structure which di�ers

from that of the Cayley subspaces C±. Its main property is that it splits the space of boundary
conditions in two sectors according to the sign of the corresponding Casimir energies whereas
C± are connected manifodls. Moreover, its fundamental homotopy group π1 ofM+\C± is
trivial whereas π0

(
M+\M0

+

)
= ZZ2. Notice that most of closed loops of boundary conditions

which cross M= are not closed in M0
+ because contains boundary conditions which are not

compatible with consistent quantum �eld theories.
Since our theories are massless they are classically conformal invariant but conformal

invariance might be broken by boundary conditions [8, 13]. In particular, Robin boundary
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conditions break scale invariance. In 1+1 dimensions the only conditions which preserve
conformal invariance are Dirichlet, Neumann, pseudo-periodic boundary conditions and quasi-
periodic boundary conditions. All other boundary conditions �ow towards any of these �xed
points under the renormalization group �ow. The behaviour of the renormalization group
orbits around the �xed points is governed by the Casimir energy and presents di�erent regimes.
Dirichlet, Neumann and periodic boundary fixed points are stable whereas quasi-periodic and
pseudo-periodic �xed points are in general unstable and marginally unstable, respectively.

For real scalar �elds, Dirichlet, Neumann and periodic boundary conditions are the only
stable points and the result holds for any dimension. Periodic boundary conditions, appear as
attractors of systems with quasi-periodic and pseudo-periodic conditions. Any other boundary
condition �ows towards one of those �xed points. We have shown that among the conformally
invariant boundary condition there are conditions without Casimir e�ect. This fact, illustrates
a general feature of this type of special boundary conditions, they are conformally invariant
and correspond to non-anomalous conformal theories
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Dark energy with time-dependent

equation of state
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Abstract

The accelerating Friedmann �at universe, �lled with an ideal �uid with a linear
(oscillating) inhomogeneous equation of state (EoS) depending on time, is reviewed.
The equations of motions are solved. It is shown that in some cases there appears a
quasi-periodic universe, which repeats the cycles of phantom-type space acceleration 3.

1 Introduction

As is known, the present universe is subject to an acceleration, which can be explained
in terms of an ideal �uid(dark energy) weakly interacting with usual matter and which has
an uncommon equation of state. The pressure of such an ideal dark energy �uid is negative.
In the present work we study a model where there is an ideal �uid with an inhomogeneous
equation of state, p = w(t)ρ + Λ(t) in which the parameters w(t) and Λ(t) depend linearly
on time. In another version, these parameters are oscillating in time. Ideal �uids with an
inhomogeneous equation of state were introduced in [1] (see also examples discussed in [2]).
We show that, depending on the choices for the input parameters, it is possible for the
universe to pass from the phantom era to the non-phantom era, implying the appearance of
a cosmological singularity. Also possible are cases of quasi-periodic changes of the energy
density and of the Hubble constant, with the appearance of quasi-periodic singularities, and
the appearance of cosmological singularities.

The particular kind of equation of state in the present paper is one alternative amongst
a variety of possibilities, proposed recently to cope with the general dark energy problem.
Di�erent examples include imperfect equation of state [4], general equation of state [5], inho-
mogeneous equation of state [1], [5] including time-dependent viscosity as a special case [6],
and multiple-Lambda cosmology [7]. In the next section, a linear inhomogeneous EoS ideal
�uid in a FRW universe is studied. In section 3, an oscillating inhomogeneous EoS ideal �uid
is investigated. Some discussion is presented in the last section.

1E-mail: GorbunovaOG@tspu.edu.ru
2E-mail: TimoshkinAV@tspu.edu.ru
3This article is dedicated to 70th aniversary of Professor Iver Brevik
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2 Inhomogeneous equation of state for the universe and

its solution

Let us assume that the universe is �lled with an ideal �uid (dark energy) obeying an
inhomogeneous equation of state (see also [8]),

p = w(t)ρ+ Λ(t), (1)

where w(t) and Λ(t) depend on the time t. This equation of state, when Λ(t) = 0 but
with ω(t) a function of time, examined in [8] and [9].

Let us write down the law of energy conservation:

dotρ+ 3H(p+ ρ) = 0, (2)

and Friedman's equation:

3
χ2
H2 = ρ, (3)

where ρ is the energy density, p- the pressure, H = ȧ
a the Hubble parameter, a(t)- the

scale factor of the three-dimensional �at Friedman universe, and χ - the gravitation constant.

Taking into account equations (1), (2) and (3), we obtain the gravitational equation of
motion :

ρ̇+
√

3κ(1 + ω(t))ρ3/2 +
√

3κρ1/2Λ(t) = 0. (4)

Let us suppose in the following that both functions w(t) and Λ(t) linearly on time:

ω(t) = a1t+ b, (5)

Λ(t) = ct+ d. (6)

This kind of behaviour may be the consequence of a modi�cation of gravity (see [10] for
a review).

Let Λ(t) = 0, ω(t) = a1t+ b. In this case the energy density takes the form:

ρ(t) =
4(2a1 + 1)2

3χ2
· (a1t+ b+ 1)2/a1

[(a1 + b+ 1)
1

a1
+2 + S]2

, (7)

Hubble's parameter becomes:

H(t) =
2
3
(2a1 + 1) · (a1t+ b+ 1)1/a1

(a1 + b+ 1)
1

a1
+2 + S

, (8)

where S is an integration constant.

The scale factor takes the following form:

a(t) = exp
2
3 (2a1+1)I ,

where
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I =
(−1)a1

(2a1 + 1)Sa1
ln |(a1t+ b+ 1)

1
a1

+2 + S| − 1
(2a1 + 1)Sa1

· (9)

a1−1∑
k=0

cos
(a1 + 1)(2k + 1)

2a1 + 1
· π · ln([(a1t+ b+ 1)

2
a1 + S]2 −

2S(a1t+ b+ 1)
1

a1 · cos
2k + 1
2a1 + 1

π + S2) +
2

(2a1 + 1)Sa
·

a1−1∑
k=0

sin
(a1 + 1)(2k + 1)

2a1 + 1
· π · arctan

(a1t+ b+ 1)
1

a1 − S · cos 2k+1
2a1+1 · π

S · sin 2k+1
2a1+1 · π

,

1 ≤ a1 ≤ 2a1 − 1.

At t1 = − b+1
a1

or t2 = 1
a1

( Sa1
a1+1 )

1
2+ 1

a1 − b+1
a1

, one has Ḣ = 0. With a1 > 0, b > −1 and

t < t2, one gets Ḣ > 0 , that is, the accelerating universe is in the phantom phase (see, for
example, [11]), and with t > t2, one gets Ḣ < 0 , the universe is in the non-phantom phase.
At the moment when the universe passes from the phantom to the non-phantom era, Hubble's
parameter equals

Hm =
2

3S
2a1+1
√
a1(a1 + 1)2a1 . (10)

In the phantom phase ρ̇ > 0 the energy density grows; in the non-phantom phase ρ̇ < 0
the energy density decreases. However, the derivative of the scale factor ȧ > 0, therefore the
universe expands. Note, as has been shown in [8], that in the phantom phase the entropy
may become negative. If t→ +∞, then H(t) → 0 and ρ(t) → 0, so that the phantom energy
decreases.

3 Inhomogeneous oscillating equation of state

Instead of assuming the form Eq. (5) and Eq. (6)for the time-dependent parameters, one
might assume that there is an oscillating dependence on time. Let us investigate the following
form: w(t) = −1 + ω0cosωt. From equations (3) and (4) we get

H =
2ω

3(ω1 + ω0sinωt)
, (11)

where ω1 is an integration constant. If |ω1| < ω0, the denominator can in this case be
zero, what implies a future cosmological singularity. But if |ω1| > ω0, singularity is absent.

In view of the fact that (cf. [8])

Ḣ = − 2ω2ω0cosωt

3(ω1 + ω0sinωt)
, (12)

we see that with ω0cosωt < 0 (ω0cosωt > 0)the universe is located in the phantom (non-
phantom) phase, corresponding respectively to Ḣ > 0 (Ḣ < 0). If the oscillation period of
the universe is large, it is possible to have a uni�cation of in�ation and phantom dark energy
[11, 12]. The density of dark energy takes the form

ρ(t) =
4ω2

3χ2(ω1 + ω0sinωt)2
, (13)
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this being a periodic function so that the universe oscillates between the phantom and non-
phantom eras.

Let us assume now that Λ(t) 6= 0. For simplicity we take Λ(t) = Λ0sinωt, i.e. a periodic
function. If Λ0(t) < 0, equation (4) has the following solution:√

ρ(t) +
√

|Λ0|
ω0√

ρ(t)−
√

|Λ0|
ω0

= exp[
√

3χ2|Λ0|ω0(
sinωt

ω
+ C1)], (14)

where C1 is an integration constant.
Finally, we obtain for the energy density:

ρ(t) = {

√
|Λ0|
ω0
exp[

√
3χ2|Λ0|ω0( sinωt

ω + C1)] +
√

|Λ0|
ω0

exp[
√

3χ2|Λ0|ω0( sinωt
ω + C1)]− 1

}. (15)

The Hubble parameter becomes, according to (3),

H(t) =

√
χ2ρ(t)

3
. (16)

At the moments when the denominator of (15) is zero, the energy density diverges. This
corresponds to a future cosmological singularity. Depending on the choice of parameters in
the equation of state for the dark energy, H(t) can thus correspond to either a phantom, or
a non-phantom, universe. In both cases the universe expands with (quintessential or super)
acceleration.

4 Summary

In this work we have studied a model of the universe in which there is a linear inhomoge-
neous equation of state, with a linear or oscillating dependence on time. The consequences of
various choices of parameters in the linear functions are examined: there may occur a passage
from the non-phantom era of the universe to the phantom era, resulting in an expansion and
a possible appearance of singularities. In the absence of inhomogeneous terms it is possible
to have a repetition of the passage process. When the universe goes from the phantom era to
the non-phantom era with expansion one may avoid singularities, or there may appear singu-
larities, but the passage occurs without repetition. The presence of a linear inhomogeneous
term in the equation of state leads either to a compression of the universe in the evolution
process or to a quasi-periodic change in the energy density and in the Hubble parameter, and
also to a quasi-periodic appearance of singularities. By this the universe either passes into
the non-phantom era, or stays within the same era as it was originally. Thus, the universe
�lled with an inhomogeneous time-dependent equation-of-state ideal �uid may currently be
in the acceleration epoch of quintessence or phantom type. Moreover, it is easy to see that
the e�ective value of the equation-of-state parameter may easily be adjusted so as to be
approximately equal to -1 at present, what corresponds to current observational bounds.
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The inhomogeneous equation of state and

the road towards the solution of the

cosmological constant problem

Hrvoje �Stefan�ci�c1

Theoretical Physics Division, Rudjer Bo�skovi�c Institute,
P.O.Box 180, HR-10002 Zagreb, Croatia

Abstract

We present a cosmological model containing a cosmological constant Λ and a compo-
nent with an inhomogeneous equation of state. We study the form of the inhomogeneous
equation of state for which the model exhibits the relaxation of the cosmological constant,
i.e. it asymptotically tends to the de Sitter regime characterized by a small positive ef-
fective cosmological constant. The e�ect of the relaxation of the cosmological constant is
observed both for negative and positive values of Λ and for a range of model parameters.
A special emphasis is put on the study of the details of the CC relaxation mechanism
and the robustness of the mechanism to the variation of model parameters. It is found
that within the studied model the e�ective cosmological constant at large scale factor
values is small because the absolute value of the real cosmological constant is large 2.

1 Introduction

The understanding of cosmology has undergone a phase of intensive development
during the last decade. It has been largely propelled by the arrival of more precise
and abundant observational data [1, 2, 3]. The picture of universe implied by the new
data, however, revealed that the unknown part of the composition of the universe is far
greater that previously believed. It is interesting to notice that the progress achieved in
a great deal consists in establishing the fact that we know much less about our universe
than we thought before the advent of the new observational data. The term unknown

1E-mail: shrvoje@thphys.irb.hr
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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composition of the universe should not be understood too literally. It might really be
the case that the universe contains a new physical component (or several of them), but
it is also possible that the perceived unknown composition is just a manifestation of
additional dimesions or modi�cations of interactions such as gravity.

One of the most striking consequences of the unknown part of the composition of
the universe is its present accelerated expansion which started at redshift values of the
order 1. The accelerated expansion of the present universe is strongly con�rmed by the
observational data. Presently available data, however, provide much less information on
the actual cause of the acceleration. As already stated, the acceleration might happen
owing to the existence of an unknown component with the negative pressure, referred
to as dark energy (DE), or might be a consequence of the fact that our universe has
a number of macroscopic dimensions di�erent than 4 or that the laws of gravitational
interaction are modi�ed at cosmological scales. These possibilities represent some of the
most studied options leading to the accelerated expansion, but they certainly do not ex-
haust the list of proposals for the explanation of the accelerated expansion. The concept
of dark energy seems especially useful in the modelling of the acceleration mechanisms.
Namely, even if the acceleration is not due to some physical component with a negative
pressure, the framework of dark energy can be used as a very good e�ective description
of the alternative acceleration mechanisms which especially facilitates the comparisons
of di�erent approaches to the explanation of the accelerated expansion of the universe.

It is also important to stress that the unknown composition of the universe is not
entirely connected to the accelerated expansion of the universe. The observational data
imply that our universe contains a signi�cant component of nonrelativistic matter, also
called dark matter (DM) which is important for the explanation of the growth and
formation of the structures such as galaxies and clusters of galaxies that we observe in
the universe today. The nature of dark matter also has not yet been �rmly established.

The dark energy component is primarily characterized by its negative pressure. A
very large number of DE models have been proposed lately, of various degree of com-
plexity, predictive potential and connection to fundamental physical theories [4]. The
observational data still provide a lot of space for dynamical DE models, but the central
place of the allowed parametric space is occupied by a very simple DE model, a so called
ΛCDM model. This model assumes that the DE component is actually a small positive
cosmological constant (CC). The cosmological constant is a well known concept present
in the theory of general relativity (GR) from the very �rst years of the development of
the theory [5, 6, 7]. An important observation is that the GR allows the existence of the
CC, but it does not determine its size. So, in any cosmological model based on GR we
are not concerned with the question whether the CC should be there or not, but with
the problem of its size and sign. Since, therefore, the CC should already be an ingredi-
ent of cosmological model based on GR, it is very convenient to use such an object as
a source of the acceleration of the universe. Indeed, an assumption of an existence of
a small positive CC, together with the existence of dark matter, �ts the observational
data very well. From the observational side things work well: we have a model with few
parameters that uses familiar concepts and �ts the data well.

Fundamental quantum physical theories, however, predict various contributions to
the observed value of the cosmological constant. In quantum �eld theory (QFT) there
exist very large zero-point energy contributions for each of the quantum �elds. There
are also contributions from condensates such as Higgs condensate or QCD condensates.
These contributions should be added to, in principle arbitrary value of CC allowed in
GR. Any attempt of calculation of contributions to the cosmological constant reveals
that their size is many orders of magnitude larger than the observed value of the CC.
The number of orders of magnitude di�ers with the choice of e�ective QFT cuto�, but
in any case we have di�erences which raise a lot of suspicion, to put it mildly. But,
in the end, it is not that individual contributions matter, but their sum. In principle,
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for the classical contribution to the CC we can choose the needed value and reproduce
the observed value of Λ. The problem is that all contributions have to cancel to very
many decimal places for this mechanism to be e�ective. This problem, referred to as
�ne-tuning plagues this explanation of the observed value of the cosmological constant.
It is sometimes also called �the old CC problem".

If theoretical considerations reveal such di�culties for the cosmological constant as a
DE candidate, maybe we should opt for some of dynamical DE models. Even should the
future observational data prove that dark energy (as a true component or as an e�ective
representation of some other acceleration mechanism) is dynamical, it only relegates the
CC problem to another level. Then we have to understand why the size of the CC is
much smaller that the observed DE energy density or, possibly, why it is zero. The
possibility that the CC is exactly zero would open the way to the solution of the CC
problem by invoking some new symmetry. However, presently there is no proof for the
existence of such a symmetry.

Therefore, the CC problem is di�cult and it goes even beyond the issue of dark
energy. Indeed, apart from the drastic problem of the size of the observed CC, there
is another problem related to the cosmological constant. Namely, presently available
observational data imply that the energy densities of nonrelativistic matter and the cos-
mological constant are of the same order of magnitude at present epoch of the expansion
of the universe. The energy density of nonrelativistic matter scales very di�erently with
the expansion than the CC. Therefore it is quite peculiar that these energy densities
that have been very di�erent in size in the past and will presumably be very di�erent in
the future (in the context of the ΛCDM model), are presently of comparable size. This
problem is also called �coincidence problem". In this paper we shall mainly deal with �the
old CC problem" whereas the �coincidence problem" will be only remotely commented.

This paper further elaborates the mechanism of the relaxation of the cosmological
constant proposed in [8]. The relaxation of the cosmological constant is de�ned as a
dynamical solution of the �old CC problem" without the �ne-tuning of the parameters of
the model. Essentially, in [8] we model the dark energy sector and study the asymptotic
behavior at large scale factor values. The relaxation of the cosmological constant cor-
responds to the asymptotic de Sitter regime with a small positive e�ective cosmological
constant. The mechanism is implemented in the framework of a cosmic component with
an inhomogeneous equation of state [9]. In this paper we expand the model of [8], study
some of its limitations and examine the robustness of the CC relaxation mechanism.

2 The cosmological constant relaxation model

We consider a two component cosmological model containing a cosmological constant
with the energy density ρΛ and an additional cosmological component with the energy
density ρ. It is assumed that the universe is spatially �at, k = 0. The expansion of the
universe is de�ned by the Friedmann equation

H2 =
8πG

3
(ρΛ + ρ) . (1)

The evolution of the second component with the expansion of the universe is de�ned
by the standard equation of continuity

dρ = −3(ρ + p)
da

a
, (2)

where its equation of state (EOS) has a nonstandard form

p = wρ− 3ζ0(H
2 + β)α . (3)
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Here we take ζ0 > 0 and α is an arbitrary real parameter. The form of EOS given in
(3) �ts into the framework of the inhomogeneous equation of state [9]. The concept of
the inhomogeneous equation of state was also studied in [10, 11, 12, 13]. The role in the
inhomogeneous DE equation of state in the process of structure formation was examined
in [14]. In the remainder of this paper we study how the inhomogeneous equation of
state contributes to the relaxation of the cosmological constant. The reference [9] (see
especially the Appendix) shows that a possible way to understand the inhomogeneous
equation of state is as an e�ective description of the modi�ed gravity theories or time-
dependent nonlinear viscosity.

The modi�ed theories of gravity study the extension of GR as a possible source of the
acceleration mechanism active at present cosmological era [15, 16]. An example of f(R)
gravity, free of instabilities, [15, 16, 17] was presented in [8] showing that the mechanism
of the CC relaxation could be realized directly in f(R) modi�ed gravity theories. A
systematic study of modi�ed gravity theories consistent with the solar system precision
gravity tests [18] is needed to establish the robustness of the CC relaxation mechanisms
within the modi�ed gravity theories.

The concept of bulk viscosity, as a dissipation mechanism of imperfect cosmic �uid
consistent with the symmetries of the FRW universe, was used for the study of various
phenomena in cosmology [19, 20, 21]. A very interesting possibility is that the bulk
viscosity could potentially account for the present acceleration of the universe without
the presence of dark energy [22, 23]. Here we consider generalization of the phenomenon
of bulk viscosity. Namely, H is not a variable of state of the imperfect �uid and a general
dependence of the �uid pressure on H represents a step out of standard framework of
bulk viscosity. A more appropriate name would be time-dependent or nonlinear viscosity.
This generalized concept of viscosity, however, proves to be very useful in the study
of the present accelerated cosmic expansion [24], peculiar properties of dark energy,
including the phenomenon of the CC boundary crossing [25] as well as other interesting
phenomena [26, 27]. Furthermore, it is of particular interest to investigate how the
concept of viscosity combines with the concepts of braneworlds and modi�ed gravity
[28, 29, 30, 31, 32, 33].

The expressions (1), (2) and (3) can be easily combined to obtain a dynamical equa-
tion for the evolution of the Hubble function

dH2 + 3(1 + w)
da

a

�
H2 − 8πGρΛ

3
− 8πGζ0

1 + w
(H2 + β)α

�
= 0 . (4)

Further we scale all quantities of interest and introduce the following notation

h = (H/HX)2, s = a/aX , λ = 8πGρΛ/3H2
X , ξ = 8πGζ0H

2(α−1)
X /(1+w) , b = β/H2

X .
(5)

Here H(aX) = HX . it is important to state that the value of aX can in principle take any
value. It is not intrinsically constrained within the present model. Using this notation
we can rewrite (4) as

s
dh

ds
+ 3(1 + w)(h− λ− ξ(h + b)α) = 0 , (6)

with h(1) = 1 de�ning the initial condition.

A thorough analysis of the model for the case b = 0 was performed in [8] 3. There
it was shown that the CC relaxation mechanism was active for α < 0. Here we proceed
with the analysis of the same interval for α and examine the e�ects of the nonzero values
of the parameter b.

3Note that in [8] it was convenient to choose the parameter α somewhat di�erently that in the present
paper.
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Next we consider the value α = −1 as a representative and an analytically tractable
case. The equation (6) now reads

(h + b) dh

(h− h∗1)(h− h∗2)
= −3(1 + w)

ds

s
. (7)

Here h∗1 and h∗2 stand for the zeros of the denominator of the expression at the left
hand side of (7). Their respective values are given by the following expressions:

h∗1 =
1

2

�
λ− b +

p
(λ + b)2 + 4ξ

�
(8)

and

h∗2 =
1

2

�
λ− b−

p
(λ + b)2 + 4ξ

�
. (9)

The di�erential equation (7) can be easily integrated and we arrive at the closed form
solution for the dynamics of the scaled Huuble parameter with the scale factor:

�
h− h∗1
1− h∗1

�A1
�

h− h∗2
1− h∗2

�A2

= s−3(1+w) , (10)

Here A1 = (b + h∗1)/(h∗1 − h∗2) and A2 = −(b + h∗2)/(h∗1 − h∗2).
Before the analysis of the results presented above, we make a short summary of the

results of paper [8] which correspond to a speci�c value b = 0. This is a starting point
of our analysis since in this paper we are interested in how the nonvanishing value of
parameter b modi�es the CC relaxation mechanism observed in [8]. The dynamics of the
Hubble function h depends on all model parameters α, λ, ξ and w.

The Hubble function h as a function of the scale factor for a case of negative λ
with a large absolute value and other representative parameter values (ξ > 0, α < 0
and w > −1) is given in Fig. 1. For these intervals of parameters the dynamics of
h is characterized by a very abrupt transition between a phase of expansion at small
scale factor values where h ∼ a−3(1+w) and a de Sitter phase at large scale factor values
characterized by a small e�ective positive CC with hasym ∼ Λeff ∼ ξ/|λ|. With other
parameters �xed, the scale of h before the transition grows with |λ| and the value of
Λeff decreases with |λ|. The dynamics of h before the transition is not a�ected by the
size of ξ whereas its asymptotic value at large a grows with ξ. The choice of exponent α
does not a�ect the behavior at small values of the scale factor, whereas the asymptotic
value of h at large a decreases as α becomes more negative. Finally, as already stated,
the value of w a�ects the behavior before the transition and the large a behavior of h
does not depend on w. For other choices of parameters the model may exhibit other
interesting types of dynamics which however do not correspond to the CC relaxation
mechanism.

The dynamics of the Hubble function h for a large positive λ and representative
parameter values (ξ < 0, α < 0 and w < −1) is given in Fig. 2. In this regime, both
for small and large scale factor values we �nd de Sitter regimes, h ∼ λ at small a and
h ∼ −ξ/λ at large a. These asymptotic regimes are again interconnected by an abrupt
transition. The scale of the de Sitter regime preceding the transition grows and the scale
of de Sitter regime following the transition decreases with the size of λ. The value of α
does not a�ect the behavior at small a values and the scale of the de Sitter regime at
large a grows as α becomes more negative. The asymptotic value of h grows with the
size of |ξ| at large a whereas the dynamics at small a is not sensitive to the value of
ξ. The value of parameter w does not a�ect the dynamics of h at large a whereas the
approach to de Sitter regime at small a is sensitive to w. As in the case of negative λ, for
other parameter intervals the behavior of the model is di�erent and the CC relaxation
mechanism is not e�ective. It is also important to stress that in the case of positive
λ, the energy density ρ should be negative. This is a strong argument to consider the
second component as an e�ective description of some other fundamental mechanism.
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Figure 1: The dependence of h on the scale factor a for the negative cosmological constant
in the regime α < 0. The parameter values used are b = 0, α = −1, λ = −2000, ξ = 0.02 and
w = −0.8.

Figure 2: The dynamics of h as a function of the scale factor a for a positive λ and α < 0.
The values of the used parameters are b = 0, α = −1, λ = 2000, ξ = −0.02 and w = −1.2.
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Next we turn to the case of nonvanishing b. Since the values (8) and (9) determine the
asymptotic behavior of the model, let us further study their dependence on the parameter
b. We generally assume that the parameter |λ| is by far the largest parameter of the
model. More precisely, we suppose that |λ|2 � |ξ| and |λ| � |b|. These assumptions
allow us to make an expansion of the square root terms in (8) and (9) with the following
results:

h∗1 =
1

2
(λ + |λ|) +

b

2

�
|λ|
λ
− 1

�
+

b2 + 4ξ

4|λ| , (11)

h∗2 =
1

2
(λ− |λ|) +

b

2

�
−|λ|

λ
− 1

�
− b2 + 4ξ

4|λ| . (12)

The expressions di�er for the cases of positive and negative λ. For λ > 0 we obtain

h∗1 = λ +
b2 + 4ξ

4|λ| , (13)

h∗2 = −b− b2 + 4ξ

4|λ| . (14)

On the other hand, for λ < 0 we have

h∗1 = −b +
b2 + 4ξ

4|λ| , (15)

h∗2 = λ− b2 + 4ξ

4|λ| . (16)

>From the expressions (13) to (16) we can determine the e�ect of the parameter b on
the asymptotic values.

For a positive λ, at very small values of |b| when |b| � |ξ/λ| we have h∗1 ' λ and
h∗2 ' −ξ/λ. On the other hand, for a su�ciently large |b|, where |b| � |ξ/λ|, we
have h∗1 ' λ and h∗2 ' −b. The asymptotic behavior at large scale factor values is
determined by the value h∗2 and we see that at su�ciently large values of |b|, in the
sense de�ned above, the parameter b determines the asymptotic behavior of the Hubble
function h. It is important to notice that in this case de Sitter regime at large values of
the scale factor is realized only for negative values of b.

For negative values of λ at small values for the parameter b, with |b| � |ξ/λ| we
obtain and h∗1 ' ξ/|λ| and h∗2 ' λ. For |b| � |ξ/λ| we further have h∗1 ' −b and
h∗2 ' λ. These results again show that for a su�ciently large value of |b|, this parameter
determines h∗1 which in turn controls the asymptotic dynamics of the Hubble function
at large scale factor values. Again, to have a de Sitter regime at large scale factor values
b has to be negative.

A more careful analysis of the model immediately shows that for h→ −b the pressure
of the component with the inhomogeneous EOS diverges. The dynamics of the model
reveals that this singular point is never reached. The expressions (8) and (9) show that
the point where p would diverge is never reached during the evolution of the model. For
a large |λ|, the dynamics of h stabilizes at a value slightly above −b.

3 Discussion

The principal role of the considerations given above and the plots in Figures 3 and 4
is to gauge the role of the parameter b in the model de�ned by (1)-(3). Our primary goal
is to �nd out if and in which extent does the �nite value of b change the behavior of the
model compared to the previously studied case corresponding to b = 0. The qualitative
behavior of the model retains the pattern observed for the vanishing value of b: both
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Figure 3: The behavior of h as a function of the scale factor a for di�erent values of the
parameter b. The used parameter values are α = −1, λ = −1000, ξ = 0.01 and w = −0.9. In
this parameter regime, the value of b controls the asymptotic behavior of h at large a.

Figure 4: The dependence of the dynamics of h as a function of the scale factor on parameter
b. The values of the parameters used are α = −1, λ = 1000, ξ = −0.01 and w = −1.1. The
asymptotic behavior of h at large a is determined by the size of b.
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for positive and negative values of the scaled CC parameter λ there is a distinct and
abrupt transition from the expansion at a high energy density to the de Sitter regime.
Therefore, this speci�c signature of the CC relaxation mechanism is not lost with the
addition of the additional parameter b. The asymptotic value of H2, however, depends on
the interplay of all model parameters. For a su�ciently small value of b, the asymptotic
value is determined by the ratio of parameters ξ and λ (h = |ξ/λ|). As b grows, the
asymptotic value becomes fully dominated by the value of parameter b.

Our aim is to look into a mechanism of the CC relaxation without �ne-tuning. The
case of vanishing b possesses certain appeal since there the e�ective positive CC is small
because λ is large in absolute value and also the parameter ξ is not expected to be large.
For parameter values which we would expect based on the fundamental theories the
expected value of the e�ective CC at large scale factor values is a small positive number.
There is no need for the parameters to be �ne-tuned.

For a large absolute value of λ, su�ciently large b determines the asymptotic behavior
of H2. If we eventually aim at explaining the observed value of the cosmological constant,
the value of b should be small. Since there is no clear reason why the value of b should
be so small, some form of �ne-tuning reenters into the model. We have to introduce a
small parameter b just to match the value of observed Λeff . Still, it is very important
to stress that this value is very di�erent from the real value Λ. Although a very large Λ
is present in the model, it does not determine decisively the asymptotic behavior of the
system. Furthermore, the parameter b plays the main role only because λ is very large
in absolute value. In a way the spirit of the CC relaxation mechanism is preserved: A
universe with a large Λ �nally tends to a de Sitter state characterized by a small Λeff .
The principal di�erence to the b = 0 case is that for a su�ciently large |b| there is no
strong argument why Λeff should be small.

The model of this paper represents and extension of the model studied in [8], but it
is still just a starting point towards a realistic cosmological model with the resolved CC
problem. Essentially, both the model of this paper and [8] model the dark energy sector
of the universe. Clearly, other components such as radiation and matter have to be added
to create a realistic cosmological model and reproduce the standard eras of the evolution
of the universe such as radiation dominated and matter dominated eras. The abruptness
of the observed transition might pose a signi�cant challenge to the construction of such
a complete cosmological model. However, even in a model which contains the matter
and radiation components, the presented CC relaxation mechanism should be e�cient
asymptotically since the energy densities of these components decay quickly with the
expansion. Other important issues for further work are the timing of the transition,
possible links to in�ation and the growth of inhomogeneities in a universe in which the
CC relaxation mechanism is active.

As discussed in the Introduction, there is another important problem related to the
size of the dark energy (or CC) density. The coincidence problem is not directly addressed
in the present model since the matter and radiation components are not present in the
model. Only in the model with all relevant components this issue could be addressed
properly.

Another very important issue is the physical motivation for the EOS given in (3). As
already stated, the motivation could come from several directions of which we singled
out modi�ed gravity and generalized nonlinear viscosity. The elaboration of these topics
might prove essential for a microscopic foundation of the mechanism exhibited by our
model.

4 Conclusions

The extension of the original model of the CC relaxation [8] presented in this paper
allows us the study of the limits of the CC relaxation mechanism. This is achieved
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through the introduction of the new parameter b. For a su�ciently large |b|, we no
longer have an explanation of the smallness of Λeff without �ne-tuning. Still, even for
larger values of |b| the asymptotic value is not determined by a large λ, but some other
small parameter, in particular b. In this sense, the spirit of the CC relaxation mechanism
persists even for larger values of |b|. These conclusions show that the concept of the CC
relaxation mechanism is robust, although for small or vanishing value of b the solution
of the CC problem is more natural. These �ndings further support the study of other
types of inhomogeneous EOS as a road to a complete cosmological model in which the
CC problem is naturally solved.
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The impact fractally matrix

resonators "ISTOK" on the Casimir

e�ect

Nikolai Klykov, Lidia Lazovskaia1

Tecno ISTOK BCN, Spain

In this article there represented results of laboratory research into the in�uence
of fractal-matrix resonators (FMR) series "ISTOK " on closely spaced rigid bodies in
nonzero temperature. There o�ered a variant of solution of the main problem of Casimir
e�ect in nanotechnologies, which is developed on a micromechanical devices level as an
adhesion of its separate elements2.

Till recently Casimir e�ect considered to be a fundamental e�ect of quantum theory
of �eld. Thats why the rise of attractive power on nanometer scale considered to be
di�cult to remove. It is Federico Capasso's opinion that it is Casimir e�ect which
should be considered to be the main problem for the miniature micromechanical devices.

Nowadays there are two main methods of understanding Casimir e�ect basis:

1. Display of Van der Waals force.

2. Quantum �uctuations of vacuum

If we consider Casimir e�ect (for a review, see [1]) as a display of well-known Van
der Waals forces we can analyze in more detail this e�ect as a sort of intermolecular
interaction. Van der Waals forces is a kind of attractive forces, which work between
all atoms and molecules. The importance of these forces is evident from its two unique
properties. First, these forces are universal. Such attraction mechanism works between
all atoms and molecules. Secondly, these forces keep considerable size at comparatively
large spaces between molecules. Moreover, it results in rise of attraction between two
solid objects, divided by a small gap [2].

Let`s examine quantum �uctuations of vacuum as the main reason for Casimir e�ect.
Two metal plates situated close one to another (at a distance of a micron or less) form
a resonator, on the length of which lays a whole number of 1/2 waves. As a result,
resonant electromagnetic waves reinforce, and the others are suppressed. The number of
suppressed waves is much more. As a result, the pressure of virtual photons on inside
is much less than outside pressure. Thus, the closer the surfaces one to anther are, the
less wave-length between them in resonance there are. There are much more suppressed
waves. As a result, attractive force between the surfaces rises.

Authors of this article got interesting results of the in�uence of modulated laser
emission on source material for FMR. Distinctive feature of derived resonators is their

1E-mail: istokbcn@msn.com
2This article is dedicated to 70th aniversary of Professor Iver Brevik
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ability for directional in�uence on closely spaced bodies. This in�uence takes place in
nonzero temperatures, has high stability and can vary in wide limits depending on initial
material and activation regime. Laboratory experiments and researches give grounds
to presume the possibility of the in�uence on the main problem of Casimir e�ect in
nanotechnologies, which is developed on a micromechanical devices level and makes
their separate elements stick together.

The problem is that on these scales there are quite classical e�ects, connected with
surface tension and Van der Waals forces. Experimenters try to diminish the in�uence
of the e�ect by means of selection of certain materials, from which elements and their
geometric forms are made. The new method of solving the problem of Casimir e�ect
o�ered by the authors of this article is that microelements in mechanisms should be
specially in�uenced on "ISTOK" technology [3].

The technology is based on the in�uence (activation) with a special modulated low-
intensive laser emission with wave-length 635 - 670 nm on solid and liquid substances.
Activation process takes place in laboratory conditions in nonzero temperature.

Distinctive feature of derived resonators is their ability to have directed e�ect on
closely spaced bodies. This e�ect takes place in none zero temperatures, it has a high
level of stability and can vary within wide limits depending on initial material and
activation regime.

Preliminary results showed that metal plates and minerals, activated according to
this technology get special properties:

- they in�uence on bodies located in immediate proximity, changing their physico-
chemical properties

- they spread their in�uence at a distance up to several centimeters

- they in�uence freely through di�erent substances, such as glass, paper, wood and
some other kinds of polymers

- they do not change newly acquired properties for an inde�nably long period of time

- they partly transmit newly acquired properties to other bodies (secondary reradia-
tion e�ect).

Changes in physical and chemical properties of di�erent substances and processes
have been registered in laboratory conditions in immediate proximity to resonators`
surfaces. This fact suggests that the change in display of Van der Waals forces in the
examples is one of the factors of the in�uence on these processes. There may be another
factor - the presence of long-lived charges on the surface of received resonators, the
charges develop In the form of �uctuation of the electromagnetic �eld.

Short list of observed e�ects of FMR in�uence:

- changes in crystallization process in solutions

- changes in time of solution evaporation

- lowering of ammonium hydrate concentration in water

- changes in molecular di�usion process, evaporation and crystallization of saturated
solution of copper sulfate

- changes of spectral absorption level in spirit-based liquids

The in�uence of FMR on di�usion process at a distance of several centimeters may
be explained by changes of intermolecular interactions which happened as a result of
�uctuations of electromagnetic �eld on the resonator`s surface. It is necessary to point
out the direction vector of this �uctuation is situated transversely to the resonator`s
surface and depends on the shape of this surface, material, activation regime and do not
change in time. Taking into account the fact that the resonator has a de�nite direction,
it is possible to create a combination of two or more resonators for getting e�ects with
opposite sign. In other words, if we apply this technology we can control the force and
direction of Casimir e�ect. And this isn`t contrary to the works already conducted by
other scientists. According to the suggestions of scientists from Los Angeles national
laboratory in New Mexico, Casimir force may be changed into repulsive with the help
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of so called metamaterials - matters that are produced in laboratory environment and
have impossible characteristics for nature conditions.

So several factors in�uence on Casimir e�ect: Quantum �uctuations of vacuum, Van
der Waals forces. Some extra factors have been analyzed, such as geometric pattern,
medium and structure of material.

The interesting is to take into account the research by I. Brevik on e�ect of Casimir
e�ect at nonzero temperatures [5].

It`s possible to suppose that activation of materials and mechanisms on "ISTOK"
technology turns out to be just an extra factor of this in�uence. If this hypothesis
is proved by laboratory measurements of Casimir e�ect it will have a large practical
importance.
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