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Ïðåäèñëîâèå
×òî âèäåëîñü â÷åðà êàê öåëü ãëàçàì òâîèì, �

Äëÿ çàâòðàøíåãî äíÿ � îêîâû;
Ìûñëü � òîëüêî ïèùà ìûñëåé íîâûõ,
Íî ãîëîä èõ íåóòîëèì.

Èç ñòèõîòâîðåíèÿ Ý. Âåðõàðíà "Íåâîçìîæíîå".
Ïåðåâîä ñ ôðàíöóçñêîãî Ì. Äîíñêîãî

3 èþëÿ 2008 ãîäà èñïîëíÿåòñÿ 60 ëåò èçâåñòíîìó ó÷åíîìó â îáëàñòè òåîðåòè÷åñêîé
ôèçèêè, äîêòîðó ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ïðîôåññîðó Èîñèôó Ëüâîâè÷ó Áóõáèí-
äåðó. Íàñòîÿùèé ñáîðíèê ñîñòàâëÿþò ñòàòüè åãî êîëëåã, äðóçåé, ñîàâòîðîâ è ó÷åíèêîâ
ïî ïðîáëåìàì, ëåæàùèì â ñôåðå åãî íàó÷íûõ èíòåðåñîâ è ñâÿçàííûõ ñ ñîâðåìåííûì
ðàçâèòèåì òåîðåòè÷åñêîé è ìàòåìàòè÷åñêîé ôèçèêè.

Â ðàçëè÷íûå ïåðèîäû òâîð÷åñêîé äåÿòåëüíîñòè È.Ë. Áóõáèíäåðà åãî íàó÷íûå èññëå-
äîâàíèÿ îòíîñèëèñü ê íåðàâíîâåñíîé ñòàòèñòè÷åñêîé ìåõàíèêå, òåîðèè ìàãíåòèçìà, ðåëÿ-
òèâèñòñêîé êâàíòîâîé ìåõàíèêå, êâàíòîâîé òåîðèè ïîëÿ â èñêðèâëåííîì ïðîñòðàíñòâå-
âðåìåíè, êâàíòîâîé ãðàâèòàöèè, ñóïåðñèììåòðè÷íîé êâàíòîâîé òåîðèè ïîëÿ, òåîðèè ïî-
ëåé âûñøèõ ñïèíîâ, òåîðèè ñòðóí. Ïî âñåì ýòèì íàïðàâëåíèÿì òåîðåòè÷åñêîé ôèçèêè
èì ïîëó÷åíû âàæíûå íàó÷íûå ðåçóëüòàòû, íåêîòîðûå èç êîòîðûõ çàñëóæèëè ìèðîâîå
ïðèçíàíèå.

Íàó÷íî-ïåäàãîãè÷åñêàÿ äåÿòåëüíîñòü È.Ë. Áóõáèíäåðà òåñíî ñâÿçàíà ñ Òîìñêèì ãî-
ñóäàðñòâåííûì ïåäàãîãè÷åñêèì óíèâåðñèòåòîì, ãäå îí ïðîøåë ïóòü îò àññèñòåíòà äî
ïðîôåññîðà, çàâåäóþùåãî êàôåäðîé òåîðåòè÷åñêîé ôèçèêè. Â òå÷åíèå ðÿäà ëåò îí ÷è-
òàë ëåêöèè ïî ðàçëè÷íûì ñïåöèàëüíûì êóðñàì è ðóêîâîäèë íàó÷íîé ðàáîòîé àñïèðàí-
òîâ â Òîìñêîì ãîñóäàðñòâåííîì óíèâåðñèòåòå. Èì ñîçäàíà â Òîìñêå ïðèçíàííàÿ íàó÷íàÿ
øêîëà ïî òåîðåòè÷åñêîé ôèçèêå, ïîäãîòîâëåíî áîëüøîå êîëè÷åñòâî ìîëîäûõ ó÷åíûõ.
Íåêîòîðûå èç åãî ó÷åíèêîâ ñàìè ïîëó÷èëè ìèðîâóþ èçâåñòíîñòü. Çíà÷èòåëüíîå ìåñòî â
èññëåäîâàòåëüñêîé äåÿòåëüíîñòè È.Ë. Áóõáèíäåðà çàíèìàåò ñîòðóäíè÷åñòâî ñ âåäóùèìè
ðîññèéñêèìè è çàðóáåæíûìè íàó÷íûìè îðãàíèçàöèÿìè, îñîáûå îòíîøåíèÿ ñâÿçûâàþò
åãî ñ ëàáîðàòîðèåé òåîðåòè÷åñêîé ôèçèêè Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäî-
âàíèé (ã. Äóáíà) è îòäåëåíèåì òåîðåòè÷åñêîé ôèçèêè Ôèçè÷åñêîãî èíñòèòóòà ÐÀÍ èì.
Ï.Í. Ëåáåäåâà (ã. Ìîñêâà).

Äîñòèæåíèÿ È.Ë. Áóõáèíäåðà â ðàçâèòèè íàóêè è ïîäãîòîâêå íàó÷íî-ïåäàãîãè÷åñêèõ
êàäðîâ È.Ë. Áóõáèíäåðó ïîëó÷èëè âûñîêóþ ãîñóäàðñòâåííóþ îöåíêó. Åìó ïðèñâîåíî ïî-
÷åòíîå çâàíèå "Çàñëóæåííûé äåÿòåëü íàóêè Ðîññèéñêîé Ôåäåðàöèè îí íàãðàæäåí ìåäà-
ëüþ îðäåíà "Çà çàñëóãè ïåðåä Îòå÷åñòâîì"II ñòåïåíè.

Ê ñâîèì 60 ãîäàì Èîñèô Ëüâîâè÷, êàê è â þíîñòè, âëþáëåí â íàóêó, ïîëîí èäåé è
ïëàíîâ, ÿâëÿåòñÿ àêòèâíî ðàáîòàþùèì ó÷åíûì. Àâòîðû ñòàòåé ðàññìàòðèâàþò äàííûé
ñáîðíèê êàê êîëëåêòèâíûé ïîäàðîê êî äíþ åãî ðîæäåíèÿ. Âìåñòå ñî ìíîãèìè äðóãèìè
åãî êîëëåãàìè, äðóçüÿìè, ñîàâòîðàìè è ó÷åíèêàìè îíè æåëàþò åìó êðåïêîãî çäîðîâüÿ,
äîëãèõ ëåò æèçíè è ïëîäîòâîðíîé íàó÷íîé äåÿòåëüíîñòè.

Â.Â. Îáóõîâ
Ðåêòîð Òîìñêîãî ãîñóäàðñòâåííîãî
ïåäàãîãè÷åñêîãî óíèâåðñèòåòà





Preface

If you can dream – and not make dreams your master;
If you can think – and not make thoughts your aim;

If you can meet with Triumph and Disaster
And treat those two imposters just the same;

From “IF “ by Rudyard Kipling.

On July 3, 2008 Professor Ioseph Lvovich Buchbinder, a famous and internationally recog-
nized scientist in area of theoretical physics, is celebrating his sixtieth birthday. The present
volume is a collection of papers of his colleagues, friends, co-authors, and former students
from all over the world, who wish to pay tribute to this significant event.

In different periods of his activity I.L. Buchbinder has done research into nonequilibrium
statistical mechanics, theory of magnetism, relativistic quantum mechanics, quantum field
theory in the curved space-time, quantum gravity, supersymmetric quantum field theory,
string theory, and higher spin field theory. In all of these areas of theoretical physics I.L.
Buchbinder received important results. Some of them became internationally recognized.

I.L. Buchbinder’s research and teaching activity are closely linked to Tomsk State Peda-
gogical University, where he started as an assistant professor and then became full professor
and head of the Department of Theoretical Physics. For many years he has been lectur-
ing on various special courses and supervised PhD students at Tomsk State University. He
has established an internationally acknowledged scientific school in theoretical physics and
trained a number of young researchers, some of whom have become famous scientists. In his
scientific work, I.L. Buchbibnder has been paying a great attention to research collaboration
with the leading Russian and foreign scientific institutions. Of special mention are his close
relations with the Laboratory of Theoretical Physics of the Joint Institute for Nuclear Re-
search (Dubna) and the Department of Theoretical Physics of the Lebedev Physical Institute
(Moscow).

On his 60th birthday Ioseph Buchbinder is still fascinated by science just as he was in his
youth He is full of new ideas and plans and continues his research activity.

The contributors present this volume from all their hearts to I.L. Buchbinder as a gift
on his 60th anniversary .All of them together with many other of his colleagues, friends,
co-authors and students wish him good health for many years ahead and fruitful scientific
activity.

V.V. Obukhov
Rector,
Tomsk State Pedagogical University.





Contents

1 Contributors 12

2 L.B. Anderson, Y.-H. He, A. Lukas
Heterotic Monad Bundles 18

3 I.Ya. Aref’eva
Nonlocal Cosmology 34

4 A. Arnaeva, S. Krivonos
BRST charge for the classical N = 2 W3 superalgebra 39

5 M. Asorey, P.M. Lavrov
Even and odd geometries on supermanifolds 46

6 V.G. Bagrov, S.P. Gavrilov, D.M. Gitman and D.P. Meira Filho
Coherent states of spinless particle in large magnetic – solenoid field 57

7 A.O. Barvinsky
Density matrix of the Universe: origin of inflation and cosmological acceleration
stages 78

8 S. Bellucci, D. O’Reilly
Complete and Consistent Non-Minimal String Corrections to Supergravity 98

9 L.V. Bork, D.I. Kazakov, G.S. Vartanov, and A.V. Zhiboedov
Conformal Invariance in Deformed N=4 SYM Theory 107

10 D. Brill
The Origin of Horizons in 2+1-dimensional Black Holes 117

11 E.I. Buchbinder, J. Khoury, B.A. Ovrut
Ekpyrotic Cosmology and Non-Gaussianity 123

12 M. Chaichian
On Some Effects of Space-Time Noncommutativity on Gravitational Theory and
Black Hole Physics 131

13 B. Dragovich
Some Lagrangians with Zeta Function Nonlocality 146

9



10 Contents

14 A. Fotopoulos, M. Tsulaia
Interacting massless higher spins in the BRST approach 154

15 A.V. Galajinsky
Massive charged particle on AdS2 × S2 163

16 D.V. Gal’tsov, N.G. Scherbluk
Hidden symmetries of non-minimal 5D supergravity 171
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Abstract

We review recent progress on the construction of monad vector bundles in the context
of E8 × E8 heterotic string compactifications. In particular, we explain how stability of
these bundles can be shown and how the complete resulting particle spectrum can be
computed.

1 Introduction

Compactification of the E8 ×E8 heterotic string of Calabi-Yau manifolds [1] is the oldest
and arguably still the most promising approach towards particle physics model building from
string theory. Many of the generic features of low-energy particle physics can be obtained
from such compactifications [2]. Among the virtues of such heterotic models are generic
gauge unification thanks to a universal gauge kinetic function, gauge-gravity unification [3]
in the strong-cpoupling limit and families contained in an underlying spinor representation
of SO(10), features which do not easily arise in the context of type II model building.

Despite early advanced [4], many years of heterotic model building experience and sub-
stantial recent progress [5]–[15] the construction of a ”heterotic strandard model” still remains
elusive. The main obstacle is of a technical nature and comes from to the inherent mathemati-
cal difficulties in describing and understanding the holomorphic vector bundles on Calabi-Yau
manifolds required for heterotic compactifications. The task becomes even more challenging
since one needs to understand large classes of Calabi-Yau manifolds and associated vector
bundles, as any small number of models is likely to fail when confronted with the more
detailed properties of the standard model of particle physics.

In this note, we report on progress in this direction [16, 17], focusing on a particular
class on Calabi-Yau manifolds and bundles over them. Specifically, we consider manifolds
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2. Review of heterotic Calabi-Yau compactifications 19

defined as complete intersections in products of projective spaces [18]–[23], complete inter-
section Calabi-Yaus or CICYs in short, and so-called monad bundles [24] over them. Monad
bundles have been considered repeatedly in the literature over the years [25]–[11]. However,
progress has been hindered because the essential property of stability had not been proven for
monad bundles. Stability of a holomorphic vector bundle is a property which originates from
the physical requirement of preserving four-dimensional N = 1 supersymmetry in a heterotic
compactification. More specifically, only a stable holomorphic bundle allows a connection
gauge field for which the 10-dimensional gaugino supersymmetry variation vanishes. One of
the main purposes of this note is to explain that the stability of certain classes of monad
bundles on CICYs can be proved and, hence, that they lead to viable heterotic compactifica-
tions with N = 1 supersymmetry. We also show that the number of so-called positive monad
bundles is finite and present a complete classification of such bundles. It is shown how the
complete spectrum of particles for such positive monads can be calculated.

2 Review of heterotic Calabi-Yau compactifications

In this section we briefly summarise the main ingredients needed for the compactification
of the E8 ×E8 heterotic string on Calabi-Yau manifolds. For a more detailed review see, for
example, Refs. [2].

A heterotic model is specified by four pieces of topological data: A Calabi-Yau three-fold
X, two holomorphic vector bundles V and Ṽ on X each with structure group each contained
in E8 and a class W ∈ H2(X,Z) of the second homology group of X. This data is subject to
three consistency conditions.

• Anomaly cancellation: For an anomaly-free model (assuming bundles with c1(V ) =
c1(Ṽ ) = 0) the constraint

c2(TX)− c2(V )− c2(Ṽ ) = W (1)

needs to be satisfied.

• Effectiveness: The class W needs to be effective, that is, it needs to have a represen-
tative curve C ⊂ X which is holomorphic.

• Stability: The vector bundles V and Ṽ need to be stable.

The physical interpretation of this data in terms of the bosonic fields of the 10-dimensional
heterotic string is straightforward. The Calabi-Yau space X, via Yau’s theorem, gives rise
to a six-dimensional internal Ricci-flat metric with the external four-dimensional part simply
being the Minkowski metric. The two bundles V and Ṽ , from the Donaldson-Uhlenbeck-Yau
theorem [29], carry connection gauge fields which can be interpreted as the internal parts of
the E8 × E8 gauge fields. Finally, the holomorphic curve C ⊂ X with associated class W is
wrapped by a five-brane which otherwise stretches the four-dimensional uncompactified space-
time. Together, this configuration subject to the above constraints then defines a consistent
N = 1 supersymmetry compactification of the heterotic string. So far we have referred to the
weakly coupled heterotic string in 10 dimensions, but the above topological data also specifies
a compactifiation of the 11-dimensional strong coupling limit [30, 3, 31] of the heterotic string
in an analogous way.

For this data, we will make a number of standard model-building choices. The ”ob-
servable” vector bundle V should have vanishing first Chern class, c1(V ) = 0, and rank
n = rank(V ) = 3, 4, 5, so that the structure group G of V is SU(n). The low-energy gauge
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group H is then given by the commutant of G within E8. The low-energy matter multiplets
follow from the decomposition of the 248 adjoint of E8 under G × H and the number of
these multiplets can be computed from the first bundle cohomology of V . The details of this
are summarised in Table 1. Given the choice of a Calabi-Yau manifold X and an observable

G×H Breaking Pattern: 248→ Particle Spectrum

SU(3)× E6 (1, 78)⊕ (3, 27)⊕ (3, 27)⊕ (8, 1)
n27 = h1(V )
n27 = h1(V ?) = h2(V )

n1 = h1(V ⊗ V ?)

SU(4)× SO(10) (1, 45)⊕ (4, 16)⊕ (4, 16)⊕ (6, 10)⊕ (15, 1)

n16 = h1(V )
n16 = h1(V ?) = h2(V )

n10 = h1(∧2V )
n1 = h1(V ⊗ V ?)

SU(5)× SU(5) (1, 24)⊕ (5, 10)⊕ (5, 10)⊕ (10, 5)⊕ (10, 5)⊕ (24, 1)

n10 = h1(V )
n10 = h1(V ?) = h2(V )

n5 = h1(∧2V ?)
n5 = h1(∧2V )

n1 = h1(V ⊗ V ?)

Table 1: A vector bundle V with structure group G can break the E8 gauge group of the
heterotic string into a GUT group H. The low-energy representation are found from the
branching of the 248 adjoint of E8 under G×H and the low-energy spectrum is obtained by
computing the indicated bundle cohomology groups.

bundle V , in order to be able to satsify the anomaly and effectiveness constraint, we demand
that

c2(TX)− c2(V ) is an effective class on X . (2)

In this case, there exists a holomorphic curve C ⊂ X with second homology class W = [C],
such that the anomaly condition is satisfied by wrapping a five-brane on C and choosing the
”hidden” bundle Ṽ to be trivial.

It then remains to prove the stability of V which is one of the main subjects of this note.
In order to define the concept of stability, we first have to introduce the slope µ(V ) of a bundle
V by

µ(V ) =
1

rank(V )

∫

X

c1(V ) ∧ J ∧ J . (3)

Given this notion, a bundle V is called stable if for all coherent sub-sheaves F ⊂ V with
1 ≤ rank(F) < rank(V ) the condition µ(F) < µ(V ) is satisfied. In other words, the slope of
any coherent sub-sheaf has to be smaller than the slope of the bundle itself. Since the bundles
considered here have vanishing first Chern class stability amounts to the condition that

µ(F) < 0 (4)

for all coherent sub-sheaves F ⊂ V with 1 ≤ rank(F) < rank(V ). It is usually hard to get a
handle on all coherent sub-sheaves of a bundle V which makes stability a property difficult to
prove. We will see in the following that there are certain sufficient (although not necessary)
criteria which are often suitable to prove stability but do not require knowledge of all coherent
sub-sheaves. Stable SU(n) bundles V satisfy the properties

H0(X,V ) = H3(X,V ) = 0 (5)

which are necessary (but usually not sufficient) criteria for stability. The vanishing condi-
tions (5) mean that the index of the bundle, which can be expressed in terms of the third
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Chern class using the index theorem, is given by

ind(V ) = h2(X,V )− h1(X,V ) =
1
2

∫

X

c3(V ) (6)

and, hence, measures the chiral asymmetry of the model. We also note that a bundle V is
stable if and only if its dual V ? is stable.

Table 1 shows that our choice of bundles V leads to a GUT theory at low energy. Usually,
the GUT group is further broken to the standard model group by introducing a Wilson line
on the quotient space X/Γ, where Γ is a discrete symmetry of X. In the present note we
will not carry this out explicitly, but merely impose two constraints which follow from this
construction and the requirement of having three families in the final model. The three-family
condition means that ind(V )/|Γ| (where |Γ| is the order of Γ) must be three and, therefore,
we must have that

ind(V ) is divisible by 3 . (7)

Further, in order to be able to form the quotient X/|Γ| the Euler number, χ(X) of X must
be divisible by |Γ|, so

χ(X) divisible by ind(V )/3 . (8)

As we will see, these two rudimentary physical conditions already impose fairly strong con-
straints on our models.

3 Calabi-Yau manifolds and monad bundles

3.1 Complete intersection Calabi-Yau manifolds

In this paper, we will focus on what is perhaps the simplest class of Calabi-Yau manifolds,
namely complete intersection Calabi-Yau manifolds (CICYs) (for a review see Ref. [32]).
They are embedded into an ambient space A = Pn1 × · · · × Pnm which is a product of m
projective spaces, each with dimension nr and Kahler form Jr. The manifold X is then
defined as the common zero locus of K =

∑m
r=1 nr − 3 polynomials pi with multi-degree

qi = (q1i , . . . , q
m
i ) (this means the degree of the polynomial pi in the projective coordinates

of the rth projective space is qri ). The Calabi-Yau condition, that is the vanishing of the first
Chern class c1(TX) = 0, then amounts to

K∑

i=1

qri = nr + 1 ∀ r = 1, . . . ,m . (9)

The degrees of the defining polynomials pi are suitably summarised in a m×K configuration
matrix 



Pn1 q11 q12 . . . q1K
Pn2 q21 q22 . . . q2K
...

...
...

. . .
...

Pnm qm1 qm2 . . . qmK



m×K

. (10)

With this notation the famous quintic Calabi-Yau manifolds can be written as [P4|5]. It turns
out that there are finitely many CICYs and their classification [18] leads to 7890 different
types, each represented by its configuration matrix. Based on the results of this original clas-
sification (accessible at [33]), we have compiled a list of these configuration matrices, together
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with all the relevant topological data. This data includes the Hodge numbers h1,1(X) and
h2,1(X), the second Chern classes c2(X) = c(2r)(X)νr in a basis νr of the fourth cohomology
dual to Jr, and the triple intersection numbers drst. In this note, we will focus on a sub-class
of these CICYs, namely the so-called favourable CICYs whose second cohomology is spanned
by the (restriction of the) ambient space Kahler forms Jr and which are, hence, characterised
by

h1,1(X) = m . (11)

It turns out that 4515 of the 7890 CICYs are favourable, so we are still dealing with a large
class. Working with this sub-class has a number of practical advantages. First, the Kahler
cone, that is, the set of allowed Kahler forms J on X, has a simple description and is given by
J = trJr, where the Kahler moduli tr have to be positive, tr ≥ 0. Further, the effective classes
in H2(X) ' H4(X) are characterised by linear combinations wrνr with positive integers wr.
This means that the anomaly/effectiveness condition (2) can be written as

c2r(V ) ≤ c2r(TX) ∀ r = 1, . . . ,m . (12)

Finally, for favourable CICYs, all line bundles on X can be obtained as restrictions of line
bundles on the ambient space A. Specifically, it we denote by OPn(k) the kth power of the
hyperplane bundle on Pn, then the line bundles on A can be written as OA(k) ≡ OPn1 (k1)⊗
· · ·⊗OPn1 (km) where k = (k1, . . . , km) in an integer vector. The restriction of OA(k) to X is
then denoted by OX(k) and these line bundles indeed provide a complete set on X. Writing
L = OX(k), the Chern characters of these line bundles are given by

ch1(L) = c1(L) = krJr
ch2(L) = 1

2k
rksJr ∧ Js

ch3(L) = 1
6k

rksktJr ∧ Js ∧ Jt ,
(13)

From the Atiyah-Singer index theorem, the index of L can be written as

ind(L) ≡
3∑
q=0

(−1)qhq(X,L) =
∫

X

ch(L) ∧ Td(X) =
∫

X

[
ch3(L) +

1
12

ch2(TX) ∧ c1(L)
]

=
1
6

(
drstk

rkskt +
1
2
krc2r(TX)

)
. (14)

In Ref. [34], the cohomology for all line bundles on favourable CICYs X has been computed
explicitly. The results are complicated and require many case distinctions but they allow
the calculation of all line bundle cohomologies on all favourable CICYs. Here, we merely
mention some generic results for line bundle cohomology. For positive line bundles, that is
line bundles L = OX(k) with all kr > 0 Kodaira vanishing implies that Hq(X,L) = 0 for
all q > 0. Hence, for positive line bundles H0(X,L) is the only potentially non-vanishing
cohomology and Eq. (14) reads h0(X,L) = ind(L). Similarly if follows that for negative line
bundles, that is line bundles L = OX(k) with all kr < 0, all but the third cohomology vanishes
and h3(X,L) = −ind(V ). The explicit formulae for line bundle cohomology in Ref. [34] also
show that semi-positive line bundles, that is line bundles L = OX(k) with all kr ≥ 0, have
at least one section, so h0(X,L) > 0. These results will be important since line bundles are
the main building blocks of our monads, as we will see momentarily.



4. Classification of positive monads on favourable CICYs 23

3.2 Monads on CICYs

We define a monad bundle [35]–[39] V on a (favourable) CICY X by the short exact
sequence

0→ V → B
f−→ C → 0 , where

B =
rB⊕

i=1

OX(bi) , C =
rC⊕

j=1

OX(cj) . (15)

are sums of line bundles with ranks rB and rC , respectively. The map f can be thought of
as (the restriction to X of ) a rB × rC matrix of polynomials with degrees ca − bi. Provided
all line bundles in C are greater than all line bundles in B (by which we mean cra ≥ bri for
all a, i, r and for all a and i there exists an r such that cra > bri ) this short exact sequence
indeed defines a bundle V on X. In this note we will mostly consider positive monads, that is
monads for which cra > 0 and bri > 0 for all a, i, r. This is the class of monads which has been
traditionally considered in the literature and it offers significant practical advantages due to
the simplicity of positive line bundle cohomology. We will argue later that the condition of
positivity can be relaxed but for now we will focus on positive monads.

The Chern classes of a monad bundle V can be explicitly written as

rk(V ) = rB − rC = n ,

cr1(V ) =
rB∑

i=1

bri −
rC∑

j=1

crj ,

c2r(V =
1
2
drst




rC∑

j=1

csjc
t
j −

rB∑

i=1

bsi b
t
i


 , (16)

c3(V ) =
1
3
drst




rB∑

i=1

bri b
s
i b
t
i −

rC∑

j=1

crjc
s
jc
t
j


 ,

where cr1(V ) = 0 has been assumed to simplify the expressions for c2r(V ) and c3(V ). A number
of physical constraints should be imposed on the monad construction. First, we would like the
structure group of V to be SU(n), where n = 3, 4, 5. This means that rk(V ) = n = rB − rC
and cr1(V ) = 0. In addition, the anomaly constraint (12) has to be satisfied.

4 Classification of positive monads on favourable CI-
CYs

We can ask if the class of positive monads on favourable CICYs with structure groups
SU(n), where n = 3, 4, 5 and which satisfy the anomaly constraint (12) constitute a finite class.
To answer this question, we define the quantities brmax = maxi{bri }, the maximal entries in B
for each projective space. Using the anomaly condition (12), the fact that cr1(V ) = 0 and the
explicit expressions for the Chern classes (16) one can then derive the inequality [17]

2c2r(TX) ≥ n
∑
s,t

drstb
t
max . (17)

Since the matrix
∑
s drst is always non-singular, the first of these inequalities provides an

upper bound for brmax, the maximal entries of B. More precisely, we can scan all 4515
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Config No.Bundles Config No.Bundles
[5] (20, 14, 9) [3 3] (5, 3, 2)

[2 2 2 2] (2, 1, 0)
[
2
4

]
(611, 308, 56)[

0 2
3 2

]
(12, 5, , 0)

[
0 2
4 1

]
(126, 17, 0)[

2 1
1 3

]
(3, 0, 0)

[
2 1
2 2

]
(5, 0, 0)[

0 0 2
3 2 1

]
(5, 0, 0)

[
0 1 1
2 2 2

]
(5, 0, 0)[

0 1 1
4 1 1

]
(126, 17, 0)

[
0 2 1
2 2 1

]
(2, 0, 0)[

0 0 1 1
2 2 2 1

]
(3, 0, 0)

[
0 0 1 1
3 2 1 1

]
(5, 0, 0)[

1 1
0 2
1 3

]
(74, 0, 0)

[
1 1
0 2
2 2

]
(9, 0, 0)[

1 1
1 2
0 3

]
(34, 0, 0)

[
1 1
2 1
2 1

]
(3, 0, 0)

Config No.Bundles Config No.Bundles
[4 2] (7, 5, 3) [3 2 2] (3, 2, 1)[

3
3

]
(62, 43, 14)

[
0 2
2 3

]
(80, 12, 0)[

1 1
3 2

]
(15, 8, 0)

[
1 1
4 1

]
(153, 35, 19)[

2 1
3 1

]
(13, 2, 0)

[
0 0 2
2 2 2

]
(5, 0, 0)[

0 1 1
2 3 1

]
(12, 5, 0)

[
0 1 1
3 2 1

]
(8, 0, 0)[

1 1 1
3 1 1

]
(2, 0, 0)

[
2 1 1
2 1 1

]
(1, 0, 0)[

2
2
3

]
(553, 232, 0)

[
0 2
1 2
1 2

]
(8, 0, 0)[

1 1
1 1
1 3

]
(25, 0, 0)

[
1 1
1 1
2 2

]
(9, 0, 0)

[
1 1 0
1 0 1
3 1 1

]
(9, 0, 0)

[
2
2
2
2

]
(3665, 625, 0)

Table 2: The 36 manifolds which admit positive monads. The No.Bundles column next to each
manifold is a triple, corresponding to the numbers of respectively ranks 3,4, and 5 monads.

favourable CICYs and find all positive integer solutions brmax of Eq. (17). It turns out that
only on 63 favourable CICYs does a solution exist and the values for brmax never exceed 6.

One can also derive the upper bound

rB ≤
(

1 +
m∑
r=1

brmax

)
, (18)

for the rank of B and, together with the inequality (17) this shows that the class of positive
monads is finite. One can now perform a systematic computer search for a complete classifica-
tion. It turns out that only 36 CICYs do indeed allow for positive monad bundles consistent
with all constraints and that a total of 7118 monads exist over these 36 manifolds. We have
listed these 36 CICYs, together with the number of monads over each of them, in Table 2.
The number of monad bundles as a function of their index, ind(V ), has been plotted in Fig. 1.
The left plot of all 7118 monads shows a roughly Gaussian distribution with a peak at a fairly
high index of around −60. For the plot on the right-hand side we have only taken into account
bundles which satisfy the three-family conditions (7) and (8). It is apparent that even these
two rudimentary physical constraints lead to a significant reduction in numbers. The precise
figures are summarised in Table 3. It should be noted that the additional requirement of a
not too large index (so that the order of the discrete group necessary to obtain three families
is not too large) leaves us only with a rather small number of viable bundles, corresponding
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Figure 1: (a) Histogram for the index, ind(V ), of the positive monads, 5680 of rank 3 (in
red), 1334 of rank 4 (in blue), and 104 of rank 5 (in gray), found over 36 favourable CICYs:
the horizontal axis is ind(V ) and the vertical, the number of bundles; (b) the same data set,
but only taking those monads which have ind(V ) = 3k for some positive integer k and such
that k divides the Euler number of the corresponding CICY.

to the tail in the right Fig. 1.

Bundles ind(V ) = 3k ind(V ) = 3k and k divides η(X)
rank 3 5680 3091 458
rank 4 1334 207 96
rank 5 104 52 5
Total 7118 3350 559

Table 3: The number of positive monad bundles on favourable CICYs. Imposing that the third
Chern class is divisible by 3 reduces the number and requiring in addition that the quotient of
c3(V ) by 3 divides the Euler number of the corresponding CICY further reduces the number.

5 Stability

In this section, we give an informal account of the stability proof for positive monads on
CICYs. Full details of the proof can be found in Refs. [34].
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To start, it is useful to introduce ”dual” coordinates sr on the Kahler cone, defined by
sr = 1

rk(V )drstt
stt, so that the stability condition (4) can be written as

µ(F) = src
r
1(F) < 0 , (19)

for any coherent sub-sheaf F ⊂ V with 1 ≤ rk(F) < rk(V ). We note that, in terms of the
variables sr the Kahler cone is contained in sr ≥ 0 although it does usually not cover all of
the positive quadrant.

As a warm-up is it useful to discuss the case of cyclic CICYs, that is CICYs with h1,1(X) =
1, first. There are five such cyclic manifolds in the CICY list with a total of 77 positive monad
bundles over them. In this case, assume the existence of a de-stabilising sheaf F ⊂ V , so
µ(F) ≥ 0 and k = rk(F) < rk(V ). Then define a line bundle L = ∧kF ⊂ ∧kV . This
line bundle still satisfies µ(L) ≥ 0 and given that the Kahler cone is characterised by s ≥ 0,
Eq. (19) implies that L = OX(k), where k ≥ 0. As previously discussed such semi-positive line
bundles have at least one section and, hence, ∧kV has a section. This means h0(X,∧kV ) > 0.
Turning this argument around we arrive at Hoppe’s criterion. If H0(X,∧kV ) = 0 for all
k = 1, . . . , rk(V )− 1, then V is stable.

We can now apply this criterion to V ? which is stable exactly if V is. In particular, we
need to show that H0(X,V ?) = 0 and H0(X,∧n−1V ?) = H0(X,V ) = 0. To show the former
we write down the long exact sequence associated to the dual of the monad sequence (15). It
reads

0 → H0(X,C?) → H0(X,B?) → H0(X,V ?)
→ H1(X,C?) → H1(X,C?) → . . .

(20)

Since B? and C? are sums of negative line bundles we know that H0(X,B?) = 0 and
H1(X,C?) = 0 which, from the above sequence, immediately implies that H0(X,V ?) = 0.
To show that H0(X,V ) = 0 is not quite so easy and has been explicitly carried out in
Ref. [17]. This completes the proof for rank three bundles. For rank four and five bundles
similar arguments as above can be used [17] to demonstrate the vanishing of H0(X,∧kV ?)
for k = 2, . . . , n− 2. This completes the stability proof for positive monad bundles on cyclic
CICYs.

What about CICYs with h1,1(X) > 1? As before, it is useful to introduce the line bundle
L = ∧kF , where k = rk(F), associated to a coherent sheaf F and to note that µ(L) = µ(F).
If we can show that µ(L) ≥ 0 for a certain fixed patch {sr} in the Kahler cone for all line
bundles L which cannot be excluded as sub-line bundles of ∧kV then V is stable in this part
of the Kahler cone. We can, therefore, simplify our task by proving for as many line bundles
as possible that they cannot be sub line-bundles of ∧kV . It turns out that all our bundles
do satisfy Hoppe’s criterion H0(X,∧kV ) = 0 for k = 1, . . . , rk(V ) − 1 (although this is only
sufficient for stability in the cyclic case). This means that L can only be a sub line bundle
of ∧kV if H0(X,L) = 0. Further, Hom(L,∧kV ) ' H0(X,L? ⊗ ∧kV ) must be non-zero for L
to be a sub line bundle. It turns out that these two criteria are, in many cases, sufficient to
prove stability.

Let us discuss this for the case h1,1 = 2, which covers about 1500 of our monad bundles.
Line bundles L = OX(k, l) with k ≥ 0 and l ≥ 0 have a section and can, hence, not be sub line
bundles of ∧kV . Negative line bundles L = OX(k, l) with k ≤ 0 and l ≤ 0 do not destabilise
the Kahler cone which is in the positive quadrant. Mixed line bundles L = OX(k, l) with k
and l of different sign are potentially dangerous. However, most of them can be excluded since
H0(X,L? ⊗ ∧kV ) = 0 as shown in Ref. [34]. It turns out, the remaining mixed line bundles
may destabilise some of the Kahler cone but leave an open subset stable. The situation is
summarised in Fig. 2. These statements can be systematically checked by a computer scan
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Figure 2: Schematic plot for stability proof of monad bundles on CICYs with h1,1 = 2 in the
(s1, s2) plane of the two Kahler moduli. The Kahler cone is indicated in yellow. Potential
sub line bundles L with c1(L) in the positive quadrant are excluded by Hoppe’s criterion. Sub-
sheaft with c1(L) in the negative quadrant do not destabilise the Kahler cone. Line bundles
in the mixed quadrants can be shown to satisfy H0(X,L?⊗∧kV ) = 0 except for the light blue
regions. The associated destabilised regions (light red) do not cover the whole Kahler cone.

and in this way stability can be shown for all 1200 or so rank three and many of the rank
four monad bundles on CICYs with h1,1(X) = 2.

The method of this proof can, at least in principle, be applied to CICYs with h1,1(X) > 2.
Of course, in this case, the geometry of the Kahler cone and the various destabilising regions
become much more complicated. We have not yet carried this out explicitly but we believe
that our proof for h1,1 ≤ 2 provides an adequate basis for the conjecture that all positive
monads on favourable CICYs are stable.

6 Particle spectrum

We have already computed the index which gives the chiral asymmetry for our models.
Now, we should determine the number of families and anti-families independently. From
Table 1, the number of families (anti-families) is given by the dimension of the cohomology
H1(X,V ) (H2(X,V )). This cohomology can be obtained from the long exact sequence

0 → H0(X,V ) → H0(X,B) → H0(X,C)
→ H1(X,V ) → H1(X,B) → H1(X,C)
→ H2(X,V ) → H2(X,B) → H2(X,C)
→ H3(X,V ) → H3(X,B) → H3(X,C)→ 0

(21)

which follows from the defining short exact sequence (15) for the monad bundle V . Since both
B and C are sums of positive line bundles on X we know that Hq(X,B) = Hq(X,C) = 0
for q > 0. Hence, in the above sequence H2(X,V ) is ”enclosed” by zeros and must vanish.
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We also know from stability that H0(X,V ) = H3(X,V ) = 0 so that H1(X,V ) is the only
non-vanishing cohomology of V . Its dimension is, therefore, given by the (negative) index or,
from Eq. (21), in terms of the cohomology of B and C. Specialising to the three cases for the
rank of V this implies

E6 : n27

SO(10) : n16

SU(5) : n10



 = h0(X,C)− h0(X,B) = −ind(V ) ,

n2̄7

n1̄6

n1̄0



 = 0 . (22)

Consequently, all our models have a vanishing number of anti-families and the number of
families can be easily computed from the index of the bundle. In fact, we have already
plotted the index in Fig. 1. The absence of vector-like pairs for all positive monads may be
considered a phenomenologically attractive feature.

For rank four and five bundles we also need to calculate the number of Higgs multiplets.
From Table 1 this means we should calculate h1(X,∧2V ?). The details of this computation
which is somewhat involved and requires ambient space cohomology and Koszul resolutions
are given in Ref. [17]. The result, however, is simply that

H1(X,∧2V ?) = 0 (23)

provided that the map f in the definition (15) of the monad is sufficiently generic (that
is, it is made up from sufficiently generic polynomials of the appropriate degrees). For the
rank four case the low energy gauge group is SO(10) and the Higgs multiplets reside in the
fundamential, 10. Since ∧2V ' ∧2V ? for SU(4) bundles, Eq. (23) implies

n10 = h1(X,∧2V ) = 0 , (24)

and, hence, that the number of Higgs multiplets vanishes in this case. For rank five, the
low-energy gauge group is SU(5) and the Higgs multiplets appear as vector-like pairs of 5 and
5̄. From Table 1, the number of 5 and 5̄ is counted by the cohomologies H1(X,∧2V ?) and
H1(X,∧2V ), respectively. However, applying the index theorem to ∧2V one can also derive
a formula for the chiral asymmetry of these multiplets and one finds [5]

ind(V ) = h1(X,∧2V ?)− h1(X,∧2V ) . (25)

Our result (23) then implies that

n5̄ = h1(X,∧2V ) = −ind(V ) , n5 = 0 . (26)

Combining this with Eq. (22) shows that we have −ind(V ) complete SU(5) families, each
consisting of a 10 and 5̄ multiplet, but no vector-like Higgs pairs in 5 and 5̄ multiplets.

The absence of Higgs multiplets for both the SO(10) and the SU(5) case is, of course,
a concern from a phenomenological point of view. However, it has to be stressed that this
result is only valid provided the map f in the monad sequence (15) is indeed generic. It
has been shown in Ref. [16], and previously found in the context of other heterotic bundle
constructions [14] that a non-generic choice for f can lead to a non-vanishing number of
Higgs multiplets. In fact, imposing discrete symmetries on our models as a preparation for
the introduction of Wilson lines will require restrictions on the polynomials defining the CICY
as well as on f . The number of Higgs multiplets then has to be re-calculated in this context.

Finally, we should compute the number of singlets which correspond to the cohomology
H1(X,V ⊗ V ?). A general formula can be obtained provided the conditions

H1(X,C? ⊗ C) = H2(X,C? ⊗B) = 0 . (27)
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on B and C are satisfied. These conditions can be checked explicitly given our knowledge of
line bundle cohomology on CICYs and are indeed satsfied for many of our models. Under
this assumption, the number of singlets is given by [17]

n1 = = h0(X,B? ⊗ C)− h0(X,B? ⊗B)− h0(X,C? ⊗ C)
+h0(X,C? ⊗B)− h1(X,C? ⊗B) + h1(X,B? ⊗B) + 1 , (28)

an expression which can again be evaluated from the known line bundle cohomology. For
models which do not satisfy the vanishing conditions (27) more sophisticated methods have
to be applied [17] but the number of singlets can still be explicitly calculated even in such
cases.

7 Semi-positive monads

One obvious disadvantage of the models considered so far are the relatively large family
numbers, evident from the peak at −ind(V ) ' 60 in Fig. 1 at. These large numbers make it
difficult to obtain a model with precisely three families after dividing by a discrete symmetry,
given that the order of Calabi-Yau symmetries tends to be relatively small. Clearly, these
large family numbers are related to the positivity of the monads. One might, therefore, ask
how the situation changes if one considers the class of semi-positive monads with entries
satisfying bri ≥ 0 and cra ≥ 0 (as opposed to bri > 0 and cra > 0 for positive monads) but are
otherwise subject to the same constraints.

The first difficulty one encounters is that this class is not obviously finite. In other words,
the conditions cr1(V ) = 0 and c2r(V ) ≤ c2r(TX) do not lead to a finite number of matrices (bri )
and (cra) as was the case for positive monads. Indeed, infinite classes of semi-positive monads
satisfying all relevant constraints can be found relatively easily. One example is provided by

B = OX(1, 0)⊕3 ⊕OX(t, 1) , C = OX(t+ 3, 1) (29)

for all positive integer t on the CICY with configuration matrix X =
[

1
3

∣∣∣∣
2
4

]
. For this

example, it turns out that all the relevant topological data is independent of t. In fact, so far,
we have not been able to find a class where we can show the topological inequivalence of an
infinite number of bundles. It is, therefore, not inconceivable that the class of semi-positive
monads becomes finite after more sophisticated bundle equivalences are taken into account.
This problem is currently under inverstigation [40]

For now, we will simply proceed pragmatically and, as a first attempt, perform a scan of all
rank three semi-positive monads with bri ≤ 20 and cra ≤ 20 on all 32 CICYs with h1,1(X) = 2
(monads with zero entries on cyclic CICYs can be shown to be unstable). We find a list of
about 100000 bundles. The distribution of these bundles as a function of the chiral asymmetry
is shown in Fig. 3. By comparing with Fig. 1 it is evident that the distribution is peaked
at significantly lower values of −ind(V ), as one would expect. As before, we can impose
the three-family constraints (7) and (8) on these models. It turns out that about 17000
bundles are consistent with the constraints and, of those, about 7000 satisfy −ind(V ) ≤ 20.
This means we are dealing with a vastly larger class of models and many more pass our
rudimentary physical tests. It also turns out that stability can be proven for at least some
of these semi-positive monads [34]. However, their particle spectrum can be qualitatively
different from that of positive monads in that the number of anti-generations might be non-
zero and Higgs multiplets might exist even in the generic case. All these issues require further
investigation [40].
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Figure 3: Number of semi-positive monads with bri ≤ 20 and cra ≤ 20 on CICYs with h1,1(X) =
2 (vertical axis) as a function of the (negative) index ind(V ) (horizontal axis).

8 Conclusion

In this note, we have reported on progress in constructing heterotic monad bundles on
complete intersection Calabi-Yau manifolds (CICYs). We have shown that a certain sub-set of
these bundles, the positive monads, is finite and can be completely classified, leading to about
7000 models. Stability can be shown for many of these models and we have explained the
basic ideas of the stability proof. Based on these results we conjecture that all positive SU(n)
bundles (where n = 3, 4, 5) on (favourable) CICYs are stable. It has also been shown that
the complete particle spectrum for these models can be calculated from bundle cohomology.
In particular, the number of anti-families vanishes for all models. A phenomenologically
problematic feature of positive monads is their relatively large number of families which
makes it difficult to obtain three generations after dividing by a discrete symmetry. This has
motivated us to consider semi-positive monads. We have shown that they constitute a vastly
larger class and that their chiral asymmetry is significantly lower. However, further work is
needed to decide if this class of monads is finite and to determine all their relevant properties.

In summary, we have shown that monad bundles on CICYs provide a framework in which
large numbers of models can be studied systematically and all physically relevant properties
can be extracted in an algorithmic way. We believe that investigating a large class of models
in this way is a necessary pre-requisite to extracting a physically successful model from string
theory and further work in this direction is under way.
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I.Ya. Aref’eva
Steklov Mathematical Institute

Gubkin St.8, 119991 Moscow, Russia

Abstract

A string field theory (SFT) nonlocal model of the cosmological dark energy providing
w < −1 is briefly surveyed. We summarize recent developments and open problems, as
well as point out some theoretical issues related with others applications of the SFT
nonlocal models in cosmology, in particular, in inflation and cosmological singularity.

1 Introduction

The origin of the dark energy (DE) is still a fascinating puzzle. Present cosmological
observations do not exclude an evolving DE state parameter w. Recent results of WMAP [2]
together with the data [1] on Ia supernovae give the following bounds for the DE state
parameter wDE = −1+0.14

−0.11 or without an a priori assumption that the Universe is flat and
together with the data on large-scale structure and supernovae wDE = −1.06+0.13

−0.08.
There are two questions to experimental data:

• Can we rule out a dynamical DE?

• Can we rule out w < −1?

Recent data are not enough to answer these two questions and moreover, within the next
few years answers on these two questions will not accessible as it has previously expected.
However one might wonder whether there is a room for w < −1 in a theory.

Dark energy models with the state parameter w < −1 violate the null energy condition
(NEC). All local models realizing the NEC violation are unstable and violate usual physical
requirements. To provide w < −1 a string field theory (SFT) nonlocal DE model has been
proposed [3].

In this SFT nonlocal model our Universe is considered as a D3 non-BPS brane embedded
in the 10 dimensional space-time. The role of the dark energy plays the Neveu-Schwarz (NS)
string tachyon leaving in GSO− sector. The tachyon action is dictated by the cubic fermionic
SFT [4, 5] and it is nonlocal due to string effects [6].
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We postulate a minimal form of the tachyon interaction with gravity. In the spatially flat
FRW metric the model is described by a system of two nonlinear nonlocal equations for the
tachyon field and the Hubble parameter. The corresponding potential has perturbative and
nonperturbative minima. A transition from a perturbative vacuum to a non-perturbative one
is interpreted as D-brane decay. It happens that this model under some conditions displays
a phantom behaviour [7]. Note that unlike phenomenological phantom models here phantom
appears in an effective theory. Since SFT is a consistent theory this approach does not suffer
from usual problems which are inevitable for phenomenological phantom models. The UV
completion is supposed to be solved by extending the one mode (tachyon) approximation.

SFT in the flat background dictates a particular value of the D-brane tension. It can be
found from the requirement that the total energy of the system in the true non-perturbative
vacuum is zero. In cosmology this total energy of the system in the true non-perturbative
vacuum can be interpreted as the cosmological constant. It has been conjectured that an
existence of a rolling solution describing a smooth transition to the true vacuum does define
the value of the cosmological constant [3]. We cannot prove this conjecture but arguments
to it favor can be given using the local approximation [10]. A recent breakthrough in solv-
ing numerically the full nonlinear and nonlocal system of equations [9] also supports this
expectation.

2 Model

Our model is given by the following action [3]

S =
∫
d4x
√−g

(
R

2κ2
+

1
λ2

4

(
−ξ

2α′

2
gµν∂µφ(x)∂νφ(x) +

1
2
φ2(x)− 1

4
Φ4(x)− T ′

))

Here gµν , κ and λ4 are the four-dimensional metric, gravitational coupling constant and scalar
field coupling constant, respectively; 1

λ2
4

= v6M
4
s

go
(Ms

Mc
)6, go is the open string dimensionless

coupling constant,Ms is the string scaleMs = 1/
√
α′ andMc is a scale of the compactification,

v6 is a number related with a volume of the 6-dimensional compact space. T ′ = 1/4 + Λ′,
where Λ′ is a dimensionless cosmological constant. φ is a tachyon field and Φ is related with
φ by the following relation Φ = e

α′
8 ¤gφ, where ¤g = 1√−g∂µ

√−ggµν∂ν . This form of the
nonlocal interaction is defined by the cubic fermionic SFT (CFSFT) [5]. More precisely, the
CFSFT brings a more complicated form of the interaction, but by an analogy with the flat
case [8, 7, 9] we believe that this approximation catches essential physical properties of the
model and ξ2 ≈ 0.9556 is a constant defined by the CFSFT.

In the spatially flat FRW metric with a scale factor a(t) the equation for a space homoge-
nous tachyon field Φ and the Friedmann equations have the form [3]

(
ξ2D + 1

)
e−

1
4DΦ = Φ3, D = −∂2

t − 3H(t)∂t, H = ∂ta/a (1)

3H2 =
κ2

λ2
4

(
ξ2

2
∂tφ

2 − 1
2
φ2 +

1
4
Φ4 + E1 + E2 + T ′

)
, (2)

E1 = −1
8

∫ 1

0

ds
(
(ξ2D + 1) e

s−2
8 DΦ

)
·
(
D e−

1
8 sDΦ

)
, (3)

E2 = −1
8

∫ 1

0

ds
(
∂t(ξ2D + 1) e

s−2
8 DΦ

)
·
(
∂te
− 1

8 sDΦ
)
. (4)

The non-local energy E1 plays the role of an extra potential term and E2 the role of the kinetic
term. Note that here we use a dimensionless time t→ t

√
α′.
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3 How we study our model and what we get

Equations (1) and (2) form a rather complicated system of nonlinear nonlocal equations
for functions Φ and H(t) because of the presence of an infinite number of derivatives and a
non-flat metric. Before to discuss the methods of study this model let us mention the known
methods of study equation (1) in the flat background, H = 0,

(−ξ2∂2
t + 1

)
e

1
4∂

2
t Φ(t) = Φ(t)3. (5)

Equation (2) in the flat case describes the energy conservation [7].
A boundary problem Φ(±∞) = ±1 for (5) has been studied using:

• a numerical method [8] based on an integral representation of (5); it is related with a
diffusion equation method [11] which uses an auxiliary function of two variables Ψ(r, t)
that is the subject of a linear equation and Ψ(1

4 , t) = Φ(t);

• a decomposition on local fields [12, 14, 15, 13]; this method works well for linear equa-
tions and has been used to study solutions to (5) near vacuum ±1;

• existence theorems [17, 18, 19];

• almost exact solutions methods [20, 21]; the approach [20] uses a diffusion equation
method.

The following two characteristic properties of (5) have been obtained

• an existence of a critical point ξ2cr ≈ 1.38 such that for ξ2 < ξ2cr eq. (5) has a rolling
solution [8] interpolating between ±1;

• an existence of a dominance of an extra non-local kinetic term E2 over the local kinetic
one [7] and as a result, an appearance of a phantom behavior providing w < −1.

These result have been obtained using numerical calculations. It is very interesting to study
the problem analytically and also try to find approximate models admitting explicit solutions
and having above mentioned properties. They could be two or more components local models.

An investigation of non-flat eqs. (1) and (2) is essentially more complicated. The following
methods are used:

• A decomposition on local fields and a modification of the potential have been used
in [10, 21, 23, 15]. A simplest one phantom mode approximation with an explicit
form of the solution φ(t) = tanh(t) is realized for a six-order potential [10] and gives
H0 = 1/3m2

p. Assuming that Mc ∼Mp and Ms ∼ 10−6.6Mp we get

H0 ∼ 10−60Mp.

• an analytic approach that is closely related with the diffusion equation method [24].

• A numerical study has been performed in [9], where the diffusion equation method has
been used to define expD and a double-step iteration procedure has been proposed.

The following physical effects are found in [9]

• For ξ2 < ξ2cr ≈ 1.18 and Λ = Λ(ξ) the system (1), (2) has a rolling solution.
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• For ξ2 < ξ2shape and t > 0 the Hubble function H(t) is a function which has small
fluctuations about a monotonic function Hl(t) with an asymptotic H0;
for ξ2shape < ξ2 < ξ2cr H(t) describes fluctuations about a function Hl(t) that has two
maximum. To realize this approximated shape Hl(t) by local fields one needs at least
two fields [23].

As in the flat case it would be very interesting to find approximate analytical solutions which
exhibit these properties. Note that two maximum shape regime for H(t) is interesting in
a context of building an unified cosmological evolution. Let us also note that there are
applications of non-local SFT models to inflation [25, 26, 27, 28] and cosmological singularity
( [15, 16] and refs therein).
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Abstract

We explicitly demonstrate that the classical N = 2 W3 algebra with zero cen-
tral charge admits two bases in which it becomes a quadratic superalgebra. As a
consequence, for this superalgebra one may construct two different BRST charges Q1

and Q2. These charges obey the same boundary conditions and do not anticommute
{Q1, Q2} = H, [H,Q1,2] = 0, while Q2

1 = Q2
2 = 0.

Preface

It is a pleasure for us to send our contribution to the volume dedicated to the 60-th
birthday of Professor Joseph L. Buchbinder. Joseph, being extremely brilliant scientist and
very attractive person, has done so much to establish an intensive collaboration between
Tomsk and Dubna. We all enjoy this collaboration and hope it will continue... forever and a
day! In this respect we consider our contribution as a small step towards join activity with
Joseph in this area where he is expert.

1 Introduction

Nowadays, the construction of the BRST charges for some, even nonlinear algebras, seems
to be a rather algorithmic procedure. Indeed, in the most cases one may just write down the
most general ansatz for the charge and than easily fix all the coefficients. Moreover, for
some type of algebras (and even for the quantum Lie algebras) there are quite general results
concerning explicit structure of the BRST charges (see e.g. [1]). Nevertheless, among the well
known nonlinear superalgebras there is at least one special case - the N = 2 W3 superalgebra
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[2, 3] - for which the standard procedure of construction of the BRST charge fails. The
problem is that in this case one may construct bosonic currents B from the bosonic ghost-
anti-ghosts currents which accompany the fermionic currents of this superalgebra, such that B
possesses zero conformal weight and zero ghost number. Therefore, the general ansatz for the
BRST charge for this superalgebra might contain arbitrary functions depending on B. Clearly,
in view of this feature the construction of the BRST charge for N = 2 W3 superalgebra can
not be done in the standard fashion.

Of course, the reasonable question is what we expect to understand, providing we know
the BRST charge for N = 2 W3 superalgebra? Besides the clarification of the situation with
infinite tails in the general ansatz for the BRST charge, having it at hand can help to solve a
long standing problem of construction of N = 4 W3 algebra. Indeed, in [4] it was shown that
explicit expression for BRST current for Virasoro algebra can be used for indirect construction
of N = 2 super-Virasoro algebra. Later on these results were extended in [5] to the case of
famous W3 algebra [6]. In this paper the authors showed that the BRST current for W3

algebra [7] can be combined with the proper combinations of the ghost-anti-ghost currents
and the currents of W3 algebra to close on N = 2 W3 algebra. Clearly, to make the next step
one needs to know the BRST current for N = 2 W3 algebra. Then repeating all steps of [5]
one may hope to reconstruct in this way N = 4 W3 algebra. It is worth noting that to the
best of our knowledge all previous attempts to construct N = 4 W3 algebra failed.

In this Letter we present our first results about explicit structure of the classical BRST
charge for the classical N = 2 W3 algebra. The full quantum N = 2 W3 algebra is rather
complicated. That is why we decided firstly to attack its simpler classical version. Even in this
simplest case the general ansatz for BRST current still contains infinite tails in the currents
B. So, our next simplification is just to cut all these terms at all. With all these assumptions
the ansatz for BRST charge contains 60 terms and the calculations become manageable. We
also demonstrate (Section 2) that the classical N = 2 W3 algebra with zero central charge
admits two bases in which it becomes a quadratic superalgebra, which slightly simplifies the
life. Our main result (Section 3) is that for the classical N = 2 W3 algebra there are two
different BRST charges Q̃1 and Q̃2, which do not anticommute (

{
Q̃1, Q̃2

}
= H̃,

[
H̃, Q̃1,2

]
=

0, Q̃2
1 = 0, Q̃2

2 = 0). We conclude our Letter with a short discussion of this situation.

2 Classical N = 2 W3 algebra with zero central charge

The basic relations defining the classical N = 2 W3 algebra are obtained in [2] in terms
of components and in [3] in terms of N = 2 superfields. As usually, to construct the classical
BRST charge we need a version of the algebra with zero central charge. In the case of
nonlinear algebras one can not immediately put the central charge equal to zero due to some
features of the nonliner algebras which can be summarized as follows:

• In all known nonlinear algebras with non-zero central chargs c the structure of the terms
in the r.h.s. of OPE’s schematically reads

c+ (linear terms) +
1
c
(quadratic terms) +

1
c2

(qubic terms) + etc

• To reach the limit c = 0 one has to re-scale some of the currents in the algebra

• After a proper rescaling of the currents in OPE’s which contain nonlinear terms only
such terms survive. All linear terms in the such OPE’s will disappear after rescaling.
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In view of these features the structure of N = 2 W3 algebra with c = 0 is much simpler than
that of N = 2 W3 with an arbitrary central charge. The explicit relations describing N = 2
W3 algebra with c = 0 have been obtained in [3]. Here we will reconstruct these relations
pointing reader’s attention to some specific peculiarities of this superalgebra which are crucial
for the construction of the BRST charge.

To be an N = 2 supersymmetric extension of W3, superalgebra should contain two N = 2
supercurrents J(Z) and T (Z) with conformal spins 1 and 2, respectively.1 The most general
variant of the Superfield Operator Product Expansions (SOPE’s) for these currents reads

J(Z1)J(Z2) =
θ12θ̄12J

Z2
12

+
θ12θ̄12∂J + θ̄12DJ − θ12DJ

Z12
,

J(Z1)T (Z2) = 2
θ12θ̄12T

Z2
12

+
θ12θ̄12∂T + θ̄12DT − θ12DT

Z12
,

T (Z1)T (Z2) =
θ12θ̄12U

Z2
12

+
1
2θ12θ̄12

(
∂U +DΨ +DΨ

)
+ θ12Ψ− θ̄12Ψ

Z12
, (1)

where
θ12 = θ1 − θ2, θ̄12 = θ̄1 − θ̄2, Z12 = z1 − z2 +

1
2

(
θ1θ̄2 − θ2θ̄1

)
, (2)

D,D are spinor covariant derivatives obeying
{
D,D

}
= −∂, (3)

and the composite supercurrents are defined as

U = a1JT + a2J
3,

Ψ = a3JDT + a4TDJ − a5J
2DJ, Ψ = a3JDT + a4DJ − a5J

2DJ. (4)

Here, a1, . . . , a5 are arbitrary, for the time being, coefficients. As one may see from (1), the
supercurrent J forms N = 2 superconformal algebra, while T transforms as a primary, spin-2
supercurrent under this superconformal algebra. The Jacobi identities further restrict the
coefficients a1, . . . , a5 as follows

a2 = a5 =
a2
4 − a2

1

16
, a3 = −a1 + a4

2
. (5)

One might decide that we are dealing with the two-parameter set of superalgebras. This
conclusion is wrong due to the following arguments.

First of all, one may redefine the spin 2 supercurrent T as follows

TN = T + αJ2. (6)

The SOPE of the newly defined current TN with the spin 1 current J remains the same as in
(1), while the SOPE of TN with itself reads as

TN (Z1)TN (Z2) =
θ12θ̄12
Z2

12

[
(a1 + 8α) JTN +

a2
4 − (a1 + 8α)2

16
J3

]
+ First order poles (7)

Clearly, one can fix this freedom to choose α = −a1
8 to remove the term JTN from the second

pole in (7). This choice is equivalent to putting a1 = 0 in (4),(5) because in r.h.s. of (7) the
coefficient a1 appears only in the combination (a1 + 8α).

1By Z we denote the coordinates of N = 2, d = 1 superspace, Z = (z, θ, θ̄).
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Finally, one may rescale the supercurrent T → βT in (1) to completely fix the last coeffi-
cient a4. So, this coefficient in (1) is unessential if it is not equal to zero. In what follows we
will choose a4 = 8 to have the simplest SOPE’s.

Thus, we conclude that there is only one nonlinear N = 2 W3 algebra with zero central
charge which has the following SOPE’s

J(Z1)J(Z2) =
θ12θ̄12J

Z2
12

+
θ12θ̄12∂J + θ̄12DJ − θ12DJ

Z12
,

J(Z1)T (Z2) = 2
θ12θ̄12T

Z2
12

+
θ12θ̄12∂T + θ̄12DT − θ12DT

Z12
,

T (Z1)T (Z2) = 4
θ12θ̄12
Z2

12

J3 +
θ12
Z12

[
8DJ T − 4J DT − 4J2 DJ

]

− θ̄12
Z12

[
8DJ T − 4J DT − 4J2 DJ

]

+
θ12θ̄12
Z12

[
2J∂T − 4∂JT − 6DJDT − 6DJDT + 8∂JJ2

]
. (8)

With our choice of the parameters a1, a4 the algebra (8) contains cubic terms in the
SOPE’s. It is important to note that there is another possibility to fix these coefficients: a1 =
±8, a4 = 8. With these choice the cubic terms in (U,Ψ,Ψ) disappear and the superalgebra
becomes quadratic one. One may check that these two cases with a1 = a4 = 8 and a1 =
−a4 = −8 are related with the currents in (8) by a redefinition of the supercurrent T as
follows T1 = T − J2 and T2 = T + J2. Indeed, with a1 = 0, a4 = 8 the r.h.s. in (7) does not
contain the cubic terms if α = ±1. Thus our cubic superalgebra (8) has two different “faces”
where it shows up as the quadratic algebra.

The existence of two “quadratic faces” of N = 2 W3 superalgebra immediately gives rise
to the following problem. It is well known that the BRST charges for quadratically nonlinear
algebras contain all currents only linearly. Therefore, in a first “face” the BRST charge should
look like Q1 = ( ghosts )T1 + . . . while in the other “face” one may find the BRST charge
which reads as Q2 = ( ghosts )T2+ . . .. Clearly, these charges being rewritten in the “central”
basis (8) where superalgebra is cubic in the supercurrents, are realized as two different BRST
charges. Thus we conclude that either BRST charge for the classical N = 2 W3 superalgebra
with zero central charge does not exist, either we have two of such charges. In the next
Section we will demonstrate that the classical N = 2 W3 superalgebra indeed has two BRST
charges.

3 Classical BRST charge for N = 2 W3 algebra

To construct the BRST charge for the N = 2 W3 superalgebra (8) one has to introduce the
corresponding ghost-anti-ghost N = 2 fermionic supercurrents {Cj , Bj , Ct, Bt} which obey
the standard SOPE’s

Bj(Z1)Cj(Z2) =
θ12θ̄12
Z12

, Bt(Z1)Ct(Z2) =
θ12θ̄12
Z12

. (9)

These supercurrents contain all ghost-anti-ghost currents for four bosonic and four fermionic
currents in the superalgebra N = 2 W3 among their components.

The improved stress tensor J̃ has the following form

J̃ = J +DBjDCj +DBjDCj − ∂ (BjCj) +DBtDCt +DBtDCt − 2∂ (BtCt) . (10)
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One may check that the supercurrent J̃ has the same OPE with itself as the supercurrent J
in (1) and therefore it spans the N = 2 Virasoro algebra.

With respect to J̃ the ghost supercurrents A = {Cj , Bj , Ct, Bt} transform as primary
N = 2 supercurrents

J̃(Z1)A(Z2) = hA
θ12θ̄12A
Z2

12

+
θ12θ̄12∂A+ θ̄12DA− θ12DA

Z12
(11)

with the conformal weights hA = {−1, 1,−2, 2}, respectively.

One of the unpleasant features of the ghost supercurrents for N = 2 W3 superalgebra is
the possibility to construct the following two combinations

X1 = DCtDBj , X2 = DCtDBj . (12)

Both X1 and X2 are bosonic supercurrents with zero conformal weights and zero ghost num-
bers. Therefore, the ansatz for the BRST charge may contain arbitrary functions depending
on these combinations of the supercurrents. This is the main problem in the algorithmic
construction of BRST charge for N = 2 W3 superalgebra.

To overcome this problem we decide to choose an ansatz for the BRST charge which does
not contain terms with the supercurrents Ct and Bj simultaneously. So, our ansatz for the
BRST current schematically reads

Q = CjJ + CtT + JBtCjCt + CtJJ + (∂,DD) · (JBtCtCt) + (∂,DD) · (BjCjCj) +
(∂,DD) · (BtCtCj) + (∂,DD)2 · (BtCtCt) +
(∂,DD)2 · (BtBtCtCtCt) + (∂,DD) · (BtBtCjCtCt), (13)

where the derivatives (∂,DD) are freely distributed in all possible ways among the currents
in the brackets. Moreover, we try to find the BRST currents instead of BRST charges. In
other words, we look for a such set of the coefficients in (13) to have the regular SOPE of the
Q with itself.

After tedious, but straightforward calculations2 we find two different solutions for the
BRST currents

Q1 = CjJ + CtT − CtJ2 + 4JBtC ′tCt − 4DJBtCtDCt − 4DJBtCtDCt
−BjDCjDCj − CjBtC ′t + CjDBtDCt + CjDBtDCt − CjB′tCt +DBjCjDCj

+DBjCjDCj −DCjBtDCt +DCjDBtCt −DCjBtDCt +DCjDBtCt

−2BtDBtCt[D,D]CtDCt − 2BtDBtC ′tCtDCt
+2BtDBtCtDCt[D,D]Ct − 2BtDBtC ′tCtDCt
+2DBtDBtCtDCtDCt − 4DBtDBtCtDCtDCt
+2DBtDBtCtDCtDCt − 4B′tBtCtDCtDCt (14)

2To find the BRST charge we heavily used the MathematicaTM SOPEN2 package [8].
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and

Q2 = CjJ + CtT + CtJ
2 − 8JBtDCtDCt + 8JDBtCtDCt + 8JDBtCtDCt

−BjDCjDCj − CjBtC ′t +DBjCjDCj +DBjCjDCj + CjDBtDCt

+CjDBtDCt − CjB′tCt −DCjBtDCt +DCjDBtCt −DCjBtDCt +DCjDBtCt

+8DBtDBtCtDCtDCt + 8DBtDBtCtDCtDCt + 8DBtDBtCtDCtDCt
−8B′tBtCtDCtDCt − 4BtDBtCt[D,D]CtDCt − 4BtDBtC ′tCtDCt
+4BtDBtCtDCt[D,D]Ct − 4BtDBtC ′tCtDCt − 4BtDBtC ′tCtDCt
−8BtDBtDCtDCtDCt − 8BtDBtDCtDCtDCt . (15)

As one may see, in the basics where the superalgebra is quadratic, one of these BRST currents
becomes linear in the supercurrents (J, T1 = T − J2) and (J, T2 = T + J2), respectively as it
should be.

It is quite unexpected that neither BRST currents Q1, Q2 nor BRST charges Q̃1,2 =
1

2πi

∫
dzd2θ Q1,2 do not anticommute. The resulting charge

H̃ =
1

2πi

∫
dzd2θH =

{
Q̃1, Q̃2

}

is rather complicated. Schematically it has the following form

H =
16
3
J2

(
J + 3(DBtDCt +DBtDCt)

) (
2C ′tCt −DCtDCt

)
+ 32J2(BtCt)′DCtDCt +

+(linear in J terms) + ( ghosts terms ). (16)

We also checked that [
H̃, Q̃1

]
= 0,

[
H̃, Q̃2

]
= 0. (17)

Thus, the charges (H̃, Q̃1, Q̃2) form the algebra of N = 2 supersymmetric mechanics but the
meaning of this fact is unclear for us.

4 Conclusion

In this Letter we constructed two different BRST charges for the classical N = 2 W3

superalgebra. These charges do not anticommute, but together with their anticommutator
form the algebra of N = 2 supersymmetric mechanics. The main reason for the existence
of two different BRST charges is that N = 2 W3 superalgebra possesses two different “aces”
where it acquires the quadratic form.

As the immediate applications of our results one may try to construct (at least classical)
N = 4 W3 superalgebra along the line suggesting in [5]. Being an extremely interesting (for
us), this task is not so important as the full analysis of the gift with two BRST charges. Of
course, the N = 2 W3 superalgebra is not a very suitable case for such an analysis due to its
rather complicated structure. In this respect it seems reasonable to find a simpler example of
an algebra, maybe even finite-dimensional one, having two BRST charges. The main feature
this algebra has to possess is an existence of two “faces” in which it becomes a quadratic
nonlinear one. Any case, the simultaneous existence of two different BRST charges raises
too many questions (the simplest evident question is how to define the physical states in this
case?) which have yet to be fully clarified.
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Abstract

We analyze from a general perspective all possible supersymmetric generalizations of
symplectic and metric structures on smooth manifolds. There are two different types of
structures according to the even/odd character of the corresponding quadratic tensors.
In general we can have even/odd symplectic supermanifolds, Fedosov supermanifolds and
Riemannian supermanifolds. The geometry of even Fedosov supermanifolds is strongly
constrained and has to be flat. In the odd case, the scalar curvature is only constrained by
Bianchi identities. However, we show that odd Riemannian supermanifolds can only have
constant scalar curvature. We also point out that the supersymmetric generalizations of
AdS space do not exist in the odd case.

1 Introduction

The two main quadratic geometrical structures of smooth manifolds which play a signif-
icant role in classical and quantum physics are Riemannian metrics and symplectic forms.
Riemannian geometry is not only basic for the formulation of general relativity but also for
the very formulation of gauge field theories. The symplectic structure provides the geometri-
cal framework for classical mechanics (see, e.g. [1]) and field theories [2]. The Fedosov method
of quantization by deformation [3] is also formulated in terms of symplectic structures and
symplectic connections (the so-called Fedosov manifolds [4]). The introduction of the con-
cept of supermanifold by Berezin [5] (see also [6, 7]) opened new perspectives for geometrical
approaches of supergravity and quantization of gauge theories [8, 9, 10]. In summary, the
geometry of manifolds and supermanifolds percolates all fundamental physical theories.

In this note we address the classification of possible extensions of symplectic and metric
structures to supermanifolds in terms of graded symmetric and antisymmetric second-order

1E-mail: asorey@saturno.unizar.es
2E-mail: lavrov@tspu.edu.ru
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tensor fields. The cases of even and odd symplectic and Riemannian supermanifolds are
analyzed in some detail. Graded non-degenerate Poisson supermanifolds are described by
symplectic supermanifolds that if equipped with a symmetric symplectic connection become
graded Fedosov supermanifolds. The even case corresponds to a straightforward generaliza-
tion of Fedosov manifold [4] where the scalar curvature vanishes as for standard Fedosov
manifolds. Graded metric supermanifolds equipped with the unique compatible symmetric
connection also correspond to graded Riemannian supermanifold. The scalar curvature is non
trivial, in general, for odd Riemannian and Fedosov supermanifolds, but in the first case it
must always be constant. There is a supersymmetric generalization of AdS space but it is
trivial in the odd case.

The paper is organized as follows. In Sect. 2, we consider scalar structures which can
be used for the construction of symplectic and metric supermanifolds. The properties of
symmetric affine connections on supermanifolds and their curvature tensors are analyzed in
Sect. 3. In Sect. 4, we introduce the concepts of even and odd Fedosov supermanifolds and
even and odd Riemannian supermanifolds are analyzed in Sect. 5. Finally, we convey the main
results in Sect. 6. We use the condensed notation suggested by DeWitt [11] and definitions
and notations adopted in [12].

2 Scalar Fields

Let M be a supermanifold with a dimension dimM = N and {xi}, ε(xi) = εi a local
system of coordinates on in the vicinity of a point p ∈ M. Let us consider now the most
general scalar structures on supermanifolds which can be defined in terms of graded second-
rank symmetric and antisymmetric tensor fields.

In general, there exist eight types of second rank tensor fields with the required symmetry
properties

ωij = −(−1)εiεjωji, ε(ωij) = ε(ω) + εi + εj , (1)
Ωij = (−1)εiεj Ωji, ε(Ωij) = ε(Ω) + εi + εj , (2)
Eij = −(−1)εiεjEji, ε(Eij) = ε(E) + εi + εj , (3)
gij = (−1)εiεjgji, ε(gij) = ε(g) + εi + εj . (4)

Using these tensor fields (1)-(4) it is not difficult to built eight scalar structures on a super-
manifold:

{A,B} =
∂rA

∂xi
(−1)εiε(ω)ωij

∂B

∂xj
, ε({A,B}) = ε(ω) + ε(A) + ε(B), (5)

(A,B) =
∂rA

∂xi
(−1)εiε(Ω)Ωij

∂B

∂xj
, ε((A,B)) = ε(Ω) + ε(A) + ε(B), (6)

E = Eijdx
j ∧ dxi, ε(Eijdxj ∧ dxi) = ε(E), (7)

g = gijdx
j dxi, ε(gijdxj dxi) = ε(g), (8)

where A and B are arbitrary superfunctions.
The bilinear operation {A,B} (5) obeys the following symmetry property

{A,B} = −(−1)ε(ω)+(ε(A)+ε(ω))(ε(B)+ε(ω)){B,A} (9)

which in the even case (ε(ω) = 0) reduces to

{A,B} = −(−1)(ε(A)ε(B){B,A} (10)
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and in the odd case (ε(ω) = 1) to

{A,B} = (−1)(ε(A)+1))(ε(B)+1){B,A}. (11)

On the other hand, the bilinear operation (A,B) (6) has the symmetry property

(A,B) = (−1)ε(ω)+(ε(A)+ε(ω))(ε(B)+ε(ω))(B,A) (12)

which in the even case (ε(ω) = 0) reduces to

(A,B) = (−1)ε(A)ε(B)(B,A) (13)

and in the odd case (ε(ω) = 1) to

(A,B) = −(−1)(ε(A)+1))(ε(B)+1)(B,A). (14)

One can easily check that in the even case (ε(ω) = 0) the bilinear operation {A,B} satisfies
the Jacobi identity

{A, {B,C}}(−1)ε(A)(ε(C) + {C, {A,B}}(−1)ε(C)(ε(B) + {B, {C,A}}(−1)ε(B)(ε(A) ≡ 0 (15)

if and only if ω satisfies

ωij
∂ωkl

∂xj
(−1)εiεl + ωlj

∂ωik

∂xj
(−1)εlεk + ωkj

∂ωli

∂xj
(−1)εkεi ≡ 0. (16)

In the odd case there is no possibility of satisfying the Jacobi identity for the operation
{A,B}.

On the contrary, the Jacobi’s identity for (A,B) can be satisfied

(A, (B,C))(−1)(ε(A)+1)(ε(C)+1) + (C, (A,B))(−1)(ε(C)+1)(ε(B)+1) + (17)
+ (B, (C,A))(−1)(ε(B)+1)(ε(A)+1) ≡ 0

if and only if Ω is odd, ε(Ω) = 1, and satisfies

Ωij
∂Ωkl

∂xj
(−1)εi(εl+1) + Ωlj

∂Ωik

∂xj
(−1)εl(εk+1) + Ωkj

∂Ωli

∂xj
(−1)εk(εi+1) ≡ 0. (18)

Therefore, because of the identities (16) and (18), one can identify {A,B} (ε({A,B}) =
ε(A) + ε(B)) and (A,B) (ε((A,B)) = ε(A) + ε(B) + 1) with the Poisson bracket and the
antibracket respectively.

It is also possible to combine the Poisson bracket associated to ω and the antibracket
into the so-called graded Poisson bracket (see, for example, [13, 14, 15, 16]) in the following
bilinear operation

{A,B}g =
∂rA

∂xi
(−1)εiε(ωg)ωijg

∂B

∂xj
, ωijg = −(−1)ε(ωg+εiεj)ωjig , (19)

ε({A,B}g) = ε(ωg) + ε(A) + ε(B).

From (20) it follows the symmetry property

{A,B}g = −(−1)(ε(A)+ε(ωg))(ε(B)+ε(ωg)){B,A}g. (20)
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If the tensor fields ωij satisfy the identities

ωijg
∂ωklg
∂xj

(−1)εi(εl+ε(ωg)) + ωljg
∂ωikg
∂xj

(−1)εl(εk+ε(ωg)) + ωkjg
∂ωlig
∂xj

(−1)εk(εi+ε(ωg)) ≡ 0, (21)

then {A,B}g satisfies the Jacobi identity

{A, {B,C}g}g(−1)εg(A,B.C) + {C, {A,B}g}g(−1)εg(B,C,A) + (22)

+ {B, {C,A}g}g(−1)εg(C,A,B) ≡ 0 (23)

with εg(A,B,C) = (ε(A) + ε(ωg))(ε(C) + ε(ωg)) and plays the role of a graded Poisson
bracket.

A supermanifold M equipped with a Poisson bracket is called a Poisson supermanifold,
(M, {, }). Usually a manifold M equipped with an non-degenerate antibracket is called an
antisymplectic supermanifold (M, (, )) or, sometimes, an odd Poisson supermanifold (see, for
example, [15, 16]).

In Eq. (3) E denotes a generic graded differential 2-form. If E is closed

dE = Eij,kdx
k ∧ dxj ∧ dxi = 0 (24)

and non-degenerate, then it defines a graded (even or odd) symplectic supermanifold (M, E)
[6]. In terms of tensor fields Eij the condition (24) can be expressed as

Eij,k(−1)εiεk + Ejk,i(−1)εjεi + Eki,j(−1)εkεj = 0, Eij = −(−1)εiεjEji (25)

and in terms of inverse tensor fields Eij Eqs. (25) can be rewritten in the form

Eil
∂Ejk

∂xl
(−1)εi(εk+ε(E)) + Ekl

∂Eij

∂xl
(−1)εk(εj+ε(E)) + Ejl

∂Eki

∂xl
(−1)εj(εi+ε(E)) = 0, (26)

where Eij = −(−1)ε(E)+εiεjEji. Identifying Eij with the tensor field ωij in (5), one gets in
the even case (ε(E) = 0) the Poisson bracket for which the Jacobi identity (15) follows from
(26). Therefore, in the even case there is one-to-one correspondence between non-degenerate
Poisson supermanifolds and an even symplectic supermanifolds. In the odd case (ε(E) = 1),
if we assume Eij = Ωij in (6) then Eij defines an antibracket for which the Jacobi identity
(18) follows from (26). Therefore antisymplectic supermanifolds can be identified with odd
symplectic manifolds.

If the tensor field gij in (8) is non-degenerate, one has a graded metric that can provide a
supermanifoldM with a graded (even or odd) metric structure, giving rise to a Riemannian
supermanifold (M, g). On the other hand, the inverse tensor field gij also defines a bilin-
ear operation with symmetry properties (11) or (13) but it does not satisfy the Jacobi identity.

3 Connections in Supermanifolds

Let us consider a covariant derivative ∇ (or an affine connection Γ) on a supermanifoldM.
In each local coordinate system {x} the covariant derivative ∇ is described by its components
∇i (ε(∇i) = εi), which are related to the components the affine connection Γ Γi jk, (ε(Γi jk) =
εi + εj + εk) by

ei∇j = ekΓi kj(−1)εk(εi+1), ei∇j = −ekΓkij (27)
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where {ei} and {ei} are the associated bases of the tangent TM and cotangent T ∗M spaces
respectively. The action of the covariant derivative on a tensor field of any rank and type
is given in terms of the tensor components, the ordinary derivatives and the connection
components (for details see [12]). From here on, we shall consider only symmetric connections

Γijk = (−1)εjεkΓikj . (28)

The curvature tensor field Ri mjk is defined in terms of the commutator of covariant
derivatives, [∇i,∇j ] = ∇i∇j − (−1)εiεj∇j∇i, whose action on a vector field T i is

T i[∇j ,∇k] = −(−1)εm(εi+1)TmRi mjk. (29)

The choice of factor in r.h.s (29) is dictated by the requirement that the contraction of tensor
fields of types (1, 0) and (1, 3) yield a tensor field of type (1, 2). A straightforward calculation
yields

Ri mjk = −Γi mj,k + Γi mk,j(−1)εjεk + Γi jnΓ
n
mk(−1)εjεm − Γi knΓ

n
mj(−1)εk(εm+εj). (30)

The curvature tensor field has a generalized antisymmetry,

Ri mjk = −(−1)εjεkRi mkj ; (31)

and satisfies the Jacobi identity,

(−1)εmεkRi mjk + (−1)εjεmRi jkm + (−1)εkεjRi kmj ≡ 0 . (32)

Using the Jacobi identity for the covariant derivatives,

[∇i, [∇j ,∇k]](−1)εiεk + [∇k, [∇i,∇j ]](−1)εkεj + [∇j , [∇k,∇i]](−1)εiεj ≡ 0 , (33)

one obtains the Bianchi identity,

(−1)εiεjRnmjk;i + (−1)εiεkRnmij;k + (−1)εkεjRnmki;j ≡ 0 , (34)

with the notation Rnmjk;i : = Rnmjk∇i.

4 Symplectic supermanifolds

Let us consider a symplectic supermanifold (M, ω), i.e. a supermanifoldM with a closed
non-degenerate graded differential 2-form ω

ω = ωijdx
j ∧ dxi, ωij = −(−1)εiεjωji. (35)

The closure condition of ω, dω = 0, can be rewritten as

ωij,k(−1)εiεk + ωjk,i(−1)εiεj + ωki,j(−1)εjεk = 0 (36)

in terms of the inverse tensor field ωij

ωij = −(−1)ε(ω)+εiεjωji (37)

and do coincide with identities (21). It means that in the even case (ε(ω) = 0) ωij defines
a nondegenerate Poisson bracket while in the odd case (ε(ω) = 1) it defines an antibracket.
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Therefore in the even case there is a one-to-one correspondence between even symplectic
supermanifolds and nondegenerate Poisson supermanifold. In the odd case any antisymplectic
supermanifold is nothing but an odd symplectic supermanifold.

Let Γ be a symmetric connection of a symplectic supermanifold (M, ω). The corre-
sponding covariant derivative ∇ has to verify the compatibility condition ω∇ = 0 with the
symplectic structure ω. In each local coordinate system {xi} the compatibility condition can
be expressed as

ωij∇k = ωij,k − Γijk + Γjik(−1)εiεj = 0, ωij = −(−1)εiεjωji (38)

in terms of the components Γijk (∇i) of the symplectic connection ∇, where we use the
notation

Γijk = ωinΓnjk, ε(Γijk) = ε(ω) + εi + εj + εk . (39)

A symplectic supermanifold (M, ω) equipped with a symmetric symplectic connection Γ
is called a Fedosov supermanifold (M, ω,Γ).

Let us consider now curvature tensor Rijkl of a symplectic connection

Rijkl = ωinR
n
jkl, ε(Rijkl) = ε(ω) + εi + εj + εk + εl, (40)

where Rnjkl is defined in (30). This tensor has the following symmetry properties

Rijkl = −(−1)εkεlRijlk, Rijkl = (−1)εiεjRjikl (41)

and satisfies the identity

Rijkl + (−1)εl(εi+εk+εj)Rlijk + (−1)(εk+εl)(εi+εj)Rklij + (−1)εi(εj+εl+εk)Rjkli = 0. (42)

The last statement can be derived from the Jacobi identity

(−1)εjεlRijkl + (−1)εlεkRiljk + (−1)εkεjRiklj = 0 . (43)

together with a cyclic change of indices [17]. The identity (42) involves different components
of the curvature tensor with cyclic permutation of all indices, but the sign factors depend on
the Grassmann parities of the indices and do not follow a cyclic permutation rule, similar to
that of Jacobi identity, but are defined by the permutation of the indices that maps a given
set into the original one.

¿From the curvature tensor, Rijkl, and the inverse tensor field ωij of the symplectic
structure ωij , one can construct the only canonical tensor field of type (0, 2),

Kij = ωknRnikj(−1)εiεk+(ε(ω)+1)(εk+εn) = Rkikj (−1)εk(εi+1), ε(Kij) = εi + εj . (44)

This tensor Kij is the Ricci tensor and satisfies the relations [18]

[1 + (−1)ε(ω)](Kij − (−1)εiεjKji) = 0. (45)

In the even case Kij is symmetric whereas in the odd case there are not restrictions on its
(generalized) symmetry properties.

Now, one can define the scalar curvature tensor K by the formula

K = ωjiKij(−1)εi+εj = ωjiωknRnikj(−1)εi+εj+εiεk+(ε(ω)+1)(εk+εn). (46)
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¿From the symmetry properties of Rijkl, it follows that

[1 + (−1)ε(ω)]K = 0, (47)

which proves that as in the case of Fedosov manifolds [4] the scalar curvature K vanishes.
However, for odd Fedosov supermanifolds K is, in general, non-vanishing. This fact was

quite recently used in Ref. [13] to generalize the BV formalism [8].
Let us consider the Bianchi identity (34) in the form

Rnmij;k −Rnmik;j(−1)εkεj +Rnmjk;i(−1)εi(εj+εk) ≡ 0 . (48)

Contracting indices i and n with the help of (44) we obtain

Kmj;k −Kmk;j(−1)εkεj +Rnmjk;n(−1)εn(εm+εj+εk+1) ≡ 0 . (49)

Now using the relations

Ki
j = ωikKkj(−1)εk ,Ki

j;m = ωikKkj;m(−1)εk (50)

Ki
j;i(−1)εi(εj+1) = ωikKkj;i(−1)εk+εi(εj+1), (51)

it follows that

K,i = [1− (−1)ε(ω)]Kj
i;j(−1)εj(εi+1). (52)

In the odd case this implies that

K,i = 2Kj
i;j(−1)εj(εi+1). (53)

In the even case K,i = 0 but in that case the relation (52) does not provides any new infor-
mation because in this case K = 0.

5 Riemannian supermanifolds

LetM be a supermanifold equipped both with a metric structure g

g = gij dx
jdxi, gij = (−1)εiεjgji, ε(gij) = ε(g) + εi + εj , (54)

and a symmetric connection ∆ with a covariant derivative ∇ compatible with the super-
Riemannian metric g

gij∇k = gij,k − gim∆m
jk − gjm∆m

ik(−1)εiεj = 0. (55)

It is easy to show that as in the case of Riemannian geometry there exists the unique
symmetric connection ∆i

jk which is compatible with a given metric structure. Indeed, pro-
ceeding in the same way as in the usual Riemannian geometry one obtains the generalization
of celebrated Christoffel formula for the connection in supersymmetric case [12]

∆l
ki =

1
2
glj

(
gij,k(−1)εkεi + gjk,i(−1)εiεj − gki,j(−1)εkεj

)
(−1)εjεi+εj+ε(g)(εj+εl). (56)

It is straightforward to show that the symbols ∆l
ki in (56) are transformed according with

transformation laws for connections. A metric supermanifold (M, g) equipped with a (even
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or odd) symmetric connection ∆ compatible with a given metric structure g is called a (even
or odd) Riemannian supermanifold (M, g,∆).

The curvature tensor of the connection ∆ is (56)

Rijkl = ginRnjkl, ε(Rijkl) = ε(g) + εi + εj + εk + εl, (57)

where Rnjkl is given by (30) by replacing Γijk for ∆i
jk. The curvature tensor has the following

symmetry properties [12]

Rijkl = −(−1)εkεlRijlk, Rijkl = −(−1)εiεjRjikl, Rijkl = Rklij(−1)(εi+εj)(εk+εl). (58)

¿From the curvature tensor Rijkl and the inverse tensor field gij of the metric gij defined
by

gij = (−1)ε(g)+εiεjgji, ε(gij) = ε(g) + εi + εj , (59)

one can define the only independent tensor field of type (0, 2):

Rij = Rkikj(−1)εk(εi+1) = gknRnikj(−1)(εk+εn)(ε(g)+1)+εiεk , (60)
ε(Rij) = εi + εj .

It is the generalized Ricci tensor which obeys the symmetry

Rij = (−1)ε(g)+εiεjRji. (61)

A further contraction between the metric and Ricci tensors defines the scalar curvature

R = gjiRij (−1)εi+εj , ε(R) = ε(g) (62)

which, in general, is non vanishing. Notice that for an odd metric structure the scalar curva-
ture tensor squared is identically equal to zero, R2 = 0.

Let us consider now relations which follow from the Bianchi identity (34). Repeating all
arguments given in the end of previous Section one can derive the following relation between
the scalar curvature and the Ricci tensor

R,i = [1 + (−1)ε(g)]Rj i;j(−1)εj(εi+1). (63)

In the even case we have

R,i = 2Rj i;j(−1)εj(εi+1), (64)

which is a supersymmetric generalization of the well known relation of Riemannian geometry
[19]. In the odd case R,i = 0 and the relation (63) implies that R =const.

Therefore, odd Riemann supermanifolds can only have constant scalar curvature R =
const.

It is well known that special types of Riemannian manifolds play an important role in
modern quantum field theory. In particular, a consistent formulation of higher spin field
theories is possible on AdS space (see, for example [20]). In this case the curvature, Ricci and
scalar curvature tensors have the form

Rijkl = R(gikgjl − gilgjk), Rij = (N − 1)Rgij , R = N(N − 1)R, (65)

where N is the dimension of the Riemannian manifold M with a metric tensor gij and R is
constant. Let us analyze the structure of supersymmetric extensions of AdS spaces (65). If
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gij is the graded metric tensor (54) of the AdS space one can define the following combination
of metric tensors

Tijkl = gikgjl(−1)ε(g)(εi+εk)+εkεj (66)

which transforms as a tensor field. Therefore a natural generalization of (65) satisfies that

Rijkl = R(gikgjl(−1)ε(g)(εi+εk)+εkεj − gilgjk(−1)ε(g)(εi+εl)+εlεj+εlεk) = (67)

= (gik R gjl(−1)εkεj − gil R gjk(−1)εlεj+εlεk)(−1)ε(g),

where R (ε(R) = ε(g)) is a constant. The Ricci tensor satisfies

Rij = gklRlikj(−1)(ε(g)+1)(εk+εl)+εiεk = R(N − 1)gij(−1)ε(g) (68)

and the scalar curvature tensor verifies that

R = RN (N − 1), (69)

where we denote

N = δii(−1)εi (70)

and N is nothing but the difference between the number of bosonic and fermionic dimensions
of the supermanifold.

The above Riemannian tensors obey the following symmetry properties

Rijkl = −(−1)εkεlRijlk, Rijkl = −(−1)ε(g)+εiεjRijkl,
Rijkl = (−1)(εi+εj)(εk+εl)Rklij + [1− (−1)ε(g)]gil R gjk(−1)ε(g)+εl(εj+εk),

Rij = (−1)εiεjRji.

It is easy to show that in the even case (ε(g) = 0) all required symmetry properties for Rijkl
and Rij are satisfied. Therefore the supersymmetric generalization of (65) has the form

Rijkl = R(gikgjl(−1)εkεj − gilgjk(−1)εlεj+εlεk), Rij = R(N − 1)gij , R = RN (N − 1). (71)

In the odd case (ε(g) = 1) there exists only one possibility to satisfy the symmetry require-
ments: the vanishing of all curvature tensors

R = 0 −→ Rijkl = 0, Rij = 0, R = 0. (72)

6 Conclusions

There are two natural geometric structures of supermanifolds defined by symmetric and
antisymmetric graded tensor fields of the second rank: the Poisson bracket defined by an
antisymmetric even tensor field of type (2, 0) and the antibracket given by an symmetrical
odd tensor field of type (2, 0). We have have shown that the geometric structures of even and
odd symplectic supermanifolds equipped with a symmetric connection compatible with a given
symplectic structure are very similar, although only in the even case the scalar curvature has
to vanish. In similar way, the structures of even and odd Riemannian supermanifolds equipped
with the unique symmetric connection compatible with a given metric structure are also very
similar. However, odd Riemannian supermanifolds are strongly constrained by the fact that
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their scalar curvature has to be constant whereas in the even case the curvature can have
any value. It is quite remarkable that the strongest restrictions on the curvatures arise only
for even symplectic and odd Riemannian manifolds. In the case of even Riemannian or odd
symplectic manifolds, the curvature tensors can be non null and non-constant, respectively.
There are several practical implications of the above formal results. The antisymplectic
supermanifold underlying the Batalin-Vilkovisky quantization method is just an odd Fedosov
supermanifold which as we have shown can have an arbitrary non-vanishing curvature. On
the other hand, even Riemannian supermanifolds admit even AdS superspaces as special
case, but there is no analogue for odd Riemannian supermanifolds, i.e. there are not odd
supersymmetric AdS spaces.
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Abstract

The Aharomov-Bohm effect that arises from a quantum-mechanical description of
electron motion in a magnetic field in the presence of an infinitely thin and long solenoid
is examined. In the stationary states this effect is manifest in the appearance of an
additional series of energy levels shifted with respect to the Landau levels by a magnitude
dependent on the magnetic field flux in the solenoid. Quantum states similar to coherent
states are formulated that describe quasi-classical electron motion. In these states the
existence of the solenoid causes additional electron oscillations with respect to a classical
orbit and changes the relations between the parameters of classical motion. This makes
it possible to provide a simple interpretation of the Aharonov-Bohm effect.

1 Introduction

By the middle of the 80’s the Aharonov-Bohm (AB) effect [1] in low energy physics (see
[2] for a general review) was becoming a good instrument for investigating new physical
phenomena, principally in condensed matter physics, where the AB ring has been the mainstay
of mesoscopic physics research since its inception. It is present in the theory of various
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problems, for example, the study of anyons in the theory of high -Tc superconductivity [3],
electronic excitations in a graphitic monolayer (graphene) with topological defects [4], theory
of unparticles [5]. The AB field is a field of an infinitely long and infinitesimally thin solenoid.
Nonrelativistic effects arising from the combination of the solenoid of a tiny radius and a
collinear uniform magnetic field (such a field configuration is named as a magnetic-solenoid
field) have first time attracted attention in [6]. This case is interesting in that it represents
a sample exactly solvable problem of the quantum states of an electron in a nonuniform
magnetic field obtained from a sudden increase in the intensity of one of the lines of force
of the uniform field. Recently the interest in the such a superposition has been renewed in
connection with planar physics problems, quantum Hall effect, and the AB effect in cyclotron
and synchrotron radiations [7, 8, 9]. The problem of taking spin into account in the such a
field configuration is an aspect to which much attention has been devoted; for a review see
[10].

In some cases, it is more convenient, from both the technical and the fundamental view-
points, to use coherent states [11], i.e., near-classical states of a quantum system. However,
for a particle in the AB potential a construction of such near-classical states turns out to be a
nontrivial problem. The point is that the states traditionally used to describe the Aharonov–
Bohm effect turn out to be stationary ones. A description on the basis of such states is
naturally quite different from the regular classical picture. In order to take advantage of the
picture being closest to the classical one, it is necessary to construct coherent states for a
particle in the AB potential. In this case, the presence of a uniform magnetic field, which
ensures the finiteness of motion, and a discrete spectrum, make it possible to avoid some
mathematical difficulties caused by the weak decay of the vector potential of a solenoid at
large distances. The coherent states of a charged particle are well known in the case of a
uniform magnetic field [12]. In these states, the average values of the coordinates of an elec-
tron follow the classical trajectories in a magnetic field. These trajectories are circles whose
radii and center coordinates serve as parameters (quantum numbers) of these states in the
projection onto the plane perpendicular to the field. It is rather difficult to formulate the
coherent states for electron motion in a uniform magnetic field in the presence of an infinitely
thin and long solenoid. The analog of such states, that can be named as quasi-coherent
states, is formulated for a nonrelativistic electron in article [13]. In the present study we
generalize such a representation and carry out a detailed examination of the Aharonov-Bohm
effect occurring from spinless relativistic particle motion in a magnetic-solenoid field. The
results of the article make it possible to describe the Aharonov–Bohm effect in the classical
language and to provide a clear interpretation of the influence of a magnetic-solenoid field on
the quantum state of an electron with various “classical” parameters.

We would like to stress that many years ago Professor I. Buchbinder, to whom this Col-
lection is devoted, collaborated with two of the authors (V.B and D.G) of the present article
in constructing coherent states of relativistic particles, see [14].

1.1 Classical description

We will consider the motion of an electron with charge −e in a magnetic field that is the
superposition of a constant uniform magnetic field of field strength B and the magnetic field
of an infinitely thin and long solenoid with a finite internal flux Φ parallel to the uniform field.
Taking the coordinate system with the z axis on the solenoid, we will write the magnetic field
strength as

Bx = By = 0 , Bz = B + Φδ (x) δ (y) , B > 0. (1)
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The following vector potential may be assigned to magnetic field (1)

Ax = −y
(

Φ
2πr2

+
B

2

)
, Ay = x

(
Φ

2πr2
+
B

2

)
, Az = 0, r2 = x2 + y2, (2)

whose divergence is zero. Since the electron freely propagates on the z axis, only motion in
the perpendicular plane z = 0 is nontrivial; this will be examined below.

Nonrelativistic case

The classical equations of motion of the electron derived from the Hamiltonian

H =
P2

2M
, P = p +

e

c
A , (3)

where M is mass of the electron and c is the velocity of light in vacuum., while p and P are
the canonical and kinetic moments. Solving these equations we find the trajectories that do
not intersect the solenoid:

x = x0 +R cos (ωt+ ϕ0) , y = y0 +R sin (ωt+ ϕ0) , (4)

where ω = eB/Mc, R is the orbital radius,

x0 = x− c

eB
Py = R0 cosα , y0 = y +

c

eB
Px = R0 sinα (5)

are the coordinates of the orbit center; R0 is its distance from the z axis, where the kinetic
momentum is equal to

Px = Mẋ = −eB
c
R sin (ωt+ ϕ0) , Py = Mẏ =

eB

c
R cos (ωt+ ϕ0) . (6)

The quantities R, ϕ0, R0, a are integration constants and characterize the initial conditions.
It is also convenient to introduce the conserved quantity

ν =
1
~
Lz + l0 + µ =

γ

2
(
R2 −R2

0

)
, (7)

where l0 + µ = Φ/Φ0, Φ0 = 2π~c/e, and l0 is integer and 0 ≤ µ < 1, while Lz = xpy − ypx is
the projection of the angular momentum onto the z axis, and γ = eB/c~. The latter formula
shows that when ν > 0 the orbit encompasses the solenoid, and when ν < 0 the solenoid is
outside the orbit. The orbital radius is related to the electron energy by the simple relation

2H
M

= ω2R2 ; (8)

and it follows that the dimensionless quantity

γR2 =
v2

c2
B0

B
, B0 =

M2c3

e~
(9)

is quite large for any magnetic field strengths accessible in laboratory even at very small
velocities v.
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Using the integration constants we may draft conserved dimensionless complex quantities
for the classical trajectories that do not intersect the solenoid

a1 =
1√

2~eB/c
(Px − iPy) eiωt =

√
γ

2
R exp

[
−i

(
ϕ0 +

π

2

)]
,

a2 =
√
γ

2

([
x+ iy − c

eB
(Py − iPx)

])
=

√
γ

2
(x0 + iy0) =

√
γ

2
R0e

iα . (10)

Then the classical trajectories can be represented as

x2 + y2 =
2
γ

[
|a1|2 + |a2|2 − 2 |a1a2| cos (ωt+ χ)

]
, (11)

where χ = π/2− arg a1 − arg a2.

Relativistic case

It is well know, in relativistic quantum mechanics, that the formalism of the light cone
variable is a powerful tool in the construction of the coherent states (see ref. [16]). Therefore,
we will introduce the following curvilinear coordinate system

u0 = ct− z , u3 = ct+ z , x = r cosϕ , y = r sinϕ . (12)

One can solve the classic relativistic Lorentz equation in the potential (1) to obtain the
electron trajectory in the parametric form (with parameter u0), it is important to note that
these trajectories do not pass through the solenoid. This solution can be written in the form

ct =
(

1 +
pz
p−

)
u0 , z =

pzu0

p−
,

x = x0 +R cos (κu0 + ϕ0) , y = y0 +R sin (κu0 + ϕ0) , (13)

where p− = E/c− pz is a integral of motion and

x0 = R0 cosα , y0 = R0 sinα (14)

are the coordinates of the center of the orbit in the plane z, R0 the distance from the center
of the orbit to the z axes,

Px = −eB
c
R sin (κu0 + ϕ0) , Py =

eB

c
R cos (κu0 + ϕ0) , (15)

are the kinetic momenta, κ = eB/p− and R is the orbital radius. The quantities R0, α, R
and ϕ0 are integral of motion. The relativistic analogous of the Hamiltonian (3), H = P2

⊥/2p−
is related to the radius of the electron orbit by the simple relation

2p−H =
(
eB

c

)2

R2 , (16)

and it follows that the quantity

γR2 = β2
⊥
B0

B

(
E

Mc2

)2

, β2
⊥ =

v2
x + v2

y

c2
, (17)
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where vx (vy) are the projection of the electron velocity in the x (y) axes, is quite large for
any magnetic field strengths accessible in laboratory, even at very small velocities v. However,
note that γR2 is not large for a strong magnetic field B & B0, B0 = M2c3/e~ ' 4, 4× 1013G.
Such fields are observed now for several kinds of astronomical compact objects (pulsars,
powerful X-ray sources, soft gamma-ray repeaters, etc.). For instance, at the surface of radio
pulsars identified with rotation-powered neutron stars the field strength is up to 1014G [18].
Much more intense magnetic fields have been expected to be present near superconductive
cosmic strings and at the beginning of the inflation.

Using the integration constants), we may draft conserved dimensionless complex quantities
for the classical trajectories that do not intersect the solenoid, relativistic analogous of the
(10),

a1 =
1√

2~eB/c
(Px − iPy) eiκu0 =

√
γ

2
R exp

[
−i

(
ϕ0 +

π

2

)]
,

a2 =
√
γ

2

[
x+ iy − c

eB
(Py − iPx)

]
=

√
γ

2
(x0 + iy0) =

√
γ

2
R0e

iα , (18)

where the substitution ωt→ κu0 is used.

1.2 Stationary Quantum States

As usual, we will analyze the quantum behavior of the electron in the field (1) by assign
operator status to the canonical variables x, y, px = −i~∂/∂x and py = −i~∂/∂y and found
wave function with determined characteristics. In these article we will concern our self with
solution in the form of stationary states and states whose average values draw near classical
solutions, i.e., the quasi-coherent states.

Nonrelativistic case

Then expressions (3), (5), and (10) determine the quantum Hamiltonian, the kinetic
momentum P operators, the coordinates of the orbital center x0 and y0 and the operators a1

and a2 that we will label with the same letters. Thus, the following operator relations are
satisfied:

H =
~ω
2

(
a+
1 a1 + a1a

+
1

)
,

R2 = (x− x0)
2 + (y − y0)2 =

2H
Mω2

=
1
γ

(
a+
1 a1 + a1a

+
1

)
,

R2
0 = x2

0 + y2
0 =

1
γ

(
a+
2 a2 + a2a

+
2

)
,

ν =
1
~
Lz + l0 + µ =

γ

2
(
R2 −R2

0

)
=

1
2

(
a+
1 a1 + a1a

+
1 − a+

2 a2 − a2a
+
2

)
,

x0 = x− c

eB
Py =

√
1
2γ

(
a+
2 + a2

)
,

y0 = y +
c

eB
Px = i

√
1
2γ

(
a+
2 − a2

)
,

Px =

√
~eB
2c

(
a1e
−iωt + a+

1 e
iωt

)
, Py = i

√
~eB
2c

(
a1e
−iωt − a+

1 e
iωt

)
,
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x =
√

1
2γ

(
a+
2 + a2 + ia1e

−iωt − ia+
1 e

iωt
)
,

y =
√

1
2γ

(
ia+

2 − ia2 − a1e
−iωt − a+

1 e
iωt

)
, (19)

The operators ai satisfy the commutation relations
[
a1, a

+
1

]
= 1 + f ,

[
a2, a

+
2

]
= 1− f

[a1, a2] = ifeiωt ,
[
a1, a

+
2

]
= 0 , (20)

where f = (Φ/B) δ (x) δ (y) is a singular dimensionless function.
Determining the complete time derivatives, we obtain

ȧ1 = −iω
2

(fa1 + a1f) , ȧ2 = −ω
2

(
a+
1 f + fa+

1

)
eiωt , (21)

and it is clear that when Φ = 0 the operators ai are integrals of notion. Moreover, in this
case they are also annihilation operators, as indicated by relations (20). In the presence of a
solenoid they no longer have these properties and only the combinations a+

i ai + aia
+
i remain

integrals of motion and commute.
The stationary states of a nonrelativistic electron in magnetic field (1)

Ψ (t, r, ϕ) = exp
(
− i
~
Et

)
φ (r, ϕ) (22)

were found and investigated in detail in study [6]. Since Hamiltonian (3) and the operators
Lz and R2

0 commute and are related by the relation

Lz + ~ (l0 + µ) =
1
ω
H− Mω

2
R2

0 , (23)

their eigenfunctions form a complete orthonormalized set of stationary states labeled by two
integers m, l (m ≥ 0):

Ψm,l (t, r, ϕ) = exp
(
− i
~
Em,lt

)
φm,l (r, ϕ) ,

φm,l (r, ϕ) =
√

γ

2π
ei(l−l0)ϕφm,l (r) ,

φm,l (r) = Im+|ν|,m (ξ) . (24)

Here ξ = γr2/2, ν = l + µ, while the radial function In,m(ξ) is the Laguerre function which
is related to the Laguerre polynomials Lαm(ξ) ([17], 8.970, 8.972.1) by

Im+α,m(ξ) =

√
Γ (m+ 1)

Γ (m+ α+ 1)
e−ξ/2ξα/2Lαm (ξ) ,

Lαm(ξ) =
1
m!
exξ−α

dm

dξm
e−xξm+α . (25)

The functions φm,l (r) are selected to be regular 4 at r = 0. As it is known for a spinless
(non)relativistic electron in magnetic field (1) [8], such a boundary condition specifies one

4Here, we use the terms ”regular” and ”irregular” at r = 0 in the following sense. We call a function to be
regular if it behaves as rb at r = 0 with b ≥ 0, and irregular if b < 0.
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of the four-parameter family of admissible boundary conditions, that is, the concrete self-
adjoint extension of the Hamiltonian is selected. It was shown (see more general verification
in [10]) that one come to this self-adjoint extension studying the eigenvalue problem with a
finite radius solenoid and then shrinking this radius to zero. The eigenvalues of the operators
H, Lz, and R2

0 are equal to

Em,l =
1
2
~ω (2m+ |v|+ v + 1) , (Lz)n,m = ~ (l − l0) ,

(
R2

0

)
m,l

=
1
γ

(2m+ |v| − v + 1) . (26)

respectively.

We see from expression (26) that the parameter l0 is not significant, since it may be
eliminated by overdetermination of the orbital quantum number; in this case wave functions
(24) acquire a nonsignificant gauge multiplier. We note, however, that the use of such singular
(on the z axis) gauge transforms requires some care and must be accompanied by correct
redetermination of the unbounded operators on the z axis.

These formulae reveal that the energy spectrum of an electron in a uniform magnetic field
consisting of a series of equidistant levels (Landau levels) decompose into two analogous series
separated by µ~ω in the presence of the solenoid. Here levels with ν > 0 are shifted only;
while the infinitely degenerate levels with ν < 0 remain unperturbed. On the other hand
the eigenvalues of the operator R2

0 experience a shift for values of ν < 0. These physical
differences are attributed to the fact that the stationary states with ν > 0 and with ν < 0
experience different types of orbits that have different positions with respect to the solenoid:
as indicated by expression (19) the orbit encompasses the solenoid for ν in states with ν > 0,
while when ν < 0 the solenoid lies outside the orbit.

It can be stated that the presence of the solenoid in the first case causes an increase in
the orbital radius (energy), while in the second case it reduces the distance from its center to
the solenoid. It is, however, necessary to remember that in stationary states the concept of
orbits is quite arbitrary: due to the uncertainty relations only the radial variables are exactly
fixed quantities, while the corresponding angular variables remain completely undetermined.

A convenient technique for a quantum mechanical description of electron behavior in a
uniform magnetic field is the operator technique based on the operators ai and a+

i (10). In
the presence of the solenoid these operators take the following form in the variables ξ and ϕ

a1 = − i

2
√
ξ
eiωt−iϕ

(
2ξ

∂

∂ξ
− i ∂

∂ϕ
+ l0 + µ+ ξ

)
,

a+
1 =

i

2
√
ξ
e−iωt+iϕ

(
−2ξ

∂

∂ξ
− i ∂

∂ϕ
+ l0 + µ+ ξ

)
,

a2 =
1

2
√
ξ
eiϕ

(
2ξ

∂

∂ξ
+ i

∂

∂ϕ
− l0 − µ+ ξ

)
,

a+
2 =

1
2
√
ξ
e−iϕ

(
−2ξ

∂

∂ξ
+ i

∂

∂ϕ
− l0 − µ+ ξ

)
(27)

and satisfy commutation relations (20) containing the singular function f . The commutators
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of these operators with Hamiltonian H and the angular momentum operator Lz,

[a1,H] =
~ω
2

(2a1 + fa1 + a1f) ,

[a2,H] = −i~ω
2
eiωt

(
fa+

1 + a+
1 f

)
,

[a1, Lz] =
~
2

[
2a1 + fa1 + a1f − ieiωt

(
a+
2 f + fa+

2

)]
,

[a2, Lz] =
~
2

[−2a2 + fa2 + a2f − ieiωt
(
a+
1 f + fa+

1

)]
,

also contain singular terms that makes a number of complications in using the operator
method in this case. However under the action of the operators ai and a+

i on the Ψn,m

states that decay sufficiently rapidly when r → 0, these singular terms vanish, which wakes it
possible to use these operators as creation and destruction operators for formulating different
quantum states of electron notion in magnetic field (1). As a result when the solenoid is
present the formulae characteristic of the case of a uniform magnetic field remain valid,

a1Ψm,l =
{ −i√m+ vΨm,l−1 l > 0 ,
i
√
mΨm−1,l−1 l < 0 ;

a+
1 Ψm,l =

{
i
√
m+ v + 1Ψm,l+1 l ≥ 0 ,

−i√m+ 1Ψm+1,l+1 l < −1 ;

a2Ψm,l =
{ −√mΨm−1,l+1 l ≥ 0 ,√

m+ |v|Ψm,l+1 l < −1 ;

a+
2 Ψm,l =

{ −√m+ 1Ψm+1,l−1 l > 0 ,√
m+ |v|+ 1Ψm,l−1 l < 0 ;

(28)

with the following exceptions:

a1Ψm,0 (t, r, ϕ) = −i√m+ µφirm,1 (r, ϕ) exp
[
−iωt

(
n+ µ− 1

2

)]
,

a+
1 Ψm,−1 (t, r, ϕ) = −i√m+ 1φirm+1,−1 (r, ϕ) exp

[
−iωt

(
m+

3
2

)]
,

a2Ψm,−1 (t, r, ϕ) =
√
m+ 1− µφirm,−1 (r, ϕ) exp

[
−iωt

(
m+

1
2

)]
,

a+
2 Ψm,0 (t, r, ϕ) = −√m+ 1φirm+1,1 (r, ϕ) exp

[
−iωt

(
m+ µ+

1
2

)]
, (29)

where

φirm,1 (r, ϕ) =

√
Mω

2π~
e−i(1+l0)ϕφirm,1 (r) ,

φirm,−1 (r, ϕ) =

√
Mω

2π~
e−il0ϕφirm,−1 (r) ,

φirm,1 (r) = Im+µ−1,m (ξ) , φirm,−1 (r) = Im−µ,m (ξ) . (30)

The functions φirm,±1 (r) are irregular at r = 0, unlike the functions φm,l (r) in (24), and that
do not belong to the selected self-adjoint extension of the Hamiltonian. It means that the
operators ai and a+

i are in themselves ill-defined in the presence of AB potential. One can
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use such operators only as elements of decomposition for well-defined self-adjoint operators.
We note that specifically the states Ψm,0 and Ψm,−1 are characterized by the fact that they
describe the orbits that come closest to the solenoid and weakly decay when r → 0 are most
sensitive to uniform magnetic field distortions caused by the singular magnetic field of the
solenoid.

In the case of a uniform magnetic field (µ = 0) the wave function Ψm,l may be written as

Ψm,l =





im−l(a+
2 )m(a+

1 )m+l

√
m!(m+l)!

Ψ0,0 , l ≥ 0 ,

im(a+
1 )m(a+

2 )m−l

√
m!(m−l)! Ψ0,0 , l < 0 ,

(31)

where the single vacuum state, Ψ0,0, is used. Due to (29) it is impossible in the presence of
a solenoid. However, the nature of energy spectrum (26) makes it possible to carry out such
a formulation using the two vacuum states, Ψ0,0 and Ψ0,−1; see [6]:

Ψm,l =





im−l
√

Γ(1+µ)(a+
2 )m(a+

1 )m+l

√
n!Γ(n+m+µ+1)

Ψ0,0 , l ≥ 0 ,

im
√

Γ(2−µ)(a+
1 )m(a+

2 )m−l

√
m!Γ(m−l−µ+1)

Ψ0,−1 , l < −1 .
(32)

In the absence of the solenoid (µ = 0) Ψ0,−1 = a+
2 Ψ0,0 and expression (32) becomes formula

(31).

Relativistic spinless case

In this subsection the relativistic electron motion will be described by the Klein-Gordon
equation, i.e., we will not consider any effect related to the spin. Our problem is to analyze
the influence of the solenoid magnetic flux in the average values of the quantum description
of the electron motion. With these goal, we are interesting in solutions of the problem in the
form of quasi-coherent states, these states have a behavior very close to the know coherent
states, the sense of this similarity will be clarify below.

Using the variables (12) and selecting the u3 variable, we can find solutions φ of the
Klein-Gordon equation in the form

φp− = L−1/2 exp
[
− i

2~

(
u3p− +

M2c2u0

p−

)]
Ψp− (u0, r, ϕ) , (33)

where L is a ”normalize length” (the range of the u3 variable), p− = E/c− pz is an integral
of motion, E the energy and pz the momentum projection in the z direction. The function
Ψ obey a Schrödinger-like equation

i~
∂

∂u0
Ψ = HΨ , H =

~P2
⊥

2p−
,

~P⊥ = (Px,Py, 0) . (34)

The advantage in search solutions in the form (33) is that this functions can be construct
by the known solutions of the two-dimensional non-relativistic problem if we perform the
replacements

M → p−, t→ u0 , ω → κ . (35)
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The expressions (34), (13), (14) and (18) determine the quantum Hamiltonian, the kinetic
momentum P operators, the coordinates of the orbital center x0 and y0 and the operators a1

and a2 that we will label with the same letters. Thus, the following operator relations are
satisfied:

H =
~κ
2

(
a+
1 a1 + a1a

+
1

)
,

R2
0 = x2

0 + y2
0 =

1
γ

(
a+
2 a2 + a2a

+
2

)
,

2v = a+
1 a1 + a1a

+
1 − a+

2 a2 − a2a
+
2 ,

Px =

√
~eB
2c

(
a1e
−iκu0 + a+

1 e
iκu0

)
, Py = i

√
~eB
2c

(
a1e
−iκu0 − a+

1 e
iκu0

)
,

√
2γx = a+

2 + a2 + ia1e
−iκu0 − ia+

1 e
iκu0 ,√

2γy = i
(
a+
2 − a2

)− a1e
−iκu0 − a+

1 e
iκu0 , (36)

The relations above are the same one founded in (20) if we perform the replacement (35).
With the same replacement we obtain the analogous of the equations (20) and (21)

[
a1, a

+
1

]
= 1 + f ,

[
a2, a

+
2

]
= 1− f ,

[a1, a2] = ifeiκu0 ,
[
a1, a

+
2

]
= 0 , (37)

2ȧ1 = −iκ (fa1 + a1f) , 2ȧ2 = −κ (
a+
1 f + fa+

1

)
eiκu0 , (38)

where f = (Φ/B) δ (x) δ (y) and ai the operators related with (18). Again, when Φ = 0
the operators ai are integrals of motion and destruction operators and in the presence of a
solenoid they no longer have these properties and only the combinations a+

i ai + aia
+
i remain

integrals of motion and commute.
The Hamiltonian H in (34) does not depend on u0 then the ”stationary” states of an

electron in magnetic field (1) can be written as

Ψp− (u0, r, ϕ) = exp
(
− i
~
Eu0

)
φ (r, ϕ) . (39)

Thus, we can can construct a complete and orthonormal set of stationary states in the same
manner as for non-relativistic case. Using (35) we find that

Ψm,l (u0, r, ϕ) = exp
(
− i
~
Em,lu0

)
φm,l (r, ϕ) ,

En,m =
1
2
~κ (2m+ |v|+ v + 1) , (40)

where the two-dimensional functions φm,l (r, ϕ) are given by (24). Then relations (31) and
(32) are valid for relativistic case.

In order, to explain the physical difference between states with positive and negative
values of l, we will consider the quantum character of the motion of the electron in such
states. Although the concept of trajectory do not made sense for the stationary quantum
states, we can still define the orbital square operator R2, using (16), and the operator related
with the square distance to the center of the orbit R2

0. These operators commute with it
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other. In this case, obviously, the angular variable α becomes completely undefined. In the
stationary states we have

γR2 = 2m+ |ν|+ ν + 1 , γR2
0 = 2m+ |ν| − ν + 1 (41)

and, consequently,

r2 = R2 +R2
0 =

2
γ

(2m+ |ν|+ 1) . (42)

From relations (41), follows
2ν = γ

(
R−R2

0

)
. (43)

From this result, we can see that states with ν > 0 (l ≥ 0), even in the quantum theory, can be
interpreted as the states that encompass the solenoid, while in the states with ν < 0 (l ≤ −1)
the solenoid remain out side of the orbit. Besides, the states with l = 0 and l = −1 describe
the orbits that come closer to the solenoid.

2 Coherent States

We will now consider the states describing the quasi-classical motion of an electron in
magnetic field (1). A familiar example of such states are coherent states determined as the
eigenstates of the destruction operators/integrals of motion [11]:

aiΨz1,z2 = ziΨz1,z2 . (44)

The operators ai (10) have the necessary properties due to relations (20) and (21) for the
case of a constant uniform magnetic field (µ = 0). The corresponding coherent states may be
represented as a series in stationary states (24) or (40) [12]

Ψ(0)
z1,z2 = N0

∞∑
m=0

∞∑

l=−∞
c
(0)
m,lΨ

(0)
m,l , (45)

where the coefficients c(0)m,l are equal to

c
(0)
m,l =

(−1)m (iz1)
m+(|l|+l)/2 (z2)

m+(|l|−l)/2
√

Γ (m+ 1) Γ (m+ |ν|+ 1)
, (46)

while the index ”0” infers µ = 0. Wave functions (45) form a complete, yet nonorthogonal
system of functions parametrized by the two complex numbers z1 and z2. These functions
will be normalized to unity, if we set the normalization constant equal to

N0 = exp
(
−1

2
|z1|2 − 1

2
|z2|2

)
. (47)

Non-relativistic case

We can write non-relativistic wave function (45) in explicit form by carrying out summa-
tion, using functions (24), or solving system (44) and the Schrödinger equation:

Ψz1,z2 = N0 exp
{
−1

2
ξ − i

2
ωt− iz1z2e−iωt +

√
ξ
[
z2e
−iϕ + iz1e

iϕ−iωt]
}
. (48)
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Calculating the average values of the quantum mechanical operators x, y, Px, Py over coher-
ent states (45) we obtain classical trajectories (4)-(6) where the parameters of the trajectories
R, ϕ0, R0, and α are related to the quantum numbers zi of the coherent states by the relations

z1 =
√
γ

2
Re−i(ϕ0+π/2) , z2 =

√
γ

2
Reiα . (49)

The average value of the Hamiltonian H over these states is

H =
~ω
2

+
Mω2R2

2
, (50)

which in fact corresponds to classical expression (8) differing only by the additive quantum
correction 1/2~ω which appears due to the quantum variance (a2 6= a2). Analogously the
average value of the operator r2 = x2 + y2 is

r2 =
1
γ

[
1 + |z1|2 + |z2|2 + 2 |z1z2| cos (ωt+ ϕ0 − α)

]
. (51)

Therefore in the case of a uniform magnetic field (µ = 0) the average values of the electron
coordinate over the coherent states follow classical trajectories (4).

Proceeding to the general case of electron motion in a uniform magnetic field in the pres-
ence of the solenoid (µ > 0) we emphasize that formulae (19) for the operators x, y, Px, Py
indicates that as before the average quantum mechanical trajectory still coincide with the clas-
sical trajectory, if the average values ai over the corresponding states are time-independent.
Here the trajectory parameters R, ϕ0, R0 and α will be related to the average values ai by
relations formally analogous to relations (49):

a1 =
√
γ

2
Re−i(ϕ0+π/2) , a2 =

√
γ

2
Reiα (52)

If the average values ai depend on t, the average quantum mechanical trajectory will be
different from the classical trajectory.

In the presence of the solenoid (µ > 0) the operators ai are no longer integrals of motion,
do not commute and lose their status as annihilation operators. Therefore they cannot be
used to formulate coherent state system (44). On the other hand it may be demonstrated
that there are no linear first order differential operators having properties necessary for this.
In the general case µ > 0 the annihilation operators/integrals of motion for the Schrödinger
equation with Hamiltonian (3) are integral operators that, although they may be formally
drafted based on known exact solutions of the problem they are nonetheless cumbersome in
form which wakes them unsuitable for practical application.

In addition in order to describe the possible influence of the magnetic field flux in the
solenoid on the average electron trajectory in a uniform magnetic field we will draft other,
quasi-coherent, states by determining them through the wave functions of stationary states
(24) as the series

Ψz1,z2 = N

∞∑
m=0

∞∑

l=−∞
cm,lΨm,l , (53)

where

cm,l =
(−1)m (iz1)

m+(|l|+l)/2 (z2)
m+(|l|−l)/2

√
Γ (m+ 1) Γ (m+ |v|+ 1)

, (54)
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generalizing formulae (45), (46) to the case µ > 0. From the unity normalization of wave
function (53) we obtain the expression for the normalization constant N (see Appendix):

N−2 = q−µIµ (2q) + q−µRµ
(
q, |z1|2

)
+ qµR−µ

(
q, |z2|2

)
,

Rα (q, p) = 2pep
∫ 1

0

xα+1e−px
2
Iα (2qx) dx , (55)

where q = |z1z2|, while Iα (x) is the Bessel function of the imaginary argument. when µ = 0
known expression (47) follows. In the particular case z2 = 0 formula (55) becomes

N−2 =
1

Γ (1 + µ)
Φ

(
1, 1 + µ; |z1|2

)
, (56)

where Φ (α, β; ) is a degenerate hypergeometric function.
In order to find the average quantum mechanical trajectory over states (53), i.e., in order

to determine the time dependence of the operators x, y, Px, Py, x0, y0 (19), it is sufficient
to find the average values of the operators ai. Using expressions (53), (54) and accounting
for relations (28) and (29), we obtain (see Appendix)

a1 = z1 −N2
[
z1 |z2|2 qµ−1I1−µ (2q) + iz∗2F (1− µ, ωt)

]
,

a2 = z2 −N2z2
[
q−µIµ (2q)− F (µ, ωt)

]
, (57)

where we introduce the convention

F (β, x) =
sinπβ
π

eiβx
∞∑

k=−∞
Ik (2q)

eik(x+χ)

k + β
, (58)

while χ = π/2− arg z1 − arg z2.
It is clear that the solenoid (µ > 0) causes a change in the average values ai that are equal

to the parameters zi of the coherent state when µ = 0. This change is due to the violation
of relations (28) when µ > 0 for transition between the states in Ψm,l with l = 0 and l = −1
belonging to different ranges of levels (26). It is these states in which the probability of
finding the electron near the solenoid is the greatest and, as discussed above, they are the
most sensitive to distortions in the uniform magnetic field caused by the solenoid. Specifically,
the existence of such states in the expansion of quasi-coherent state (53) causes the average
values ai (57) to become time-dependent. In turn this causes the average quantum mechanical
trajectory of the electron to differ from the classical trajectory. The fundamental qualitative
result is that oscillations of frequency µω caused by the magnetic field flux in the solenoid
arise near the classical orbit.

In order to examine in greater detail the nature of electron notion in quasi-coherent state
(53) we will calculate the average values of the Hamiltonian H and the operator r2. From a
simple calculation (see the Appendix), using relations (28) and (29) we obtain

H = ~ω
{

1
2

+ |z1|2 +N2
[
q1−µIµ−1 (2q)− q1+µI1−µ (2q)

]}
(59)

and

r2 =
1
γ

{
1 + |z1|2 + |z2|2 − 2 |z1z2| cos (ωt+ χ)+

+N2q−µ
[
qIµ−1 (2q)− |z2|2 Iµ (2q)

]
−N2qµ

[
qI1−µ (2q)− |z2|2 I−µ (2q)

]}
. (60)
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These averages do not contain oscillations of frequency µω where H and, consequently, due to
relation (19) R2, are generally time-dependent. On the other hand average value R consistent
with (52) and (57) is in the general case independent of t and experiences oscillations with
frequency µω. Consequently the additional oscillations to the orbit are also caused by the
quantum variance.

In the particular case z2 = 0 consistent with expressions (57) we have a1 = z1 and a2 = 0
and therefore in this state the average quantum mechanical trajectory agrees with the classical
trajectory whose center is at the coordinate origin (R0 = 0). However the dependence of the
average electron energy (59) on the parameter z1 (the average value of R),

H = ~ω
{

1
2

+ |z1|2 + µ
[
Φ

(
1, 1 + µ; |z1|2

)]−1
}
, (61)

is different from expression (51) which is valid when µ = 0. Therefore even in this particular
case when the average quantum mechanical trajectory agrees with the classical trajectory
the relations between the orbital parameters are different from the classical parameters and
have an explicit dependence on the magnetic field flux in the solenoid. By measuring these
parameters with sufficient accuracy we may establish the magnitude of this flux.

We note that the difference between relations (61) and (51) caused by the presence of the
solenoid (µ > 0) is quite small in practical realizable conditions. Indeed, as discussed above,
the dimensionless parameter |z1|2 = γR2/2 (9) can be taken as large. Therefore by using
the asymptotics of the degenerate hypergeometric function, we obtain from formula (61) the
approximate expression

H ≈ ~ω
{

1
2

+
γ

2
R2 + µ

(γ
2
R2

)µ
exp

(
−γ

2
R2

)}
. (62)

In order to again emphasize the important role of transitions between states with l = 0 and
l = −1 in analyzing the influence of the magnetic field flux in the solenoid on the characteristic
features of the average quantum mechanical trajectory of the electron, we will consider quasi-
coherent states of the type

Ψ(+) = N (+)
∞∑
m=0

∞∑

l=0

cm,lΨm,l , Ψ(−) = N (−)
∞∑
m=0

−1∑

l=−∞
cm,lΨm,l , (63)

where, as before, the coefficients cm,l are determined by formulae (54). The normalization
constants are equal to

N (±) =

{ ∞∑
m=0

∞∑

l=0

q2m |z1z2|2l
Γ (m+ 1)Γ (m+ l + 1± µ)

}−1/2

. (64)

Calculating the averages over states (63) we find

a
(±)
1 = z1 , a

(±)
2 = z2

[
1∓

(
N (±)

)2

q∓µI± (2q)
]
, (65)

H(±) = ~ω
[
1
2

+ |z1|2 ±
(
N (±)

)2

q1∓µI±(µ−1) (2q)
]
. (66)

Since by definition no transitions occur between states with l = 0 and l = −1 in calculating any
average values over states (63), the average values ai are independent of time and the average
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quantum mechanical orbit always coincides with the classical orbit. However the relations
between the orbital parameters are different from the classical relations. Indeed, relation (65)
indicates that |z1|2 = γR2/2, while relation (66) establishes a relation between the average
energy and the orbital radius. This relation is explicitly dependent on the magnetic field flux
a in the solenoid. Therefore we way determine µ by measuring the energy H and the radii R
and R0.

In conclusion we will demonstrate that these states indeed describe quasi-classical electron
motion. For this purpose we will calculate, for example, the Heisenberg uncertainty relation
for states Ψ(+). The simple yet cumbersome calculation yields

∆P2
x∆x2 =

1
4

[
1 + 2

(
N (+)

)2

q1−µIµ−1 (2q)
]{

2 +
(
N (+)

)2

q−µ ×
[
(z2 + z∗2)2 Iµ (2q)

(
1−

(
N (+)

)2

q−µIµ (2q)
)

+ 2µIµ (2q)

− (z2 − z∗2)2 |z2|−2
qI1+µ (2q)− 4qIµ (2q) cos (ωt+ χ)

]}
(67)

where the parameter χ was the same as in formula (58). It is clear that in states Ψ(+), as
would be expected, the minimum of the uncertainty relations equal to 1/4 is not realized,
although the right half of (67) remains bounded for all t. For the particular case z2 = 0 the
dependence on t vanishes, although in this case the minimum of the right half is not achieved.

Therefore it is possible to formulate different types of states in the problem of the quantum
motion of an electron in a uniform magnetic field in the presence of a solenoid for which the
average quantum mechanical trajectory coincides with the classical trajectory or is very close
to it. It is also possible on the average to satisfy select classical relations between the physical
quantities. However it is always possible to identify other relations between the measured
quantities that will differ from the corresponding classical relations and will have an explicit
dependence on the magnetic flux in the solenoid. This represents the manifestation of the
Aharonov-Bohm effect in the quasi-classical states of an electron in a magnetic field.

Relativistic case

As discussed after the equation (36), for the relativistic cases all the relations of the
preceding section remain valid if we perform the substitution (35). In this formulation, the
quantity u0 make the role of ”time”.

Once more, we can construct the quasi-coherent states by a combination of solutions (40)
in the form (53) with coefficients (54) and the average values of the quantum operator over
these states give results very close (in the sense of previous section) to the classical behavior
of the electron in the field (1). The previous discussion of the influence of the solenoid field
over the electron trajectories also remains valid.
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3 Appendix

3.1 Calculation of the Normalization Constant N

From the normalization of wave function (53) to unity we have

N−2 =
∞∑
m=0

∞∑

l=−∞
|cm,l|2

=
∞∑
m=0

[ ∞∑

l=0

|z1|2(m+l) |z2|2m
Γ (m+ 1)Γ (m+ l + µ+ 1)

+
∞∑

l=1

|z1|2m |z2|(2m+l)

Γ (m+ 1) Γ (m+ l − µ+ 1)

]

=
∞∑

l=0

|z1|2l q−l−µIl+µ (2q) +
∞∑

l=1

|z2|2l q−l+µIl−µ (2q)

where q = |z1z2|, since (see formula 5.2.10.7 in part 1 [15])

∞∑
m=0

q2m

Γ (m+ 1) Γ (m+ 1 + α)
= q−αIα (2q) .

Then using formula 5.8.3.1 in part 2 [15],

∞∑

l=0

plIl+α (2q) = 2qepq
∫ 1

0

xαe−pqx
2
Iα−1 (2qx) dx

= Iα (2q) + 2pqepq
∫ 1

0

xα+1e−pqx
2
Iα (2qx) dx,

we finally obtain

N−2 = q−µIµ (2q) + q−µRµ
(
q, |z1|2

)
+ qµR−µ

(
q, |z2|2

)
,

where

Rα (q, p) = 2pep
∫ 1

0

xα+1e−px
2
Iα (2qx) dx .

When µ = 0 we have
N−2

0 = exp
(
|z1|2 + |z2|2

)
.

In the asymptotic domain |z1| → ∞, |z2| → ∞ we obtain

N−2 ≈ |z2|2µ exp
(
|z1|2 + |z2|2

)
,

since (see formula 2.15.5.4 in part 2 [15])
∫ ∞

0

xα+1e−βx
2
Iα (x) dx = (2β)−α−1 exp

(
1
4β

)
.

In the particular case z2 = 0 we have

N−2 =
1

Γ (1 + µ)
Φ

(
1, 1 + µ; |z1|2

)
.
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3.2 Calculation of the Averages ai

Accounting for relation (28), (29) and using formula 2.19.14.18 in part 2 [15],
∫ ∞

0

e−xLαm′ (x)L
−α
m (x) dx =

(−1)m+m′ Γ (m′ + α+ 1) Γ (m− α+ 1)
Γ (m′ + 1) Γ (m+ 1) Γ (m′ −m+ α+ 1)Γ (m−m′ − α+ 1)

=
sin (πα)

π (m′ −m+ α)
Γ (m′ + α+ 1) Γ (m− α+ 1)

Γ (m′ + 1) Γ (m+ 1)
,

we will write out the matrix elements of the operator a1 over the standard states (24)

〈a1〉m′,l′;m,l = δl′,l−1





−i√m+ vδm,m′ , l > 0
i
√
mδm′+1,m l < 0

− sin(πµ)eiωt(m′−m−µ+1)

π(m′−m−µ+1)

√
Γ(m′−µ+2)Γ(m+µ+1)

Γ(m′+1)Γ(m+1) l = 0

〈a2〉m′,l′;m,l = δl′,l+1





−√mδm′,m−1 , l ≥ 0√
m+ |v|δm′,m l < −1

sin(πµ)eiωt(m′−m+µ)

π(m′−m+µ)

√
Γ(m′−µ+1)Γ(m−µ+2)

Γ(m′+1)Γ(m+1) l = −1
.

The average values of the ai operators over states (53) are equal to

ai = N2
∞∑

m,m′=0

∞∑

l,l′=−∞
c∗m′,l′cm,l 〈ai〉m′,l′;m,l .

Thus,

a1 = N2
∞∑

m,m′=0

∞∑

l=−∞
c∗m′,l−1cm,l 〈a1〉m′,l−1;m,l

= N2
∞∑
m=0

[ ∞∑

l=1

(−i)√m+ vc∗m,l−1cm,l +
−1∑

l=−∞
i
√
mc∗m−1,l−1cm,l+

+
∞∑

m′=0

c∗m′,−1cm,0 〈a1〉m′,−1;m,0

]

= N2
∞∑
m=0

[
z1

∞∑

l=0

c∗m,lcm,l + z1

−2∑

l=−∞
c∗m,lcm,l + z1c

∗
m,−1cm,−1+

+
∞∑

m′=0

c∗m′,−1cm,0 〈a1〉m′,−1;m,0 − z1c∗m,−1cm,−1

]

= z1 + δz1 ,

where

δz1 = N2
∞∑
m=0

[
−z1c∗m,−1cm,−1 +

∞∑

m′=0

c∗m′,−1cm,0 〈a1〉m′,−1;m,0

]

= −N2



iz

∗
2

sin (πµ)
π

∞∑

m,m′=0

(iz∗1z
∗
2)m

′
(−iz1z2)m

Γ (m′ + 1)Γ (m+ 1)
eiωt(m

′−m−µ+1)

m′ −m− µ+ 1
+

+z1 |z2|2
∞∑
m=0

|z1z2|2
Γ (m+ 1)Γ (m− µ+ 2)

}
.
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Then we obtain

a1 = z1 −N2
[
z1 |z2|2 qµ−1I1−µ (2q) + iz∗2F (1− µ, ωt)

]
,

where we use the convention

F (β, x) =
sinπβ
π

∞∑

m,m′=0

(iz∗1z
∗
2)m

′
(−iz1z2)m

Γ (m′ + 1) Γ (m+ 1) (m′ −m+ β)
eix(m

′−m+β) .

Analogously

a2 = z2 −N2z2
[
q−µIµ (2q)− F (µ, ωt)

]
.

When µ = 0, by virtue of the relation

lim
β→0

sin (πβ)
π (m′ −m+ β)

= δm′,m ,

we obtain ai = zi.
We will simplify the expression for F (β, x). Since

eix(m
′−m+β)

m′ −m+ β
= −i lim

ε→0

∫ ∞
x

e−εy+iy(m
′−m+β) dy

we have

F (β, x) = −i sinπβ
π

lim
ε→0

∫ ∞
x

dy e−εy+iyβ
∞∑

m,m′=0

(
iz∗1z

∗
2e
iy

)m′ (−iz1z2e−iy
)m

Γ (m′ + 1)Γ (m+ 1)

= −i sinπβ
π

lim
ε→0

∫ ∞
x

dy exp
(−εy + iβy + iz∗1z

∗
2e
iy − iz1z2e−iy

)

= −i sinπβ
π

lim
ε→0

∫ ∞
x

dy exp [−εy + iβy + 2q cos (y + χ)] ,

where χ = π/2− arg z1 − arg z2.
Accounting for

e2q cos(y+χ) =
∞∑

k=−∞
eik(y+χ)Ik (2q) ,

we finally obtain

F (β, x) =
sinπβ
π

eiβx
∞∑

k=−∞
Ik (2q)

eik(y+χ)

k + β
.
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3.3 Calculation of the Average Energy

The average value of H over states (53) is

H = N2
∞∑
m=0

∞∑

l=−∞
Em,l |cm,l|2

= ~ω

{
1
2

+N2
∞∑
m=0

[ ∞∑

l=0

(m+ l + µ) |cm,l|2 +
−1∑

l=−∞
m |cm,l|2

]}

= ~ω

{
1
2

+N2
∞∑
m=0

∞∑

l=0

|z1|2(m+l) |z2|2m
Γ (m+ 1)Γ (m+ l + µ)

+N2
∞∑
m=1

∞∑

l=1

|z1|2m |z2|2(m+l)

Γ (m) Γ (m+ l − µ+ 1)

}

= ~ω

{
1
2

+ |z1|2 +N2
∞∑
m=0

|z1z2|2m
Γ (m+ 1) Γ (m+ µ)

−N2
∞∑
m=1

|z1z2|2m
Γ (m) Γ (m− µ+ 1)

}
.

Thus

H = ~ω
{

1
2

+ |z1|2 +N2
[
q1−µIµ−1 (2q)− q1+µI1−µ (2q)

]}
.

In particular, when µ = 0, we obtain the familiar result

H = ~ω
(

1
2

+ |z1|2
)
.

For the case z2 = 0 we have

H = ~ω
{

1
2

+ |z1|2 + µ
[
Φ

(
1, 1 + µ; |z1|2

)]−1
}
.

We now calculate the average values of the operator R2, R2
0 and r2. It is obvious that

R2 =
2H
Mω2

.

Then accounting for

〈
R2

0

〉
m′,l′;m,l =

2
γ
δm′,mδl′l

(
m+

|v| − v
2

+
1
2

)
,

after analogous calculation we obtain

R2 =
2
γ

{
1
2

+ |z2|2 + |z2|2N2
[
qµI−µ (2q)− q−µIµ (2q)

]}
.

The matrix elements of r2 over the standard states are equal to

〈
r2

〉
m′,l′;m,l =

2
γ
δl′,l {(2m+ |v|+ 1) δm′m−

−eiωt
√

(m+ 1) (m+ |v|+ 1)δm′,m+1 − e−iωt
√
m (m+ |v|)δm′+1,m

}
.

Hence we have for the average over the stationary states
〈
r2

〉
m,l

=
〈
R2

0

〉
m,l

+
〈
R2

〉
m,l

.
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Calculating the average over states (53) we obtain

r2 =
2
γ
N2

∞∑
m=0

∞∑

l=−∞

|z1|2m+|l|+l |z2|2m+|l|−l

Γ (m+ 1) Γ (m+ |v|+ 1)
×

× {
(2m+ |v|+ 1)− iz∗1z∗2eiωt + iz1z2e

−iωt} .

Simple calculation yields the final result

r2 =
2
γ

{
1 + |z1|2 + |z2|2 − 2q cos (ωt+ χ)+

+N2q−µ
[
qIµ−1 (2q)− |z2|2 Iµ (2q)

]
−N2qµ

[
qL1−µ (2q)− |z2|2 I−µ (2q)

]}
.

When µ = 0 we have

r2 =
2
γ

[
1 + |z1|2 + |z2|2 + 2q cos (ωt+ ϕ0 − α)

]
,

which corresponds to the classical expression with the correction for quantum variance.
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Abstract

We present an overview of a recently suggested new model of quantum initial condi-
tions for the Universe in the form of the cosmological density matrix. This density matrix
originally suggested in the Euclidean quantum gravity framework turns out to describe
the microcanonical ensemble in the Lorentzian quantum gravity of spatially closed cos-
mological models. This ensemble represents an equipartition in the physical phase space
of the theory (sum over everything), but in terms of the observable spacetime geometry
it is peaked about the set of cosmologies limited to a bounded range of the cosmological
constant. This suggests the mechanism of constraining the landscape of string vacua
and a possible solution to the dark energy problem in the form of the quasi-equilibrium
decay of the microcanonical state of the Universe. The effective Friedmann equation
governing this decay incorporates the effect of the conformal anomaly of quantum fields
and features a new mechanism for a cosmological acceleration stage – big boost scenario.
We also briefly discuss the relation between our model, the AdS/CFT correspondence
and RS and DGP braneworlds.

1 Introduction

It is widely recognized that Euclidean quantum gravity (EQG) is a lame duck in modern
particle physics and cosmology. After its summit in early and late eighties (in the form of the
cosmological wavefunction proposals [1, 2] and baby universes boom [3]) the interest in this
theory gradually declined, especially, in cosmological context, where the problem of quantum
initial conditions was superseded by the concept of stochastic inflation [4]. EQG could not
stand the burden of indefiniteness of the Euclidean gravitational action [5] and the cosmology
debate of the tunneling vs no-boundary proposals [6].
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Thus, a recently suggested EQG density matrix of the Universe [7] is hardly believed to be
a viable candidate for the initial state of the Universe, even though it avoids the infrared catas-
trophe of small cosmological constant Λ, generates an ensemble of quasi-thermal universes in
the limited range of Λ, and suggests a strong selection mechanism for the landscape of string
vacua [7, 8]. Here we want to give a brief overview of these results and also justify them
by deriving from first principles of Lorentzian quantum gravity applied to a microcanonical
ensemble of closed cosmological models.

This work is dedicated to Iosif Buchbinder on the occasion of his sixtieth birthday, and he
might be interested to know how his wide scope of scientific results in renormalization theory,
conformal invariance, supersymmetry and quantum gravity finds applications in quantum
cosmology underlying the origin of our Universe and its phenomenology. In particular, he
might be fascinated with a possibly paradigmatic role of thermodynamics and statistical
physics – the field in which he started his scientific career – in the solution of the cosmological
constant and dark energy problems.

In Sect.2 we begin with the construction of the EQG density matrix of spatially closed
cosmology and its application to the anomaly driven cosmological model originally considered
in [9, 10] – the works which represented perhaps first examples of self-consistent inflationary
models. These earlier works disregarded the formulation of initial conditions which later
were considered in the form of the no-boundary proposal [1] and, more recently, using the
AdS/CFT correspondence [11]. In contrast to [1] we allow the possibility that the initial state
of the Universe is a mixed state and compute its statistical sum [7, 8]. The latter can be
calculated within the 1/Ncdf -expansion in the number, Ncdf , of conformally invariant fields
under the assumption that they outnumber all other degrees of freedom. This statistical
sum is dominated by the set of the quasi-thermal instantons with the effective cosmological
constant of the early Universe belonging to a finite range, strictly bounded from above and
from below [7, 8]. It also shows that the vacuum Hartle-Hawking instantons are excluded
from the initial conditions, having infinite positive Euclidean gravitational effective action [7]
due to the contribution of the conformal anomaly.

In Sect.3 we justify this construction by proving that the suggested EQG density matrix
in fact represents the microcanonical ensemble in cosmology [12]. In view of the peculiarities
of spatially closed cosmology this ensemble describes ultimate (unit weight) equipartition in
the physical phase space of the theory. This can be interpreted as a sum over Everything,
thus emphasizing a distinguished role of this candidate for the initial state of the Universe.

In Sect.4 we analyze the cosmological evolution in this model with the initial conditions
set by the instantons of [7, 8]. In particular, we derive the modified Friedmann equation
incorporating the effect of the conformal anomaly at late radiation and matter domination
stages [13]. This equation shows that the vacuum (Casimir) part of the energy density is
”degravitated” via the effect of the conformal anomaly – the Casimir energy does not weigh.
Moreover, together with the recovery of the general relativistic behavior, this equation can
feature a stage of cosmological acceleration followed by what we call a big boost singularity.
At this singularity the scale factor acceleration grows in finite cosmic time up to infinity with
a finite limiting value of the Hubble factor, when the Universe again enters a quantum phase
demanding for its description a UV completion of the low-energy semiclassical theory.

In Sect.5 we discuss the possibility of realizing this scenario within the AdS/CFT and
braneworld setups, in particular, when the conformal anomaly and its effective action are
induced on 4D boundary/brane from the type IIB supergravity theory in the 5D bulk. We
also comment on the relation between our model and the DGP setup.
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2 EQG density matrix in the model of anomaly driven
cosmology

A density matrix ρ( q, q′) in Euclidean quantum gravity [14] is related to a spacetime
having two disjoint boundaries Σ and Σ′ associated with its two entries q and q′ (collecting
both gravity and matter observables), see Fig.1. The metric and matter configuration on this
spacetime [ g, φ ] interpolates between q and q′, thus establishing mixing correlations.

Σ Σ’

Figure 1: The picture of Euclidean spacetime underlying the EQG density matrix, whose two
arguments are associated with the surfaces Σ and Σ′. Dashed lines depict the Lorentzian signature
spacetime nucleating at Σ and Σ′.

This obviously differs from the pure Hartle-Hawking state |ΨHH〉 which can also be for-
mulated in terms of a special density matrix ρ̂HH . For the latter the spacetime bridge
between Σ and Σ′ is broken, so that the spacetime is a union of two disjoint hemispheres
which smoothly close up at their poles (Fig.2) — a picture illustrating the factorization of
ρ̂HH = |ΨHH〉〈ΨHH |.

Σ Σ’

Figure 2: Density matrix of the pure Hartle-Hawking state represented by the union of two instantons
of vacuum nature.

Analogously to the prescription for the Hartle-Hawking state [1], the EQG density matrix
can be defined by the path integral [7, 8] over gravitational g and matter φ fields on the
spacetime of the above type interpolating between the observables q and q′ respectively at Σ
and Σ′,

ρ( q, q′ ) = eΓ
∫
D[ g, φ ] exp

(− SE [ g, φ ]
)
, (1)

where SE [ g, φ ] is the classical Euclidean action of the system. In view of the density matrix
normalization trρ̂ = 1 the corresponding statistical sum exp(−Γ ) is given by a similar path
integral,

e−Γ =
∫

periodic

D[ g, φ ] exp
(− SE [ g, φ ]

)
, (2)

over periodic fields on the toroidal spacetime with identified boundaries Σ and Σ′, see Fig.3.
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Σ ΣΣ

Σ

’

Figure 3: Calculation of the statistical sum represented by a toroidal compactification with period-
ically identified Euclidean time.

For a closed cosmology with the S3-topology of spatial sections this statistical sum can be
represented by the path integral over the periodic scale factor a(τ) and lapse function N(τ)
of the minisuperspace metric

ds2 = N2(τ) dτ2 + a2(τ) d2Ω(3) (3)

on the toroidal S1 × S3 spacetime [7, 8]

e−Γ =
∫

periodic

D[ a,N ] e−ΓE [ a,N ], (4)

e−ΓE [ a,N ] =
∫

periodic

DΦ(x) e−SE [ a,N ;Φ(x) ]. (5)

Here ΓE [ a, N ] is the Euclidean effective action of all inhomogeneous “matter” fields which
include also metric perturbations on minisuperspace background Φ(x) = (φ(x), ψ(x), Aµ(x),
hµν(x), ...), SE [a,N ;Φ(x)] ≡ SE [ g, φ ] is the original classical action of the theory under
the decomposition of the full configuration space into the minisuperspace and perturbations
sectors,

[ g, φ ] = [ a(τ), N(τ); Φ(x) ], (6)

and the integration also runs over periodic fields Φ(x).
Under the assumption that the system is dominated by free matter fields conformally

coupled to gravity this action is exactly calculable by the conformal transformation taking
the metric (3) into the static Einstein metric with a = const [7]. In units of the Planck mass
mP = (3π/4G)1/2 the action reads

ΓE [ a,N ] = m2
P

∫
dτ N

{
−aa′2 − a+

Λ
3
a3

+B
(
a′2

a
− a′4

6a

)
+
B

2a

}
+ F (η), (7)

where
F (η) = ±

∑
ω

ln
(
1∓ e−ωη), η =

∫
dτN/a, (8)

and a′ ≡ da/Ndτ . The first three terms in curly brackets represent the classical Einstein
action with a primordial cosmological constant Λ, the B-terms correspond to the contribution
of the conformal anomaly and the contribution of the vacuum (Casimir) energy (B/2a) of
conformal fields on a static Einstein spacetime. F (η) is the free energy of these fields – a typical
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boson or fermion sum over field oscillators with energies ω on a unit 3-sphere, η playing the
role of the inverse temperature — an overall circumference of the toroidal instanton measured
in units of the conformal time. The constant B,

B =
3β

4m2
P

=
βG

π
, (9)

is determined by the coefficient β of the topological Gauss-Bonnet invariant E = R2
µναγ −

4R2
µν +R2 in the overall conformal anomaly of quantum fields

gµν
δΓE
δgµν

=
1

4(4π)2
g1/2

(
α2R+ βE + γC2

µναβ

)
(10)

(C2
µναβ is the Weyl tensor squared term). For a model with N0 scalars, N1/2 Weyl spinors

and N1 gauge vector fields it reads [16]

β =
1

360
(
2N0 + 11N1/2 + 124N1

)
. (11)

The coefficient γ does not contribute to (7) because the Weyl tensor vanishes for any FRW
metric. What concerns the coefficient α is more complicated. A nonvanishing α induces higher
derivative terms ∼ α(a′′)2 in the action and, therefore, adds one extra degree of freedom to the
minisuperspace sector of a and N and results in instabilities1. But α can be renormalized to
zero by adding a finite local counterterm ∼ R2 admissible by the renormalization theory. We
assume this number of degrees of freedom preserving renormalization to keep theory consistent
both at the classical and quantum levels [7]. It is interesting that this finite renormalization
changes the value of the Casimir energy of conformal fields in closed Einstein cosmology in
such a way that for all spins this energy is universally expressed in terms of the same conformal
anomaly coefficient B (corresponding to the B/2a term in (7)) [7]. As we will see, this leads
to the gravitational screening of the Casimir energy, mediated by the conformal anomaly of
quantum fields.

Ultimately, the effective action (7) contains only two dimensional constants – the Planck
mass squared (or the gravitational constant) m2

P = 3π/4G and the cosmological constant
Λ. They have to be considered as renormalized quantities. Indeed, the effective action
of conformal fields contains divergences, the quartic and quadratic ones being absorbed by
the renormalization of the initially singular bare cosmological and gravitational constants
to yield finite renormalized m2

P and Λ [15]. Logarithmically divergent counterterms have
the same structure as curvature invariants in the anomaly (10). When integrated over the
spacetime closed toroidal FRW instantons they identically vanish because the 2R term is a
total derivative, the Euler number E of S3 × S1 is zero,

∫
d4xg1/2E = 0, and Cµναβ = 0.

There is however a finite tail of these vanishing logarithmic divergences in the form of the
conformal anomaly action which incorporates the coefficient β of E in (10) and constitutes
a major contribution to ΓE — the first two B-dependent terms of (8)2. Thus, in fact, this
model when considered in the leading order of the 1/N -expansion (therefore disregarding loop

1In Einstein theory this sector does not contain physical degrees of freedom at all, which solves the problem
of the formal ghost nature of a in the Einstein Lagrangian. Addition of higher derivative term for a does not
formally lead to a ghost – the additional degree of freedom has a good sign of the kinetic term as it happens
in f(R)-theories, but still leads to the instabilities discovered in [10].

2These terms can be derived from the metric-dependent Riegert action [17] or the action in terms of the
conformal factor relating two metrics [18, 19, 20] and generalize the action of [9] to the case of a spatially
closed cosmology with α = 0.
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effects of the graviton and other non-conformal fields) is renormalizable in the minisuperspace
sector of the theory.

The path integral (4) is dominated by the saddle points — solutions of the equation
δΓE/δN(τ) = 0 which reads as

−a
′2

a2
+

1
a2
−B

(
1
2
a′4

a4
− a′2

a4

)
=

Λ
3

+
C

a4
, (12)

with C given by

C =
B

2
+
dF (η)
dη

, η = 2k
∫ τ+

τ−

dτ

a
. (13)

Note that the usual (Euclidean) Friedmann equation is modified by the anomalous B-term
and the radiation term C/a4. The constant C sets the amount of radiation and satisfies the
bootstrap equation (13), where B/2 is the contribution of the Casimir energy, and

dF (η)
dη

=
∑
ω

ω

eωη ∓ 1
(14)

is the energy of the gas of thermally excited particles with the inverse temperature η. The
latter is given in (13) by the k-fold integral between the turning points of the scale factor
history a(τ), ȧ(τ±) = 0. This k-fold nature implies that in the periodic solution the scale
factor oscillates k times between its maximum and minimum values a± = a(τ±), see Fig.4

Figure 4: The garland segment consisting of three folds of a simple instanton glued at surfaces of a
maximal scale factor.

As shown in [7], such solutions represent garland-type instantons which exist only in the
limited range of values of the cosmological constant

0 < Λmin < Λ <
3π

2βG
, (15)

and eliminate the vacuum Hartle-Hawking instantons corresponding to a− = 0. Hartle-
Hawking instantons are ruled out in the statistical sum by their infinite positive effective action
which is due to the contribution of the conformal anomaly. Hence the tree-level predictions
of the theory are drastically changed.

The upper bound of the range (15) is entirely caused by the quantum anomaly – it
represents a new quantum gravity scale which tends to infinity when one switches the quantum
effects off, β → 0. The lower bound Λmin can be attributed to both radiation and anomaly,
and can be obtained numerically for any field content of the model. For a large number of
conformal fields, and therefore a large β, the lower bound is of the order Λmin ∼ 1/βG. Thus
the restriction (15) can be regarded as a solution of the cosmological constant problem in
the early Universe, because specifying a sufficiently high number of conformal fields one can
achieve a primordial value of Λ well below the Planck scale where the effective theory applies,
but high enough to generate a sufficiently long inflationary stage. Also this restriction can be
potentially considered as a selection criterion for the landscape of string vacua [7, 12].
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3 Microcanonical density matrix of the Universe: sum
over Everything

The period of the quasi-thermal instantons is not a freely specifiable parameter and can
be obtained as a function of G and Λ from Eqs. (12)-(13). Therefore this model clearly does
not describe a canonical ensemble, but rather a microcanonical ensemble [12] with only two
freely specifiable dimensional parameters — the renormalized gravitational and renormalized
cosmological constants as discussed above.

To show this, contrary to the EQG construction of the above type, consider the den-
sity matrix as the canonical path integral in Lorentzian quantum gravity. Its kernel in the
representation of 3-metrics and matter fields denoted below as q reads

ρ(q+, q−) = eΓ
∫

q(t±)= q±

D[ q, p,N ] e i
R t+

t− dt (p q̇−N
µHµ)

, (16)

where the integration runs over histories of phase-space variables (q(t), p(t)) interpolating
between q± at t± and the Lagrange multipliers of the gravitational constraints Hµ = Hµ(q, p)
— lapse and shift functions N(t) = Nµ(t). The measure D[ q, p,N ] includes the gauge-fixing
factor of the delta function δ [χ ] =

∏
t

∏
µ δ(χ

µ) of gauge conditions χµ and the relevant ghost
factor [21, 22] (condensed index µ includes also continuous spatial labels). It is important
that the integration range of Nµ,

−∞ < N < +∞, (17)

generates in the integrand the delta-functions of the constraints δ(H) =
∏
µ δ(Hµ). As a

consequence the kernel (16) satisfies the set of Wheeler-DeWitt equations

Ĥµ

(
q, ∂/i∂q

)
ρ( q, q′) = 0, (18)

and the density matrix (16) can be regarded as an operator delta-function of these constraints

ρ̂ ∼ “
∏
µ

δ(Ĥµ)”. (19)

This expression should not be understood literally because the multiple delta-function here is
not uniquely defined, for the operators Ĥµ do not commute and form an open algebra. More-
over, exact operator realization Ĥµ is not known except the first two orders of a semiclassical
~-expansion [23]. Fortunately, we do not need a precise form of these constraints, because
we will proceed with their path-integral solutions adjusted to the semiclassical perturbation
theory.

The very essence of our proposal is the interpretation of (16) and (19) as the density matrix
of a microcanonical ensemble in spatially closed quantum cosmology. A simplest analogy is
the density matrix of an unconstrained system having a conserved Hamiltonian Ĥ in the
microcanonical state with a fixed energy E, ρ̂ ∼ δ(Ĥ − E). A major distinction of (19)
from this case is that spatially closed cosmology does not have freely specifiable constants
of motion like the energy or other global charges. Rather it has as constants of motion the
Hamiltonian and momentum constraints Hµ, all having a particular value — zero. Therefore,
the expression (19) can be considered as a most general and natural candidate for the quantum
state of the closed Universe. Below we confirm this fact by showing that in the physical sector
the corresponding statistical sum is a uniformly distributed (with a unit weight) integral over
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entire phase space of true physical degrees of freedom. Thus, this is the sum over Everything.
However, in terms of the observable quantities, like spacetime geometry, this distribution
turns out to be nontrivially peaked around a particular set of universes. Semiclassically this
distribution is given by the EQG density matrix and the saddle-point instantons of the above
type [7].

From the normalization of the density matrix in the physical Hilbert space we have

1 = Trphys ρ̂ =
∫
dq µ

(
q, ∂/i∂q

)
ρ(q, q′)

∣∣∣
q′=q

= eΓ
∫

periodic

D[ q, p,N ] e i
R
dt(p q̇−NµHµ). (20)

Here in view of the coincidence limit q′ = q the integration runs over periodic histories q(t),
and µ

(
q, ∂/i∂q

)
= µ̂ is the measure which distinguishes the physical inner product in the

space of solutions of the Wheeler-DeWitt equations (ψ1|ψ2) = 〈ψ1|µ̂|ψ2〉 from that of the
space of square-integrable functions, 〈ψ1|ψ2〉 =

∫
dq ψ∗1ψ2. This measure includes the delta-

function of unitary gauge conditions χµ = χµ(q, p) and an operator factor incorporating the
relevant ghost determinant [23].

On the other hand, in terms of the physical phase space variables the Faddeev-Popov path
integral equals [21, 22]

∫
D[ q, p,N ] e i

R
dt (p q̇−NµHµ)

=
∫
DqphysDpphys e

i
R
dt (pphys q̇phys−Hphys(t))

= Trphys

(
T e−i

R
dt Ĥphys(t)

)
, (21)

where T denotes the chronological ordering. The physical Hamiltonian and its operator
realization Ĥphys(t) are nonvanishing here only in unitary gauges explicitly depending on
time [23], χµ(q, p, t). In static gauges, ∂tχµ = 0, they vanish, because the full Hamiltonian in
closed cosmology is a combination of constraints.

The path integral (21) is gauge-independent on-shell [21, 22] and coincides with that in
the static gauge. Therefore, from Eqs.(20)-(21) with Ĥphys = 0, the statistical sum of our
microcanonical ensemble equals

e−Γ = Trphys Iphys =
∫
dqphys dpphys

= sum over Everything. (22)

Here Iphys = δ(qphys − q′phys) is a unit operator in the physical Hilbert space, whose ker-
nel when represented as a Fourier integral yields extra momentum integration (2π-factor
included into dpphys). This sum over Everything (as a counterpart to the concept of creation
from “anything” in [24]), not weighted by any nontrivial density of states, is a result of gen-
eral covariance and closed nature of the Universe lacking any freely specifiable constants of
motion. The Liouville integral over entire physical phase space, whose structure and topology
is not known, is very nontrivial. However, below we show that semiclassically it is deter-
mined by EQG methods and supported by instantons of [7] spanning a bounded range of the
cosmological constant.
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Integration over momenta in (20) yields a Lagrangian path integral with a relevant measure
and action

e−Γ =
∫
D[ q,N ] eiSL[ q,N ]. (23)

As in (20) integration runs over periodic fields (not indicated explicitly but assumed every-
where below) even despite the Lorentzian signature of the underlying spacetime. Similarly to
the decomposition (6) of [7, 8] leading to (4)-(5), we decompose [ q,N ] into a minisuperspace
[ aL(t), NL(t) ] and the “matter” ΦL(x) variables, the subscript L indicating their Lorentzian
nature. With a relevant decomposition of the measure D[ q,N ] = D[ aL, NL ]×DΦL(x), the
microcanonical sum reads

e−Γ =
∫
D[ aL, NL ] eiΓL[ aL, NL ], (24)

eiΓL[ aL, NL ] =
∫
DΦL(x) eiSL[ aL, NL;ΦL(x)], (25)

where ΓL[ aL, NL ] is a Lorentzian effective action. The stationary point of (24) is a solution
of the effective equation δΓL/δNL(t) = 0. In the gauge NL = 1 it reads as a Lorentzian
version of the Euclidean equation (12) and the bootstrap equation for the radiation constant
C with the Wick rotated τ = it, a(τ) = aL(t), η = i

∫
dt/aL(t). However, with these

identifications C turns out to be purely imaginary (in view of the complex nature of the
free energy F (i

∫
dt/aL)). Therefore, no periodic solutions exist in spacetime with a real

Lorentzian metric.
On the contrary, such solutions exist in the Euclidean spacetime. Alternatively, the latter

can be obtained with the time variable unchanged t = τ , aL(t) = a(τ), but with the Wick
rotated lapse function

NL = −iN, iSL[ aL, NL;φL] = −SE [ a,N ;Φ ]. (26)

In the gauge N = 1 (NL = −i) these solutions exactly coincide with the instantons of [7].
The corresponding saddle points of (24) can be attained by deforming the integration contour
(17) of NL into the complex plane to pass through the point NL = −i and relabeling the
real Lorentzian t with the Euclidean τ . In terms of the Euclidean N(τ), a(τ) and Φ(x) the
integrals (24) and (25) take the form of the path integrals (4) and (5) in EQG,

iΓL[ aL, NL] = −ΓE [ a, N ]. (27)

However, the integration contour for the Euclidean N(τ) runs from −i∞ to +i∞ through
the saddle point N = 1. This is the source of the conformal rotation in Euclidean quantum
gravity, which is called to resolve the problem of unboundedness of the gravitational action
and effectively renders the instantons a thermal nature, even though they originate from the
microcanonical ensemble. This mechanism implements the justification of EQG from the
canonical quantization of gravity [25] (see also [26] for the black hole context).

4 Cosmological evolution and Big Boost scenario

The gravitational instantons of Sect.2 can be regarded as setting initial conditions for
the cosmological evolution in the physical spacetime with the Lorentzian signature. Indeed,
those initial conditions can be viewed as those at the nucleation of the Lorentzian spacetime
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from the Euclidean spacetime at the maximum value of the scale factor a+ = a(τ+) at the
turning point of the Euclidean solution τ+ — the minimal (zero extrinsic curvature) surface
of the instanton. For the contribution of the one-fold instanton to the density matrix of the
Universe this nucleation process is depicted in Fig. 1.

The Lorentzian evolution can be obtained by analytically continuing the Euclidean time
into the complex plane by the rule τ = τ+ + it. Correspondingly the Lorentzian effective
equation follows from the Euclidean one (12) as

ȧ2

a2
+

1
a2
− B

2

(
ȧ2

a2
+

1
a2

)2

=
Λ
3

+
C −B/2

a4
, (28)

where the dot, from now on, denotes the derivative with respect to the Lorentzian time t.
This can be solved for the Hubble factor as

ȧ2

a2
+

1
a2

=
1
B

{
1−

√
1− 2B

(
Λ
3

+
C
a4

)}
, (29)

C ≡ C − B

2
. (30)

We have thus obtained a modified Friedmann equation in which the overall energy density,
including both the cosmological constant and radiation, very nonlinearly contributes to the
square of the Hubble factor.

An interesting property of this equation is that the Casimir energy does not weigh. Indeed
the term B/2a4 is completely subtracted from the full radiation density C/a4 in the right
hand side of (28) and under the square root of (29). Only “real” thermally excited quanta
contribute to the right-hand side of (29). Indeed, using (13), the radiation contribution C/a4

is seen to read simply as

C
a4

=
1
a4

∑
ω

ω

eωη ∓ 1
. (31)

This is an example of the gravitational screening which is now being intensively searched for
the cosmological constant [27, 28]. As we see, in our case, this mechanism is mediated by
the conformal anomaly action, but it applies not to the cosmological constant, but rather to
the Casimir energy which has the equation of state of radiation p = ε/3. This gravitational
screening is essentially based on the above mentioned renormalization that eradicates higher
derivatives from the effective action and thus preserves the minisuperspace sector free from
dynamical degrees of freedom.

After nucleation from the Euclidean instanton at the turning point with a = a+ and ȧ+ = 0
the Lorentzian Universe starts expanding, because ä+ > 0. Therefore, the radiation quickly
dilutes, so that the primordial cosmological constant starts dominating and can generate an
inflationary stage. It is natural to assume that the primordial Λ is not fundamental, but is
due to some inflaton field. This effective Λ is nearly constant during the Euclidean stage and
the inflation stage, and subsequently leads to a conventional exit from inflation by the slow
roll mechanism3.

During a sufficiently long inflationary stage, particle production of conformally non-
invariant matter takes over the polarization effects of conformal fields. After being thermalized

3In the Euclidean regime this field also stays in the slow roll approximation, but in view of the oscillating
nature of a scale factor it does not monotonically decay. Rather it follows these oscillations with much lower
amplitude and remains nearly constant during all Euclidean evolution, whatever long this evolution is (as it
happens for garland instantons with the number of folds k →∞).
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at the exit from inflation this matter gives rise to an energy density ε(a) which should replace
the energy density of the primordial cosmological constant and radiation. Therefore, at the
end of inflation the combination Λ/3 + C/a4 should be replaced according to

Λ
3

+
C
a4
→ 8πG

3
ε(a) ≡ 8πG

3
ρ(a) +

C
a4
. (32)

Here ε(a) denotes the full energy density including the component ρ(a) resulting from the
decay of Λ and the radiation density of the primordial conformal matter C/a4. The depen-
dence of ε(a) on a is of course determined by the equation of state via the stress tensor
conservation, and ρ(a) also includes its own radiation component emitted by and staying in
(quasi)equilibrium with the baryonic part of the full ε(a).

Thus the modified Friedmann equation finally takes the form

ȧ2

a2
+

1
a2

=
π

βG

{
1−

√
1− 16G2

3
βε

}
, (33)

where we expressed B according to (9).
In the limit of small subplanckian energy density βG2ε ≡ βε/εP ¿ 1 the modified equation

goes over into the ordinary Friedmann equation in which the parameter β completely drops
out

ȧ2

a2
+

1
a2

=
8πG

3
ε. (34)

Therefore within this energy range the standard cosmology is recovered. Depending on the
effective equation of state, a wide set of the standard scenarios of late cosmological evolution
can be obtained, including those showing a cosmic acceleration, provided some kind of dark
energy component is present [29, 30].

The range of applicability of the GR limit (34) depends however on β. This makes
possible a very interesting mechanism to happen for a very large β. Indeed, the value of the
argument of the square root in (33) can be sufficiently far from 1 even for small ε provided
β ∼ Ncdf À 1. Moreover, one can imagine a model with a variable number of conformal fields
Ncdf(t) inducing a time-dependent, and implicitly a scale factor-dependent β, β = β(a). If
β(a) grows with a faster than the rate of decrease of ε(a), then the solution of (33) can reach
a singular point, labeled below by ∞, at which the square root argument vanishes and the
cosmological acceleration becomes infinite. This follows from the expression

ä

a
∼ 4π

3βG
a(G2βε)′√

1− 16G2βε/3
, (35)

where prime denotes the derivative with respect to a. This expression becomes singular at
t = t∞ even though the Hubble factor H2 ≡ (ȧ2/a2 + 1/a2) remains finite when (G2βε)∞ =
3/16, H2

∞ = 16π(Gε)∞/3.
Assuming for simplicity that the matter density has a dust-like behavior and β grows as

a power law in a

Gε ∼ 1
a3
, Gβ ∼ an, n > 3, (36)

one easily finds an inflection point t = t∗ when the cosmological acceleration starts after the
deceleration stage, (G2βε)∗ = 3(n− 2)/4(n− 1)2,

H2
∗ =

8π
3
n− 1
n− 2

(Gε)∗. (37)
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Also it is useful to comment on the duration of the acceleration stage before reaching
the singularity. If we identify our epoch with some instant t0 soon after t∗, this duration
until the singularity can be estimated by disregarding the spatial curvature term. It reads
t∞ − t∗ ∼

√
B0 ∼ H−1

0 , which is comparable to the age of the Universe. Thus, although the
acceleration stage does not pass the eternity test of [31], its duration is very large.

Nevertheless, the evolution ends in this model with the curvature singularity, ä → ∞,
reachable in a finite proper time. Unlike the situation with a big brake singularity of [32]
it cannot be extended beyond this singularity analytically even by smearing it out or taking
into account its weak integrable nature. In contrast to [32] the acceleration at the singularity
is positive. Hence, we called this type of singularity a big boost. The effect of the conformal
anomaly drives the expansion of the Universe to the maximum value of the Hubble constant,
after which the solution becomes complex. This, of course, does not make the model a priori
inconsistent, because for t→ t∞ an infinitely growing curvature invalidates the semiclassical
and 1/N approximations. This is a new essentially quantum stage which requires a UV
completion of the effective low-energy theory.

5 AdS/CFT correspondence and braneworld settings

What can be the mechanism of a variable and indefinitely growing β? One such mechanism
is well known – phase transitions in cosmology between different vacua can give a massm to an
initially massless particle. This results in the loss of conformal invariance of the corresponding
particle, which instead of contributing to the vacuum polarization by its own β factor starts
generating the Coleman-Weinberg type potential ∼ m4 ln(m2/µ2). However this effect is
weak and decreases the effective value of β, which is opposite to what we need.

Another mechanism was suggested in [12]. It relies on the possible existence, motivated
by string theory, of extra dimensions whose size is evolving in time. Indeed, theories with
extra dimensions provide a qualitative mechanism to promote β to the level of a modulus
variable which can grow with the evolving size L of those dimensions, as we now explain. The
parameter β basically counts the number Ncdf of conformal degrees of freedom, β ∼ Ncdf

(see Eq.(11)). However, if one considers a string theory in a space time with more than four
dimensions, the extra-dimension being compact with typical size L, the effective 4-dimensional
fields arise as Kaluza-Klein (KK) and winding modes with masses (see e.g. [33])

m2
n,w =

n2

L2
+
w2

α′2
L2 (38)

(where n and w are respectively the KK and winding numbers), which break their conformal
symmetry. These modes remain approximately conformally invariant as long as their masses
are much smaller than the spacetime curvature, m2

n,w ¿ H2
0 ∼ m2

P /Ncdf . Therefore the
number of conformally invariant modes changes with L. Simple estimates show that the
number of pure KK modes (w = 0, n ≤ Ncdf) grows with L as Ncdf ∼ (mPL)2/3, whereas
the number of pure winding modes (n = 0, w ≤ Ncdf) grows as L decreases as Ncdf ∼
(mPα

′/L)2/3. Thus, it is possible to find a growing β in both cases with expanding or
contracting extra dimensions. In the first case it is the growing tower of superhorizon KK
modes which makes the horizon scale H0 ∼ mP /

√
Ncdf ∼ mP /(mPL)1/3 decrease as L

increases to infinity. In the second case it is the tower of superhorizon winding modes which
makes this scale decrease with the decreasing L as H0 ∼ mP (L/mPα

′)1/3. At the qualitative
level of this discussion so far, such a scenario is flexible enough to accommodate the present
day acceleration scale (though, at the price of fine-tuning an enormous coefficient governing
the expansion or contraction of L).
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However, string (or rather string-inspired) models can offer a more explicit construction of
these ideas. In particular, some guidance can be obtained from the AdS/CFT picture. Indeed,
in this picture [34] a higher dimensional theory of gravity, namely type IIB supergravity
compactified on AdS5 × S5, is seen to be equivalent to a four dimensional conformal theory,
namely N = 4 SU(N) SYM, thought to live on the boundary of AdS5 space-time. An
interesting arena for a slight generalization of these ideas is the Randall-Sundrum model [35]
where a 3-brane is put in the inside of AdS5 space-time resulting in a large distance recovery
of 4D gravity without the need for compactification. This model has a dual description. On
the one hand it can just be considered from a 5D gravity perspective, on the other hand it can
also be described, thanks to the AdS/CFT picture, by a 4D conformal field theory coupled
to gravity.

Indeed, in this picture, the 5D SUGRA — a field-theoretic limit of compactified type
IIB string theory — induces on the brane of the underlying AdS background the quantum
effective action of the conformally invariant 4D N = 4 SU(N) SYM theory coupled to the
4D geometry of the boundary. The multiplets of this CFT contributing according to (11) to
the total conformal anomaly coefficient β are given by (N0, N1/2, N1) = (6N2, 4N2, N2) [37],
so that

β =
1
2
N2. (39)

The parameters of the two theories are related by the equation [34, 36, 11]

L3

2G5
=
N2

π
, (40)

where L is the radius of the 5D AdS space-time with the negative cosmological constant
Λ5 = −6/L2 and G5 is the 5D gravitational constant. The radius L is also related to the
’t Hooft parameter of the SYM coupling λ = g2

SYMN and the string length scale ls =
√
α′,

L = λ1/4ls. The generation of the 4D CFT from the local 5D supergravity holds in the
limit when both N and λ are large. This guarantees the smallness of string corrections
and establishes the relation between the weakly coupled tree-level gravity theory in the bulk
(G5 → 0, L→∞) and the strongly coupled 4D CFT (g2

SYM À 1). Moreover, as said above,
the AdS/CFT correspondence explains the mechanism of recovering general relativity theory
on the 4D brane of the Randall-Sundrum model [36, 11]. The 4D gravity theory is induced on
the brane from the 5D theory with the negative cosmological constant Λ5 = −6/L2. In the
one-sided version of this model the brane has a tension σ = 3/8πG5L (the 4D cosmological
constant is given by Λ4 = 8πG4σ), and the 4D gravitational constant G4 ≡ G turns out to
be

G =
2G5

L
. (41)

One recovers 4D General Relativity at low energies and for distances larger than the radius
of the AdS bulk, L. Thus, the CFT dual description of the 5D Randall-Sundrum model is
very similar to the model considered above. Moreover, even though the CFT effective action
is not exactly calculable for g2

SYM À 1 it is generally believed that its conformal anomaly is
protected by extended SUSY [39] and is exactly given by the one-loop result (10). Therefore
it generates the exact effective action of the anomalous (conformal) degree of freedom given
by (8), which guarantees a good 1/Ncdf -approximation for the gravitational dynamics.

Applying further the above relations it follows a relation between our β coefficient and
the radius L of the AdS space-time, given by βG = πL2/2. Introducing this in the modified
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Friedmann equation (33), the latter becomes explicitly depending on the size of the 5D AdS
spacetime as given by

ȧ2

a2
+

1
a2

=
2
L2

{
1−

√
1− L2

(
8πG

3
ρ+

C
a4

) }
, (42)

where we have reintroduced the decomposition (32) of the full matter density into the decay
product of the inflationary and matter domination stages, with energy density ρ, and the
thermal excitations of the primordial CFT (31).

For low energy density, GL2ρ ¿ 1 and L2C/a4 ¿ 1, in the approximation beyond the
leading order, cf. Eq.(34), the modified Friedmann equation coincides with the modified
Friedmann equation in the Randall-Sundrum model [38]

ȧ2

a2
+

1
a2

=
8πG

3
ρ

(
1 +

ρ

2σ

)
+
C
a4
, (43)

here σ = 3/8πG5L = 3/4πGL2 is the Randall-Sundrum brane tension and C is the braneworld
constant of motion [38, 41].4 Note that the thermal radiation on the brane (of non-Casimir
energy nature) is equivalent to the mass of the bulk black hole associated with this constant.
This fact can be regarded as another manifestation of the AdS/CFT correspondence in view
of the known duality between the bulk black hole and the thermal CFT on the brane [41].

Interestingly, this comparison between our model and the Randall-Sundrum framework
also allows one to have some insight on the phenomenologically allowed physical scales. In-
deed, it is well known that the presence of an extra-dimension in the Randall-Sundrum model,
or in the dual language, that of the CFT, manifests itself typically at distances lower than
the AdS radius L. Hence, it is perfectly possible to have a large number of conformal fields in
the Universe, à la Randall-Sundrum, without noticing their presence in the everyday experi-
ments, provided L is small enough. Moreover, if one uses the scenario of [7] to set the initial
conditions for inflation, it provides an interesting connection between the Hubble radius of
inflation, given by eq. (15), and the distance at which the presence of the CFT would manifest
itself in gravity experiments, both being given by L. Last, it seems natural in a string theory
setting, to imagine that the AdS radius L can depend on time, and hence on the scale factor.

In this case, assuming that the AdS/CFT picture still holds when L is adiabatically
evolving, one can consider the possibility that GL2ε is large, and that L2(t) grows faster than
Gε(t) decreases during the cosmological expansion. One would then get the cosmological
acceleration scenario of the above type followed by the big boost singularity.

In this case, however, should this acceleration scenario correspond to the present day
accelerated expansion, L should be of the order of the present size of the Universe, i.e.
L−2 ∼ H2

0 . Since the Randall-Sundrum mechanism recovers 4D GR only at distances beyond
the curvature radius of the AdS bulk, r À L, it means that local gravitational physics of our
model (42) at the acceleration stage is very different from the 4D general relativity. Thus this
mechanism can hardly be a good candidate for generating dark energy in real cosmology.

It is interesting that there exists an even more striking example of a braneworld setup dual
to our anomaly driven model. This is the generalized DGP model [40] including together with
the 4D and 5D Einstein-Hilbert terms also the 5D cosmological constant, Λ5, in the special
case of the vacuum state on the brane with a vanishing matter density ρ = 0. In contrast
to the Randall-Sundrum model, for which this duality holds only in the low energy limit —

4We assume that the dark radiation term is redshifted, as a grows, faster than the matter term and expand
to the second order in ρ, but the first order in C.
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small ρ and small C/a4, vacuum DGP cosmology exactly corresponds to the model of [7] with
the 4D cosmological constant Λ simulated by the 5D cosmological constant Λ5.

Indeed, in this model (provided one neglects the bulk curvature), gravity interpolates
between a 4D behaviour at small distances and a 5D behaviour at large distances, with the
crossover scale between the two regimes being given by rc,

G5

2G
= rc, (44)

and in the absence of stress-energy exchange between the brane and the bulk, the modified
Friedmann equation takes the form [42]

ȧ2

a2
+

1
a2
− r2c

(
ȧ2

a2
+

1
a2
− 8πG

3
ρ

)2

=
Λ5

6
+
C
a4
. (45)

Here C is the same as above constant of integration of the bulk Einstein’s equation, which
corresponds to a nonvanishing Weyl tensor in the bulk (or a mass for a Schwarzschild geometry
in the bulk) [38, 41]. It is remarkable that this equation with ρ = 0 exactly coincides with the
modified Friedmann equation of the anomaly driven cosmology (28) under the identifications

B ≡ βG

π
= 2r2c , (46)

Λ =
Λ5

2
. (47)

These identifications imply that in the DGP limit G¿ r2c , the anomaly coefficient β is much
larger than 1.

This looks very much like the generation of the vacuum DGP model for any value of the
dark radiation C/a4 from the anomaly driven cosmology with a very large β ∼ m2

P r
2
c À 1.

However, there are several differences. A first important difference between the conventional
DGP model and the anomaly driven DGP is that the former does not incorporate the self-
accelerating branch [42, 43] of the latter. This corresponds to the fact that only one sign of the
square root is admissible in Eq.(29) — a property dictated by the instanton initial conditions
at the nucleation of the Lorentzian spacetime from the Euclidean one. So, one does not have
to worry about possible instabilities associated with the self-accelerating branch [44].

Another important difference concerns the way the matter energy density manifests itself
in the Friedmann equation for the non-vacuum case. In our 4D anomaly driven model it
enters the right hand side of the equation as a result of the decay (32) of the effective 4D
cosmological constant Λ, while in the DGP model it appears inside the parenthesis of the left
hand side of equation (45). Therefore, the DGP Hubble factor reads as

ȧ2

a2
+

1
a2

=
8πG

3
ρ+

1
2r2c

{
1−

√
1− 4r2c

(
Λ5

6
+
C
a4 −

8πG
3

ρ

) }
(48)

(note the negative sign of ρ under the square root and the extra first term on the right hand
side). In the limit of small ρ, C/a4 and Λ5, the above equation yields a very different behavior
from the GR limit of the anomaly driven model (34),

ȧ2

a2
+

1
a2
' Λ5

6
+
C
a4 + r2c

(
Λ5

6
+
C
a4 −

8πG
3

ρ

)2

. (49)
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For vanishing Λ5 and C/a4 this behavior corresponds to the 5D dynamical phase [42, 43]
which is realized in the DGP model for a very small matter energy density on the brane
ρ¿ 3/32πGr2c ∼ m2

P /r
2
c .

Of course, in this range the DGP braneworld reduces to a vacuum brane, but one can
also imagine that the 5D cosmological constant decays into matter constituents similar to
(32) and thus simulates the effect of ρ in Eq.(33). This can perhaps provide us with a closer
correspondence between the anomaly driven cosmology and the non-vacuum DGP case. But
here we would prefer to postpone discussions of such scenarios to future analyses and, instead,
focus on the generalized single-branch DGP model to show that it also admits the cosmological
acceleration epoch followed by the big boost singularity.

Indeed, for positive Λ5 satisfying a very weak bound

Λ5 >
3

2r2c
(50)

Eq.(48) has a solution for which, during the cosmological expansion with ρ→ 0, the argument
of the square root vanishes and the acceleration tends to ±∞. For the effective a-dependence
of r2c and Gρ analogous to (36), r2c (a) ∼ an and Gρ(a) ∼ 1/a3, the acceleration becomes
positive at least for n ≥ 0,

ä

a
' n+ 32πGr2cρ

4r2c

√
1 + 4r2c

(
8πG

3 ρ− Λ5
6 − Ca4

) → +∞. (51)

This is the big boost singularity labeled by ∞ and having a finite Hubble factor (ȧ2/a2 +
1/a2)∞ = Λ5/6 + 1/4r2c .

Thus, the single-branch DGP cosmology can also lead to a big boost version of acceleration.
For that to happen, one does not actually need a growing rc (which can be achieved at the
price of having a time dependent G5 — itself some kind of a modulus, in a string inspired
picture). The DGP crossover scale rc can be constant, n = 0, and the big boost singularity
will still occur provided the lower bound (50) is satisfied 5. When Λ5 violates this bound,
the acceleration stage is eternal with an asymptotic value of the Hubble factor squared H2 =
ȧ2/a2 given by

(
1−

√
1− 2r2cΛ5/3

)
/2r2c .

6 Conclusions

To summarize, within a minimum set of assumptions (the equipartition in the physical
phase space (22)), we have the mechanism of generating a limited range of the positive
cosmological constant which is likely to constrain the landscape of string vacua and get the
full evolution of the Universe as a quasi-equilibrium decay of its initial microcanonical state6.

We have obtained the modified Friedmann equation for this evolution in the anomaly dom-
inated cosmology. This equation exhibits a gravitational screening of the quantum Casimir
energy of conformal fields — this part of the total energy density does not weigh, being de-
gravitated due to the contribution of the conformal anomaly. Also, in the low-density limit
this equation does not only show a recovery of the standard general relativistic behavior, but

5More precisely, one should also take into account here the modification due the dark radiation contribution
C/a4. However, the latter is very small at late stages of expansion.

6Thus, contrary to anticipations of Sidney Coleman that “there is nothing rather than something” regarding
the actual value of the cosmological constant [3], one can say that something (rather than nothing) comes
from everything.
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also coincides with the dynamics of the Randall-Sundrum cosmology within the AdS/CFT
duality relations. Moreover, for a very large and rapidly growing value of the Gauss-Bonnet
coefficient β in the conformal anomaly this equation features a regime of cosmological accel-
eration followed by a big boost singularity. At this singularity the acceleration factor grows
in finite proper time up to infinity with a finite limiting value of the Hubble factor. A proper
description of the late phase of this evolution, when the Universe enters again a quantum
phase, would require a UV completion of the low-energy semiclassical theory.

A natural mechanism for a growing β can be based on the idea of an adiabatically evolving
scale associated with extra dimensions [12] and realized within the picture of AdS/CFT
duality, according to which a conformal field theory is induced on the 4D brane from the 5D
non-conformal theory in the bulk. As is well known, this duality sheds light on the 4D general
relativistic limit in the Randall-Sundrum model [36, 11]. Here we observed an extended status
of this duality from the cosmological perspective — the generalized Randall Sundrum model
with the Schwarzschild-AdS bulk is equivalent to the anomaly driven cosmology for small
energy density. In particular, the radiation content of the latter is equivalent to the dark
radiation term C/a4 pertinent to the Randall-Sundrum braneworld with a bulk black hole of
mass C.

Another intriguing observation concerns the exact correspondence between the anomaly
driven cosmology and the vacuum DGP model generalized to the case of a nonvanishing
bulk cosmological constant Λ5. In this case a large β is responsible for the large crossover
scale rc, (44). For positive Λ5 satisfying the lower bound (50) this model also features a
big boost scenario even for stabilized β. Below this bound (but still for positive Λ5 > 0,
because a negative Λ5 would imply a time of maximal expansion from which the Universe
would start recollapsing) the cosmological evolution eventually enters an eternal acceleration
phase. However, the DGP model with matter on the brane can hardly be equivalent to the
4D anomaly driven cosmology, unless one has some mechanism for Λ5 to decay and to build
up matter density on the brane.

Unfortunately, our scenario put in the framework of the AdS/CFT correspondence with
adiabatically evolving scale of extra dimension cannot agree with the observed dark energy,
because, for the required values of the parameters, the local gravitational physics of this
model would becomes very different from the 4D general relativity.

In general, the idea of a very large central charge of CFT algebra, underlying the solution of
the hierarchy problem in the dark energy sector and particle phenomenology, seems hovering
in current literature [45, 46]. Our idea of a big growing β belongs to the same scope, but its
realization seems missing a phenomenologically satisfactory framework. In essence, it can be
considered as an attempt to cross a canyon in two endeavors — the leap of 32 decimal orders
of magnitude in Ncdf of [46], separating the electroweak and Planckian scales, versus our
120 orders of magnitude needed to transcend separation between the Hubble and Planckian
scales. Both look equally speculative from the viewpoint of local phenomenology.

Probably some other modification of this idea can be more productive. In particular, an
alternative mechanism of running β could be based on the winding modes. These modes do
not seem to play essential role in the AdS/CFT picture with a big scale of extra dimensions
L, because they are heavy in this limit. On the contrary, this mechanism should work in the
opposite case of contracting extra dimensions, for which the restrictions from local gravita-
tional physics do not apply (as long as for L→ 0 the short-distance correction go deeper and
deeper into UV domain).
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Abstract

We give a complete and consistent solution to string corrected (deformed), D = 10,
N = 1 supergravity as the non-minimal low energy limit of string theory. We solve the
Bianchi identities with suitable constraints to second order in the string slope parameter.
In so doing we pave the way for continuing the study of the many applications of these
results. We also modify, reaffirm and correct a previously given incomplete solution, and
we introduce an important adjustment to the known first order results.

1 Introduction

This work is inspired by the celebration of the activity of Prof. Buchbinder. One of us
(S.B.) has been a steady collaborator of the Tomsk group in the past decade, with 16 original
papers published in collaboration. Most of them involved Prof. Anton Galajinsky and two
were directly related to the work of Prof. Buchbinder. The latter ones dealt with noncommu-
tative field theory, however many discussions and interactions with Prof. Buchbinder over the
years, concerned issues related to supersymmetry and supergravity theories, an area where
Prof. Buchbinder obtained some of his numerous prestigious achievements. Hence it is quite
suitable to present in this dedicated volume an investigation that connects to the stimulat-
ing and seemingly almost everlasting issue of string-corrected ten-dimensional supergravity
theories.

The route to finding a manifestly supersymmetric theory of D= 10, N=1 supergravity at
second order in the string slope parameter has encountered many difficulties over the years.
Some years ago a solution to D=10, N=1 Supergravity as the low energy limit of String Theory
was given at first order in the string slope parameter and was recently re-calculated [1]. In a
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sense this was a minimal solution. This approach was founded on what is nowadays refered
to, as the scenario of Gates and collaborators; (see [1], [2], and references therein). Other
varied approaches are also pursued, however the power of this older approach is now being
vindicated. A partial second order solution was recently given in [3] and [4]. It was incomplete
and therefore in doubt due do an unsatisfactory assumption in the curvature sector, as well
as a computational error. Here we reaffirm that that solution is correct up to a curvature
term, and in particular that the proposed X tensor is valid. We then show that the results
obtained can be used to solve the curvature Bianchi identity, equation (3). We achieve this
by introducing R(1)

abγ
δ, and then imposing a condition on it which also modifies the old first

order results. The difficulties that prevented the complete closing of the Bianchi identities at
second order are overcome. We present the full set of equations that consistently satisfy all
required Bianchi identities. As the work in itself is lengthy we leave finding the equations of
motion and other applications for another letter. We also do not list results explicitly solved
by Bianchi identies. For this approach it is required that we solve the Bianchi identities for
D=10 N=1 supergravity in superspace at second order in the string slope parameter, and in
the presence of the Lorentz Chern-Simons Form, using the so called Beta Function Favored
Constraints [5].1 This approach has been detailed to first order in [1], and to second order
in [3], so we will not recount it here. We show that all results fall neatly into place in a very
elegant way, therefore further vindicating the whole original scenario. We note here that it
appears also to work consistently at third order, as we have proceeded to that order, and that
is for yet another work.

2 Review of Solution and Notation

The Bianchi identities in Superspace are as follows:

[[∇[A,∇B},∇C)} = 0 (1)

Here we have switched off Yang-Mills fields and the commutator is given by

[∇A,∇B} = TAB
C∇C +

1
2
RABd

eMe
d (2)

A solution must be found in such a way that all if the identities are simultaneously satisfied.
A small alteration in one sector will change the whole picture. Most of the resulting identities
are listed in [1] and [4], so we will not list them here. The second order solution given in part
in [3] and [4] to some extent was based upon an Ansatz for the so called X tensor, as well as
extensive algebraic manipulations. The necessity for introducing the X tensor was predicted
by Gates et. al., [1]. In [3], and [4], the following Bianchi identity was not properly solved:

T(αβ|λR|γ)λde − T(αβ|gR|γ)gde − ∇(α|Rβγ)de = 0 (3)

It is crucial to show that all of the second order torsions and curvatures satisfy this identity.
Also R(2)

γgde is required, in order to complete the set. Various ideas, such as finding a new
1In earlier works, this made the determination of a D=10 globally supersymmetric and Lorentz covariant

higher derivative Yang-Mills action possible, to order γ3 (see e.g. [6]), an important result for topologically
nontrivial gauge vector field configurations, as in the case of compactified string theories on manifolds with
topologically nontrivial properties.
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X tensor, imposing constraints on the spinor derivative ∇αχβ at second order or adjusting
the super current Aabc at second order were considered. We have found that including these
adjustments and constraints is unnecessary, and might in fact be wrong.

In this paper we find a complete and consistent solution. We also point out that equation
(58) in reference [3] (or equation (115) in reference [4]) is wrong.

In order to avoid a proliferation of terms we maintain the same notation and conventions
as in [1], but to avoid recasting the first order results, we denote all quantities by the order
in the slope parameter

RABde = R(0)
ABde +R(1)

ABde +R(2)
ABde + ...

TAD
G = T (0)

AD
G + T (1)

AD
G + T (2)

AD
G...

In this work we make some improvements to the notation of references [3]. For example
an apparently fundamental object is the following:

Ω(1)
gef = L(1)

gef − 1
4
A(1)

gef (4)

and its spinor derivative which we denote simply as

Ω(1)
αgef = ∇γ{L(1)

gef − 1
4
A(1)

gef} (5)

We leave it like this for brevity of notation. The numerical superscript refers to the order
of the quantity. A crucial input at first order is that for the super-current A(1)

gef . The choice
made for on-shell conditions in [1] and hence also [3], is as follows:

A(1)
gef = iγσgefετT

mnεTmn
τ (6)

In [3], we proposed the form of the X tensor to read

T (2)
αβ

d = σpqrefαβXpqrefd = − iγ
6
σpqrefαβH

(0)d
efA

(1)
pqr. (7)

A fundamental result which was used in every Bianchi identity and which is very lengthy
to derive is the following:

T (0)
(αβ|λσpqref |γ)λA(1)

pqrH
(0)

def − σpqref (αβ|H(0)
def∇|γ)A(1)

pqr

= −24σg(αβ|H(0)
d
ef [Ω(1)

γgef ] (8)

We note however in this paper that this result can be achieved indirectly by using the first
order results found in [1], in conjunction with the Bianchi identity (3), listed in this paper.
We found that the following dimension one half torsion is given uniquely by:
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T (2)
αβ

λ = − iγ

12
σpqrefαβA

(1)
pqrTef

λ. (9)

It was then shown that together with the proposed X tensor Ansatz as well as equation (8)
and other observations and results, the H sector Bianchi identities as listed in [1], [2] could
be solved simultaneously with the torsions (10) and (11) as listed below

T(αβ|λT|γ)λd − T(αβ|gT|γ)gd − ∇(α|Tβγ)d = 0 (10)

and

T(αβ|λT|γ)λδ − T(αβ|gT|γ)gδ − ∇(α|T|βγ)δ −
1
4
R(αβ|deσde|γ)δ = 0. (11)

We find the second order solutions to (10) to be given by (7) and the following

σg(αβ|T (2)|γ)gd = 4γσg(αβ|Ω(1)|γ)gefH(0)
d
ef − iγ

6
σg(αβ|σpqreg|γ)φA(1)

pqrT
(0)

de
φ, (12)

T (2)
γab = +2γ[Ω(1)

γ[a|ef ]H(0)|b]ef + σab γ
φ[
γ

3
Ω(1)

φgefH
(0)gef ]

−γ
6
σ[a|gγφ{Ω(1)

φ|b]efH(0)
g
ef + Ω(1)

φgefH
(0)|b]ef}

− iγ
12
A(1)

pqrσ
pqrg

[a|φλT (0)|b]gλ

− iγ
72
σab γ

φσpqregφλA
(1)

pqrT
(0)

eg
λ

iγ

144
A(1)

pqrσ[a|gγφ[σpqre|b]φλT (0)
eg
λ + σpqregφλT

(0)
e|b]λ]

(13)

In equation (11), we notice the occurrence of the term

−∇(α|T (0)|βγ)δ(Order2) = [2δ(α|δδ|β)
λ + σg(αβ|σgδλ]∇|γ)χλ(2). (14)

This was not properly considered in references [3]. In this work we find that there is no
need to modify the spinor derivative of χα at second order so that an additional constraint
on this derivative is unnecessary. For the solution of (11) we extract after some algebra, and
neat cancelations, the candidates

T (2)
γg
δ = 2γ T (0)ef δΩ(1)

γgef (15)

And

R(2)
αβde = − iγ

12
σpqrefαβA

(1)
pqrR

(0)
efde. (16)

We now must show that all of the above found results satisfy (3).
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3 New Solution for R(2)
λgde

We must show that we can close equation (3) using the results (7), (9), (15), and (16).
As mentioned, various approaches such as implementing the previously suggested constraints
did not work, nor was there any way to manipulate the terms using the sigma matrix algebra.
Eventually the following procedure provides a solution. At second order the Bianchi identity
(3) becomes

T (0)
(αβ|λR(2)|γ)λde + T (2)

(αβ|λR(0)|γ)λde − T (0)
(αβ|gR(2)|γ)gde − T (2)

(αβ|gR(0)|γ)gde

− ∇(α|[R(0)|βγ)
Order(2)
de + R(1)|βγ)

Order(2)
de + R(2)|βγ)

Order(2)
de ] = 0.

(17)

Using the results listed above we arrive at

−iσg(αβ|R(2)|γ)gde + T (0)
(αβ|λ[−

iγ

12
σpqrab|γ)λA(1)

pqrR
(0)

abde]

− iγ

12
σpqrab(αβ|A(1)

pqrTab
λR(0)|γ)λde +

iγ

6
σpqrab(αβ|H(0)g

abA
(1)

pqrR
(0)|γ)gde

−∇(γ|{−2iσg |αβ)Π(0)+(1)
gde +

i

24
σpqrde|αβ)A

(1)
pqr

− i

12
σpqrab|αβ)A

(1)
pqrR

(0)
abde} = 0. (18)

Here we encounter second order contributions from zero order terms but in solvable form.
(That is where we can extract a quantity symmetrized with a sigma matrix)We define

Πg
ef = Lg

ef − 1
8
Ag

ef . (19)

Now again using out key relation (8) we obtain

−iσg(αβ|R(2)|γ)gde + 2iγσg(αβ|R(0)
abde[Ω(1)|γ)gab]−∇(γ|{−2iσg |αβ)Π(0)+(1)

gde}
− iγ

12
σpqrab(αβ|A(1)

pqrTab
λR(0)|γ)λde +

iγ

6
σpqrab(αβ|H(0)g

abA
(1)

pqrR
(0)|γ)gde

+
iγ

12
σpqrab(αβ|A(1)

pqr[∇|γ)R(0)
abde] − i

24
σpqrde(αβ|[∇|γ)A(1)(Order(2)

pqr ] = 0

(20)

Of particular concern and interest is the last term in (20). It was thought that a possible
modification of A(1)

pqr, or a contribution from A(2)
pqr would be necessary. Here we may

avoid such a modification. In advance we anticipate that the solution will be as follows:

+iσg(αβ|R(2)|γ)gde = +2iγσg(αβ|R(0)
abde[Ω(1)|γ)gab] +∇(γ|{2iσg |αβ)Π(0)+(1)

gde}Order(2)
(21)

And
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− iγ

12
σpqrab(αβ|A(1)

pqrTab
λR(0)|γ)λde +

iγ

6
σpqrab(αβ|H(0)g

abA
(1)

pqrR
(0)|γ)gde

+
iγ

12
σpqrab(αβ|A(1)

pqr[∇|γ)R(0)
abde] − i

24
σpqrde(αβ|[∇|γ)A(1)(Order(2)

pqr ] = 0 (22)

We need to show that (22) does in fact vanish. We must begin with the Bianchi identity
that gives the spinor derivative of Tklτ .

∇γTklτ = Tγ[k|λTλ|l]τ + Tγ[k
gTg|l]τ + Tkl

λTλγ
τ + Tkl

gTgγ
τ −∇[k|T|l]γτ −Rklγτ . (23)

At first order this simplifies to

∇γTklτOrder(1) = −R(1)
klγ

τ − 1
48

[2H(0)
klgσ

g
γλσ

pqrλτA(1)
pqr − σ[k|γλσpqrλτ (∇|l]A(1)

pqr)]. (24)

We now write the last term in (22), using the ten dimensional metric so that the unsolved
part becomes

− i

12
σpqrab(αβ|{γA(1)

pqr[TabλR(0)|γ)λde + T
(0)
ab

gR(0)|γ)gde −∇|γ)R(0)
abde]

+
1
2
ηad ηbe∇|γ)A(1)Order(2)

pqr } = 0 (25)

Using the definition of A(1)
pqr (6), yields

+
γ

12
σpqrab(αβ|σpqrετT klε{γTklτ [TabλR(0)|γ)λde + T

(0)
ab

gR(0)|γ)gde −∇|γ)R(0)
abde]

+ηadηbe∇|γ)Tklτ} = 0 (26)

We now use equation (24) and the properties of the sigma matrices. After some algebra
we choose to impose a condition on R(1)

klγ
τ . We require

R(1)
klγ

τ = +
γ

100
T kl

τ [TmnλR(0)
γλ
mn + T (0)

mn
gR(0)

γg
mn −∇γR(0)

mn
mn]

− 1
48

[2H(0)
klgσ

g
γλσ

rstλτA(1)
rst − 2σ[k|γλσrstλτ∇|l]A(1)

rst] (27)

This can now be added to the list of first order results quoted in [1]. R(1)
klγ

τ was not
defined in [1]. We obtain as we required,

R(2)
γgde = 2γR(0)

abde[Ω(1)
γg
ab] + 2∇γ{Π(0)+(1)

gde}Order(2)
(28)

As a check we can also examine another Bianchi identity. The following Bianchi identity
also includes R(2)

αbde:

1
4
R(α|amnσmn|β)

γ + Tαβ
gTga

γ + Tαβ
λTλa

γ + Ta(α|λT|β)λ
γ − Ta(α|gT|β)g

γ

−∇(α|T|β)a
γ −∇aTαβγ = 0 (29)
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This Bianchi identity after some cancelations results in the following expression:

1
4
R(2)

(α|amnσmn|β)
γ + 2γ{∇(α|Ω(1)

aef}[−1
4
R(0)

ef
mnσγmn|β)]

+iσgαβT (2)
ga
γ − iγ

6
σpqrefαβA

(1)
pqrH

(0)g
efT

(0)
ga
γ + T (0)

αβ
λT (2)

λa
γ

−2γT (0)
ef
γ [∇(α|∇|β){Ω(1)

aef}]
+
iγ

12
σpqrefαβ{∇aA(1)

pqr}T (0)
ef
γ +

iγ

12
σpqrefαβA

(1)
pqr[∇aT (0)

ef
γ ]

+[δ(α|λδ|β)
φ + σgαβσg

λφ]∇aχφOrder2

+
1
4
σnm(α|γ∇|β)Πamn

Order(2) = 0

(30)

This identity also predicts the same form for R(2)
αamn. However it also includes a great

deal of other information which we plan to include in another letter.

4 Conclusions

We have found a consistent and manifestly supersymmetric solution to the Bianchi identi-
ties for D=10, N=1 supergravity, with string corrections to second order in the slope param-
eter. We have reaffirmed the results and the proposed X tensor of [3] and [4], and we have
solved the remaining previously intractable curvature. We have used the first order result for
A(1))

pqr as first given in [1]. We have not modified it at second order. We have not imposed
the constraint

Tαb
δ = − 1

48
σbαλσ

pqrλδApqr (31)

at second order. This is a conventional constraint and so could have been be imposed to
all orders. However we dropped it in favor of requiring an adjustment to Tαbδ(2) as given by
equation (15).
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6 Appendix I

Here for convenience we list the torsions curvatures and H sector results to second order,
simply by including the results found at first order in [1].

Hαβγ = 0 +Order(γ3) (32)
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Hαβd = +
i

2
σdαβ + 4iγσgαβHγ

efHd
ef

σαβ
g[8iγH(0)

defL
(1)

g
ef − iγH(0)

defA
(1)

g
ef ]

+ σpqrefαβ [
iγ

12
H(0)

defA
(1)

pqr] +Order(γ3) (33)

Hαab = +2iγ[−σ[a|αβTef βG|b]ef − 2σeαβTf [a|βG|b]ef ]

2γ[∇α(H(0)
[a|efH

(0)|b]ef − σabα
φ∇φ(H(0)

gefH
gef )]

+2iγσ[a|αφTefφΠ(1)|b]ef − 2iγσabαλσgλφTefφΠ(1)gef

− γ

6
σg [a|αφσ|b]λφTefλΠ(1)

g
ef − γ

6
σg [a|αφσgλφTefλΠ(1)|b]ef

− 4γR(1)
α[a|efH(0)|b]ef + T (2)

αab +Order(γ3) (34)

Tαβ
g = iσαβ

g − iγ

6
σpqrefαβH

(0)d
efA

(1)
pqr +Order(γ3) (35)

Tabc = −2Labc (36)

Tαβ
γ = −[δ(α|γδ|β)

δ + σgαβσg
γδ]χδ − iγ

12
σpqrefαβA

(1)
pqrTef

γ +Order(γ3) (37)

Tαg
δ = − 1

48
σgαφσ

pqrφδA(1)
pqr + 2γ T (0)ef δΩ(1)

αgef +Order(γ3) (38)

σg(αβ|T (2)|γ)gd = 4γσg(αβ|Ω|γ)gefH(0)
d
ef − iγ

6
σg(αβ|σpqreg|γ)φA(1)

pqrT
(0)

de
φ (39)

Or symmetrized,

T γab = +2γ[Ω(1)
γ[a|ef ]H(0)|b]ef + σab γ

φ[
γ

3
Ω(1)

φgefH
(0)gef ]

−γ
6
σ[a|gγφ{Ω(1)

φ|b]efH(0)
g
ef + Ω(1)

φgefH
(0)|b]ef}

− iγ
12
A(1)

pqrσ
pqrg

[a|φλT (0)|b]gλ

− iγ
72
σab γ

φσpqregφλA
(1)

pqrT
(0)

eg
λ

iγ

144
A(1)

pqrσ[a|gγφ[σpqre|b]φλT (0)
eg
λ + σpqregφλT

(0)
e|b]λ] +Order(γ3)

(40)
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Rαβde = −2iσgαβΠgde
(1) +

i

24
σpqrefαβApqr

(1)

− iγ

12
σpqrefαβA

(1)
pqrRefde +Order(γ3) (41)

Where

Π(1)
g
ef = L(1)

g
ef − 1

8
A(1)

g
ef (42)

Rαgde = −iσ[d|αφTg|e]f + iγσ[g|α φTkl
φRkl|de]

+2γR(0)
abde[Ω(1)

αg
ab] + 2∇α{Π(0)+(1)

gde}Order(2) +Order(γ3)
(43)

Aabc = iγσgefγλT
mnγTmn

λ (44)

R(1)
klγ

τ = +
γ

100
T kl

τ [TmnλR(0)
γλ
mn + T (0)

mn
gR(0)

γg
mn −∇γR(0)

mn
mn]

− 1
48

[2H(0)
klgσ

g
γλσ

rstλτA(1)
rst − 2σ[k|γλσrstλτ∇|l]A(1)

rst] (45)

The spinor derivative of Labc is solved and available from a Bianchi identity. We will list
it in a later paper. R(2)

klγ
τ if it exits will likely show up from third order calculations of (3).
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Abstract

We discuss a class of deformations ofN = 4 SYM theory and look for conditions under
which the theory would be conformally invariant and finite. Applying the algorithm of
perturbative adjustments of the couplings we construct the family of theories which are
conformal up to 3 loops in the non-planar case and up to 4 loops in the planar one. We
found particular solutions in the planar case when the conformal condition seems to be
exhausted in the one loop order and present the arguments that these solutions might
be valid in any loop order.

1 Introduction

During the last decade much attention has been paid to the N = 4 supersymmetric
Yang-Mills theory (SYM) and its deformations obtained by the orbifold [1] or orientifold [2]
projection, or by adding the marginal deformations [3] to the Lagrangian. Such deformations
lead to theories with less supersymmetry but possibly inheriting some attractive features
of the original N = 4 SYM theory, namely the conformal invariance, integrability [4] in
the planar limit, and, especially, its connection with dual string theory via the AdS/CFT
correspondence.

Since the original version of the AdS/CFT correspondence [5] there appeared several
modifications [6]. However, at present time it is not clear how to build gravity dual to an
arbitrary superconformal supersymmetric gauge theory and which properties of the gauge
theories are necessary for existence of this correspondence. In this context the marginally
deformed SYM theories are of special interest.
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In case of deformed N = 4 SYM theory [3] the initial symmetry is broken down to N = 1
supersymmetry, and SU(4)R global group down to U(1)R. One of such examples is the so-
called β-deformation of the original N = 4 SYM theory. Its gravity dual was constructed
by Lunin and Maldacena [7] and significant role in this duality plays the U(1)× U(1) global
symmetry of the β-deformed theory which was associated with isometries of the deformed
AdS5 × S̃5 background. There were also attempts to construct the gravity dual to the full
Leigh-Strassler deformation [8].

¿From the field theory side the investigation of the β-deformed case was made in [9, 10, 11].
The case of the full Leigh-Strassler deformation was less investigated. In this paper we
are looking for the conformal invariance of the full Leigh-Strassler deformation. Using the
dimensional regularization (reduction) we found conditions of conformal invariance up to four
loops in the planar limit and up to three loops in the non-planar one.

There are special cases when the conformal conditions are exhausted in the one-loop order.
In case of the beta-deformed theory in the planar limit this corresponds to real values of β.
We also found such solutions for the full Leigh-Strassler deformation. We present them below
and conjecture that they might be valid in any loop order.

2 The Leigh-Strassler Deformation of the N = 4 SYM
Theory

The so called Leigh-Strassler deformation can be obtained by modification of the super-
potential in the original N = 4 SYM theory written in terms of N = 1 superfields

S =
∫
d8zTr

(
e−gV Φ̄iegV Φi

)
+

(
1

2g2

∫
d6zTr(WαWα) +

∫
d6z W + h.c.

)
(1)

in such a way that

WN=4 SYM = ig(Tr(Φ1Φ2Φ3)− Tr(Φ1Φ3Φ2))→ (2)

WLS SYM = i[h1Tr(Φ1Φ2Φ3)− h2Tr(Φ1Φ3Φ2) +
h3

3

3∑

i=1

Tr(Φ3
i )],

where Φi with i = 1, 2, 3 are the three chiral superfields of the original N = 4 SYM theory in
adjoint representation of the gauge group SU(N) and the couplings h1, h2, h3 are in general
complex. The beta-deformed case in the same notation corresponds to

h1 = hq, h2 = h/q, q = eiπβ and h3 = 0.

The superpotential (2) brakes the SU(4)R symmetry of the original N = 4 theory down
to U(1)R. In addition it is invariant under cyclic permutations of (Φ1, Φ2, Φ3) and exchange:
β ↔ 1− β or in our notation h1 ↔ −h2.

Now one has to examine the UV divergences. In case of interest as in any N = 1 SYM
theory formulated in terms of N = 1 superfields one has two types of divergent diagrams,
those of the chiral field propagator and of the gauge field one. Moreover, the gauge propagator
is not independent: its divergences are related to the chiral propagators [12]. Since in the
Leigh-Strassler deformed N = 4 SYM case one has the same field content as in N = 4 SYM,
so

∑
T (R) = 3C(G) and everything is defined by the chiral field anomalous dimension γ.

Hence, the conformal invariance being understood as the vanishing of the beta function is
valid on the sub-manifold in the coupling constant space which is defined by condition:

γ(g, {hi}) = 0, (3)
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where {hi} = (h1, h2, h3). One can solve this condition choosing the Yukawa couplings in
the form of perturbation series over g [13]:

hi = α0ig + α1ig
3 + α2ig

5 + ... , i = 1...3. (4)

If the anomalous dimensions of the chiral fields vanish, so do the gauge and Yukawa beta
functions and the theory is conformally invariant.

Conformal invariance also means that the theory is finite, i.e. all UV divergencies cancel
(or in some gauges the sum of divergencies) and the renormalization factors Z (or their
products) are equal to 1 or finite. In the context of dimensional regularization this can
be achieved by adding to expansion over g (4) a similar expansion over the parameter of
dimensional regularization ε = 4−D, i.e. one has the two fold expansion instead of one fold
one [14]

hi = g
(
ai + α

(1)
0i ε+ α

(2)
0i ε

2 + ...+ α
(n−2)
0i εn−2 + α

(n−1)
0i εn−1 + α

(n)
0i ε

n + ...
)

+ g3
(
α

(0)
1i + α

(1)
1i ε+ α

(2)
1i ε

2 + ...+ α
(n−2)
1i εn−2 + α

(n−1)
1i εn−1 + ...

)

+ g5
(
α

(0)
2i + α

(1)
2i ε+ α

(2)
2i ε

2 + ...+ α
(n−2)
2i εn−2 + ...

)

+ ................

+ g2n−1
(
α

(0)
n−2i + α

(1)
n−2iε+ ......

)

+ g2n+1
(
α

(0)
n−1i + ...

)
. (5)

In a given order of PT equal n one needs all terms of the double expansion with a total power
of g2 · ε equal n. The existing freedom of choice of the coefficients α(m)

ki is enough to get
simultaneously the vanishing of the anomalous dimensions (read conformal invariance) and
of the pole terms in Z factors (read finiteness). The coefficients from α

(0)
ni to α(n)

0i calculated
in n-th order of PT are related. One can not put either of them to zero in an arbitrary
way. For more complete discussion and some examples of how these procedure works see our
paper [15].

Our goal now is to calculate several terms of the double expansion (5) and to look for
particular solutions when expansion breaks down at the first terms. In dimensional regu-
larization (reduction) and MS renormalization scheme the anomalous dimension of a chiral
superfield has the following form in n-th order of PT:

γ(g, {hi}) =
n∑

k=1

k c1k(g, {hi}), (6)

where c1k are the coefficients at the lowest order pole in Z−1
2 . In the 1-loop order one has for

the chiral field renormalization constant

Z−1
2 = 1− N

(4π)2
(
f({hi}, N)− 2g2

) 1
ε
. (7)

where

f({hi}, N) =
3∑

i,k=1

fikhih̄k = (1− 2
N2

)(|h1|2 + |h2|2)+
2
N2

(h1h̄2 +h2h̄1)+(1− 4
N2

)|h3|2, (8)
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Thus the one-loop conformal condition takes the form

f({hi}, N)− 2g2 = 0. (9)

To fulfil it, the coefficients {ai} in (4) must satisfy the requirement

3∑

i,k=1

fikaiāk = 2. (10)

In higher loops one has the following situation: up to three loops in the planar case (or up
to two loops in the non-planar case) the coefficients cik have the form

cnk = (f({hi}, N)− 2g2)Pnk(hi, g2, N), n = 1, .., 3, k = 1, ..., n (11)

and vanish provided (10) is satisfied. This means that the one-loop conformal condition (9)
is valid up to 3 loops in the planar case and up to two loops in the non-planar case. In even
higher orders new contributions appear and eq.(11) is modified.

2.1 Three-Loop Conformal Condition in Non-Planar Case

Starting from three loops in the non-planar case one has the new contribution coming
from the set of supergraphs with the ”cross” topology shown in Fig.1. Eq.(11) then takes the
form:

cnk = (f({hi}, N)− 2g2)Pnk({hi}, g2, N) +Gnk({hi}, N), n ≥ 3, k = 1, ..., n , (12)

where

Gnk({hi}, N) =
3∑

i,p=1

(Gnk)ip(hih̄p)n, (13)

is a homogeneous polynomial, and

Gnk({aig}, N) 6= 0, (14)

i.e. Gnk do not vanish when applying the one loop conformal condition (10) and to achieve
conformal invariance one has to take more terms of the double expansion. At this order
of PT to get simultaneously conformal and finite theory one needs the following terms of
expansion (5):

hi = g
(
a1 + α

(2)
0i ε

2 + g2α
(1)
2i ε

1 + g4α
(0)
4i

)
, i = 1, 2, 3. (15)

The explicit form of G31 is

G31({hi}, N) = − 1
128

6ζ(3)
(4π)6

N2 − 4
N3

× (16)
{|h1 − h2|2

(
N2|h2

1 + h2
2 + h1h2|2 − 9N2|h1|2|h2|2 + 5|h1 − h2|4

)

−18|h3|2
(
(N2 − 5)|h2

1 + h2
2|2 − (N2 − 10)

(
h̄1h̄2(h2

2 + h2
1) + c.c.

)− 20|h1|2|h2|2
)

+
(
h̄3

3(h1 − h2)((N2 + 20)(h2
1 + h2

2) + 10(N2 − 4)h1h2) + c.c.
)− 8(N2 − 10)(|h3|2)3

}
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Figure 1: The topology of the relevant divergent non-planar supergraphs and their scalar
counterpart at 3 loops

Now we follow the standard procedure [15] and find that up to 3 loops the couplings {hi}
must satisfy the following condition:

3∑

i,k=1

fikhih̄k = (1− 2
N2

)(|h1|2 + |h2|2) +
2
N2

(h1h̄2 + h2h̄1) + (1− 4
N2

)|h3|2

= g2

{
2− ζ3

128
GΣ

31ε
2 − 2ζ3

128
GΣ

31

(
g2N

16π2

)
ε+

18ζ3
128

GΣ
31

(
g2N

16π2

)2
}

(17)

where we have defined:

G31({aig}, N) = −N
3

128
6ζ(3)
(4π)6

GΣ
31g

6. (18)

For the bare couplings one has:

3∑

i,k=1

fik(hih̄k)|B = g2
B

{
2− ζ3

128
GΣ

31ε
2 + ...

}
(19)

2.2 Four-Loop Conformal Condition in the Planar Limit

The situation is simplified in the planar ( large N of the SU(N) gauge group ) limit. In
this case in the one loop conformal condition (8) only the diagonal terms fik, i = k survive

f({hi}, N) =
3∑

i,k=1

fikhih̄k = |h1|2 + |h2|2 + |h3|2, (20)

so from (9) one has:

|h1|2 + |h2|2 + |h3|2 − 2g2 = 0. (21)

At four loops the only non vanishing contribution to G41 comes from the set of planar super-
graphs with new ”ladder” topology (see Fig.2). Contribution of this set of chiral supergraphs
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to the chiral propagator renormalization constant in the planar limit is:

c41({hi}, g2, N) = (22)

=
5
2
ζ(5)

N4

(4π)8
{(|h1|2 + |h2|2 + |h3|2)4 − (2g2)4 + (|h1|2 − |h2|2)4 + (|h3|2)4

+6(|h3|2)2(|h1|2 + |h2|2)2 + 24|h3|2|h1|2|h2|2(|h1|2 + |h2|2) +
+8h3

3(|h2|2h̄3
1 − |h1|2h̄3

2) + 8h̄3
3(|h2|2h3

1 − |h1|2h3
2)

−8|h3|2(h3
2h̄

3
1 + h3

1h̄
3
2)− 4|h3|2(|h1|2 + |h2|2)3 − 4(|h3|2)3(|h1|2 + |h2|2)}.

Hereafter the chiral-gauge Φ̄V Φ contributions proportional to |h1|2 + |h2|2 + |h3|2 − 2g2 are
omitted. Note that G41 = c41 in this case, and does not vanish at the one-loop conformal
condition.

Figure 2: The topology of the relevant divergent planar supergraphs and their scalar coun-
terpart at 4 loops

With account of non-vanishing contribution to G41 one needs the following terms of ex-
pansion (5)

hi = g
(
ai + α

(3)
0i ε

3 + g2α
(2)
2i ε

2 + g4α
(1)
4i ε+ g6α

(0)
6i

)
, i = 1, 2, 3. (23)

Again as the previous case one gets a finite and conformal theory up to four loops if the
renormalized Yukawa couplings are chosen to satisfy the condition

3∑

i,k=1

fikhih̄k = |h1|2 + |h2|2 + |h3|2 = g2

{
2 +

5
18
ζ5G

Σ
41ε

3 +
5
3
ζ5G

Σ
41(

g2N

16π2
)ε2

+ 5ζ5GΣ
41(

g2N

16π2
)2ε+ 10ζ5GΣ

41(
g2N

16π2
)3 + ...

}
.

For the bare couplings one has

|h1|2B + |h2|2B + |h3|2B = g2
B

{
2 +

5
18
ζ5G

Σ
41ε

3 + ...

}
. (24)

The explicit form of GΣ
41 is:

GΣ
41 =

{
(a3a3)4 + (a1a1 − a2a2)4 + 6(a3a3)2(a1a1 + a2a2)2

+ 24a1a1a2a2a3a3(a1a1 + a2a2) + 8a3
3(a2a2a

3
1 − a1a1a

3
2)

+ 8a3
3(a2a2a

3
1 − a1a1a

3
2)− 8a3a3(a3

1a
3
2 + a3

2a
3
1)

− 4ca3a3(a1a1 + a2a2)3 − 4(a3a3)3(a1a1 + a2a2)
}
. (25)
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3 Exploring the Conformal Conditions

Consider now if one can find such values of (h1, h2, h3) that G31 in the non-planar case
and G41 in the planar case vanish meaning that the one-loop conformal condition is valid up
to three or four loops, correspondingly.

In non-planar case, similar to the beta-deformed theory, we have not found any solution
for vanishing of G31 which has a simple form and might be valid in any order of PT. In the
planar case, on the contrary, we found two families of simple solutions of equation G41 = 0:

Solution # 1 :





h1 = geiα(A−B),
h2 = geiα(A+B),
h3 = 2geiαB,

(26)

where A,B, α are arbitrary real numbers. The one-loop conformal condition brings us to the
following relation between A and B: B2 = 1−A2

3 . If this condition is satisfied, then G41 = 0
for arbitrary α and −1 ≤ A ≤ 1.

Solution # 2 :





h1 = −geiα,
h2 = 0,
h3 = geiβ ,

or





h1 = 0,
h2 = geiα0,
h3 = geiβ ,

(27)

where α and β are arbitrary real phases. However, not all of these solutions are genuine.
Some of them happen to be unitary equivalent to the β-deformed case.

Indeed, as was first noticed in [16] considering the full Leigh-Strassler deformation one can
find the special points in the parameter space of {h1, h2, h3} at which the theory is unitary
equivalent to the beta-deformed N = 4 SYM theory. To see this, consider a general unitary
matrix U(3) (UU+ = 1).

U =




c1 c3s1 s1s3
−c2s1 c1c3 − eiys2s3 eiyc3s2 + c1c2s3
s1s2 −c1c3s2 − eiyc2s3 eiyc2c3 − c1s2s3




where si = sin(xi) and ci = cos(xi).
Taking now the beta-deformed theory and making an arbitrary unitary transformation of

the fields
Φi = UijΨj , (28)

we demand the new theory to be of the Leigh-Strassler type. It leads to the following allowed
values for the transformation parameters





x1 = ± arccos( 1√
3
) + πk,

x2 = π
4 + πl

2 ,
x3 = π

4 + πm
2 ,

y = π
2 + πn.

(29)

As the result the superpotential which is obtained from the beta-deformed SYM theory
by unitary transformation (28) with parameters fixed by (29) has the form

W = iT r
(
h̃1Ψ1Ψ2Ψ3 − h̃2Ψ1Ψ3Ψ2

)
+ i

h̃3

3

3∑

i=1

Tr(Ψ3
i ), (30)
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where 



h̃1 = i(a− b)
h̃2 = i(a+ b)
h̃3 = 2ib

or





h̃1 = e±
π
3 (a− b)

h̃2 = e±
π
3 (a+ b)

h̃3 = −2ib
(31)

The parameters a and b are linked with the original couplings h1 and h2 by
{
a = ± 1

2 (h1 + h2),
b = ± 1

i2
√

3
(h1 − h2).

(32)

The chiral propagators calculated in the full Leigh-Strassler deformed theory (30) with
the coupling chosen as (31,32) will be the same as calculated in the beta-deformed theory.

Looking back to our solutions we find that the solution # 1 coincides with the left part of
(31). This means that the obtained theory is unitary equivalent to the beta-deformed case.
For the solution # 2 if the parameters α and β satisfy α − β = 2πm

3 one again has a theory
which is unitary equivalent to the real beta-deformed one.

Thus, the only non-trivial solution that exists in the planar limit and leads to conformal
theory (up to 4 loops at least) corresponds to the superpotential which can be written in the
form

W = ih

∫
d6z(qTrΦ1Φ2Φ3 − 1

q

3∑

i=1

Tr(Φ3
i )

3
). (33)

where |h|2 = g2 and |q| = 1, but q 6= ei
πn
3 .

4 Exact conformal invariance?

One may wonder if the theory defined by the superpotential (33) is exactly conformal
in the planar limit like the real beta-deformed one. Due to the unitary equivalence to real
beta-deformed theory for particular values of the phase the absence of phase-dependent terms
would mean the exact conformal invariance of the theory.

¿From the superpotential (33) one can notice that only phase-dependent structures that
can emerge are of the form

(|h3|2)n(|h1|2)l[(h3h̄1)3k + (h̄3h1)3k], k = 0, 1, ...

Hence, if h1 = hq, h3 = h
q , q = eiγ the only phase-dependent contribution looks like

const× cos(6kγ).

Since we know that when q = ei
πn
3 the theory is unitary equivalent to the real beta-

deformed one, it should be exactly conformal for γ = πn/3. This corresponds to cos(6kγ) =
cos(2πkn) = 1 for arbitrary k and n.

So the question is whether it is possible to construct a diagram which is phase-dependent
in the planar limit. This happened to be not a simple task for the following reasons:

1. All possible phase-dependent ”boxes” are suppressed in the planar limit. Thus, the
possible phase-dependent diagram should contain more complicated structures.

2. The diagram containing a polygon higher than the ”box” has many external legs. Being
inserted into the chiral propagator it again produces ”boxes” thus containing no phases.

As the result, at least up to twenty loops, one can not construct a potentially phase-
dependent diagram in the planar limit. We assume, though we have no rigorous proof yet,
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that in the planar limit such a phase-dependent structure does not emerge in any order of
PT.

Thus our conjecture is that the theory defined by the superpotential (33) with |q| = 1 is
exactly conformal in the planar limit.

5 Conclusion

We have investigated here the conformal conditions for the full Leigh-Strassler deformation
of the N = 4 SYM theory both in the planar and non-planar cases. The conformal condition
was found up to four loops in the planar limit and up to three loops in non-planar case.
We would like to emphasize the obtained theory simultaneously conformal invariant and
finite since these two requirements are identical. This can be achieved properly adjusting
the Yukawa couplings order by order in PT. In the framework of dimensional regularization
this requires the double series over the gauge coupling g and the parameter of dimensional
regularization ε.

Since in the full Leigh-Strassler deformation of the N = 4 SYM theory there is an extra
coupling constant we have more freedom in our theory. So looked for the solutions where the
one-loop conformal condition is exact and at the same time which are not obtainable from
the real beta deformation of the N = 4 SYM theory by unitary transformation. We did not
find such solutions in the non-planar case, but in the planar limit we found one potentially
interesting solution. We made certain that in the planar limit the one-loop conformal con-
dition in this case is valid up to twenty loops and p it might be also valid in all orders of
PT.
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The Origin of Horizons in
2+1-dimensional Black Holes
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College Park, MD 20742-4111 USA

Abstract

Gravitational collapse of matter to a black hole proceeds by the formation of a hori-
zon, which typically expands from a point, assumes a varying shape in the case of
asymmetrical collapse, and finally settles down to a constant, simple shape. The exact
asymmetrical collapse solutions of the Einstein equations in 2+1 dimensional spacetimes
are used to investigate this development of the horizon.

Of the many unusual properties of black holes the horizon is the most characteristic and
special. It can be considered an attribute of a black hole here and now, even though it cannot
be measured or experienced locally and is not determined until the late-time evolution of the
black hole is known. Most of the physical properties that can be attributed to horizons (as in
the membrane paradigm) refer to stationary black holes or changes between stationary states;
much less is known about stages when there is rapid change in the horizon. It is therefore
interesting to investigate horizons at their time of formation, when they are not spherical and
not even smooth. This is done here for the case of black holes in 2+1 dimensional spacetime
with a negative cosmological constant Λ = 1/`2. There the horizon at at a given time is a
(generally not round) circle. The deviations of this closed curve from smoothness will be of
particular interest.

The defining property of a horizon is that it divides spacetime into an interior and an
exterior. Points in the exterior can be causally (by timelike or null curves) connected to an
asymptotic region, whereas no causal curve from points in the interior end at infinity; instead
they typically reach in a finite time a region that is in some sense singular.

As a global property the horizon is not easily found, except in highly symmetrical cases.
Otherwise one usually does not have exact solutions and the horizon has to be found numer-
ically. In 2+1 dimensions all solutions of the Einstein equations are locally anti de Sitter
and differ only in the way these constant negative curvature regions are connected together.
These connections are well understood geometrically and one therefore in effect has a large
number of exact solutions of the Einstein equations, even if a single metric is not written down
for these spacetimes. This simplicity is attributed to the absence of gravitational waves in
three dimensions, so such waves cannot be used to perturb the horizon of the most symmetric
“BTZ” black hole. But non-uniform matter distributions can perturb this symmetry. In 2+1
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dimensions there exist point particles (conical singularities). This simplest form of matter
represents extreme concentrations and causes interesting dynamics of the horizon (see [1] for
background of classical 2+1 dimensional black hole theory).

By a somewhat loose language we call “the horizon” both the two-dimensional subspace
of spacetime, and its intersection with a spacelike time slice, similar to the way a “particle”
can mean both the worldline and its position on a spacelike surface. The horizon is a null
surface, hence penetrable by timelike curves in one direction only. It is generated by the last
light rays that can get out to infinity, and this extremal property implies that these rays are
null geodesics. Because each point on a null surface has a unique null tangent, the generators
cannot cross on the horizon. Wherever they cross is a boundary point of the horizon, the
point where those generators enter the horizon. The curve on which generators cross is the
boundary curve, which must be spacelike because there are curves arbitrarily close to the
boundary on the horizon, and those cannot be timelike or null 1 . Thus the (connected)
network of spacelike boundary curves define the development of the horizon. The network
has finite length because the horizon expands from it and only increases in length, until it
reaches the finite constant horizon length that measures the finite total mass of the black
hole. (Of course it may happen – as in the Schwarzschild or BTZ black hole – that the
generators do not cross anywhere. In that case the horizon has no starting point, the black
hole is eternal.)

The network will always lie on a spacelike surface, which could be chosen as one of the time
slices. In that notion of time all parts of the horizon start simultaneously on this network.
In order to show the development of the horizon as a sequence in time, other coordinates
are used, which unlike Schwarzschild coordinates involve a change in time coordinate on the
horizon itself. A familiar example is the collapse of a spherical shell in Eddington-Finkelstein
coordinates [4]. Successive collapse of two shells is studied in [5]. The horizon starts at a
point at the center of the shell and expands as a light cone until it reaches the shell. After the
shell has crossed the horizon, the latter no longer changes its radius, it is a cylinder joined to
this light cone.

Because the horizon is a global object, it does not follow ordinary notions of causality; for
example, in the spherically symmetrical case it is determined only by the matter distribution,
but not in a causal way: it “anticipates” future changes in this distribution. If the collapsing
shell is followed by another collapsing shell, the horizon radius continues to expand after the
first shell has crossed, and becomes constant only after passing the second shell. If there are
non-spherical perturbations in the shell’s matter one expects perturbations in the horizon
before it crosses the shell, since the black hole uniqueness does not allow perturbations after
the black hole has fully formed.2 It is therefore appropriate to follow the horizon backwards
in time as it crosses matter, to find out how it changes.

In Figure 1 a section of horizon (position 4) is incident as time decreases on a local
concentration of matter. The top of the figure is the outside of the horizon, and we consider
the horizon moving in a downward direction toward earlier times. The matter retards the parts
of the horizon that have passed through the matter (position 3) and acts as a gravitational
lens that bends the horizon generators to an imperfect focus F (position 2). If we now
continue along all the generators further backward in time we reach self-intersecting curves
as in position 1 which enclose a triangular region R, whose points are in the future (above) of

1The general properties of black hole horizons are discussed in [2]. Numerical study of horizon in 3+1
dimensions is given in [3].

2In four-dimensional spacetime this is only true after any gravitational radiation emitted during the collapse
has dispersed. In three-dimensional spacetimes there is no gravitational radiation, so the horizon has its final
shape immediately after it has crossed all matter.
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Figure 1: Focusing of horizon generators due to matter.

some part of this curve, as well as in the past (below) of another part. To determine whether
R is outside or inside the horizon we recall that all points causally connected to infinity lie
outside the horizon. The region R can be connected to infinity, for example by rays like the
null line N. Thus the inside of the horizon at that early time is only the bottom region, not
including R. As we have gone backwards in time the horizon has lost generators, and it is
about to lose the two generators going through the point P. In the forward time direction new
generators enter the horizon at P, and later along the curve joining P to F. The horizon is not
smooth (both on a spacelike surface and as a subspace of space-time) at these points where
the generators enter, and because the slope changes, two generators enter at such points.
The entry point does not move along either generator, and therefore must exceed the speed
of light: it moves along a spacelike curve, as noted above. This curve is usually called the
horizon “caustic”. Its motion ends at the paraxial focus F, after which the horizon becomes
smooth.

If the mass concentration is a point-like particle – that is, a conical singularity on spacelike
surfaces – the deflection of null rays is independent of impact parameter from the particle.
Therefore the focus is at the particle, and the horizon caustic ends at the particle itself. In a
vacuum spacetime with cosmological constant and point particles, due to analyticity, a caustic
must end either on a point particle or at a vertex with other caustics. Since generically it
takes three null surfaces to intersect at a point, three caustics typically come together at a
vertex. In cases of special symmetry more caustics can join together.

As a simple example, consider the case when the collapsing shell is replaced by n equidis-
tant point masses starting from rest on a circle of radius R. The initial geometry of any
arrangement of point masses defines a total (ADM) mass-energy through the behavior of its
geometry in the asymptotic region. There the metric can always be brought into the BTZ
form of single black hole,

ds2 = −
(
−M +

r2

`2
+
J2

4r2

)
dt2 +

dr2

−M + r2

`2 + J2

4r2

+ r2
(
dφ− J

2r2
dt

)2

Here we consider the non-rotating (time symmetric) case, where J = 0. If the parameter
m is negative, no black hole is formed; the particles simply move on radial geodesics until
they collide at the center. The negative m measures the total particle mass, that is, the total
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Figure 2: The horizon at various times as it passes six identical particles (left) and a repre-
sentation of the two-dimensional horizon surface in a three-dimensional spacetime (right).

conical angle deficit of the particles. When m > 0 a black hole will definitely be formed.
The value of m can be computed by hyperbolic geometry on the initial spacelike surface from
the conical angle deficits of the point particles and their distances. Because of this difference
between particle and black hole mass it is always possible to determine from the initial date,
and without having to integrate the time development, whether an arrangement of particles
will collapse to a black hole or not.

The more complicated hyperbolic geometry necessary for analyzing a general arrangement
of particles can be replaced by the simpler Euclidean geometry in the limit of small cosmo-
logical constant, or equivalently, of small system size. The general features of the horizon
formation will not be affected by this approximation (but details may vary; for example,
curves of constant curvature will be replaced by straight lines). During the interesting time
when the horizon is forming and rapidly passing the masses we can regard the particles as
static in flat spacetime, with a cylindrical exterior that approximates the geometry near the
throat of a black hole. (A conical exterior, on the other hand, would mean that the total
mass of the system is that of a particle.) The condition that the exterior is cylindrical and
the system represents a black hole is then simply that the sum of the particles’ angle deficits
should be 2π. Thus the angle deficit of each particle must be 2π/n.

When a black hole is formed from n symmetrically arranged particles it is clear from
symmetry that the horizon’s caustics will be radial geodesics between the center and each
particle3. The horizon starts at the center and expands into a polygon with n vertices that lie
on the horizon caustics. After it passes the particles it is a smooth circle whose circumference
remains constant. Since this spacetime is static and flat except at the particles, its spacelike
geometry can be represented on flat paper by making cuts along the cylinder’s generator to
the particles and opening up the angle deficits, with the understanding that corresponding
points along the cuts are to be identified. The result for the case of 6 masses is shown in
the left part of Figure 2. Each of the six dots that represent the particles is the vertex of
a wedge with the 60◦ deficit angle that is to be cut out and edges identified. The thicker
lines are the horizon’s caustics, and the horizon itself is shown at various times by the thinner

3Collapse of two point masses on a BTZ background is considered in [6].
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Figure 3: Construction of horizon for three particles. The particles of angle deficit δ1, δ2, δ3
are located at the three dots. The center of a circle passing through particles 1 and 2 is
located by the requirement that radii to the particles subtend an angle δ1 +δ2. Similar circles
(not shown) are drawn for the two other particle pairs. Their intersection is the origin of the
caustics (thicker lines) that connect this origin to the particles. The horizon at various times
is then drawn as triangles whose vertex angles are bisected by the caustics.

lines. This figure can also be regarded as a kind of level-line diagram of the horizon in the
three dimensional spacetime. The right part of Figure 2 is an attempt at a three dimensional
drawing of the horizon surface in a kind of Eddington-Finkelstein coordinate system. The
bottom part is standard Minkowski space in which the six triangular null surfaces are inclined
at 45◦, but at the top the light cones are tilted so that the exterior horizon can be shown as
a cylinder of constant circumference, as in the Eddington-Finkelstein picture. The line G is
a typical horizon generator that enters the horizon at a caustic.

When we are given a less symmetrical arrangement of particles, even at the time-symmetric
moment, it is rather more complicated to find the horizon. Consider two generators that
intersect and enter the horizon at a caustic that ends at one of the particles. The angle
between the generators at entry must be such that when they pass the particle on opposite
sides they are deflected to become parallel, because the exterior part of the horizon has
parallel generators, like that of an eternal black hole. Their angle at entry is therefore equal
to the particle’s deficit angle. Since the horizon wave front is normal to the generator, the
angle by which the horizon changes at a caustic must also equal the corresponding particle’s
deficit angle. So we know the exterior angles of the polygon that is the horizon before it has
passed the particles. In the case of three particles these three angles determine the shape of
the triangular horizon, and we confine attention to that case.

With three particles the three horizon caustics come together at a point that can be
regarded as the origin of the horizon. It is equidistant from the sides of any (later) horizon
triangle, and therefore the caustics are bisectors of that triangle’s edges. The angle between
two caustics is then the average of the angle deficit of the corresponding particles (Figure
3). It remains only to place this tree of three caustics on the given triangle so that each
vertex lies on its caustic. This can be done constructing the intersection of three circles, as
explained in the caption. With the caustics located within the triangle of the three particles,
the horizon is then found as the triangles whose angle bisectors are the caustics. The horizon
will generally cross the particles one at a time, and accordingly lose its discontinuities not
simultaneously but one after the other.

The case of more particles can be analyzed in a similar way (see the details in [7]). Figure
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Figure 4: Four unequal masses with less symmetry, their caustics and horizon sequence.

4 gives an example. The generic tree of caustics has three caustics coming together at a
vertex, therefore there will be internal caustics without end points on a particle. A vertex
that is connected to two particles and not the origin of the horizon can be considered as a
single particle that replaces those two particles in the early development of the horizon. If the
particles have motion and angular momentum the qualitative horizon development remains
unchanged, but there is the additional complication that the generators cannot be assumed
to be perpendicular to the momentary horizon. Our analysis also has qualitative implications
for less concentrated matter distributions than point particles. In that case the focus where
the caustics end is some distance away from the mass, as in Figure 1, and the horizon can
become smooth before it crosses the matter.
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Abstract

New Ekpyrotic Cosmology is an alternative scenario of the early universe which relies
on a phase of slow contraction before the Big Bang. During this epoch, we show that
nearly scale-invariant density perturbations are generated with the observed amplitude
and red spectral tilt. We calculate the 3-point and 4-point correlation functions of
these primordial density perturbations and find a generically large non-Gaussian signal.
This is in contrast with slow-roll inflation, which predicts negligible non-Gaussianity.
The model is also distinguishable from alternative inflationary scenarios with large non-
Gaussianity but differing shape dependence of the correlation functions. The Ekpyrotic
phase is followed by an epoch in which the Null Energy Condition is violated, allowing
a “bounce” from contraction to an expanding universe. This is accomplished via “ghost
condensation”.

1 Introduction

Over the past decade observations of the microwave background temperature anisotropy
have revealed that the large scale structure in our universe originates from primordial pertur-
bations that are nearly scale-invariant and adiabatic. Since these coincide with the predictions
of the simplest inflationary models, this is widely regarded as evidence for inflation. However
this does not constitutes a proof, and it is prudent to keep in mind that the seeds for structure
formation could originate from a different mechanism. Ultimately our faith in inflation must
rely on the absence of a compelling alternative paradigm.

The ekpyrotic scenario is an alternative candidate theory of early-universe cosmology. In-
stead of invoking a short burst of accelerated expansion from a hot initial state, as in inflation,
the ekpyrotic scenario relies on a cold beginning followed by a phase of very slow contraction.
Despite such diametrically opposite dynamics, both models predict a flat, homogeneous and
isotropic universe, endowed with a nearly scale invariant spectrum of density perturbations,
and are, therefore, equally successful at accounting for all current cosmological observations.

123
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An important drawback of the original ekpyrotic theory [1] is how to avoid the big crunch
singularity without introducing ghosts or other pathologies. Moreover, the fate of pertur-
bations through the bounce is ambiguous — whereas the scalar field fluctuations are scale
invariant during the contracting phase, the curvature perturbation on uniform-density hyper-
surfaces, ζ, is not. And since the latter remains constant on super-horizon scales, one generally
expects its (unacceptably blue) spectrum to be preserved irrespective of the bounce physics.
Despite considerable work indicating that stringy effects at the bounce may positively alter
this conclusion [2], the issue of matching conditions remains controversial.

Both of these issues have been resolved in the recently proposed New Ekpyrotic sce-
nario [3]. In [3], we derived a fully non-singular bounce within a controlled and ghost-free
four-dimensional effective theory using the ghost condensation mechanism [4]. Moreover, ζ
acquires a scale invariant spectrum well before the bounce, thanks to an entropy perturbation
generated by a second scalar field [3, 5, 6]. Thus New Ekpyrotic Cosmology appears to be a
consistent alternative to the inflationary scenario.

A distinguishing prediction lies in the tensor spectrum [1]: inflation predicts scale invariant
primordial gravity waves, whereas ekpyrosis does not. Detecting tensor modes from CMB B-
mode polarization could rule out the ekpyrotic scenario, whereas an absence of detection
would not discriminate between the two models.

Here, we focus on another key observable: the non-Gaussianity of primordial density
perturbations. We show that New Ekpyrotic Cosmology generically predicts a large level of
non-Gaussianity, potentially just below current sensitivity levels and detectable by near-future
CMB experiments.

We calculate the 3-point and 4-point functions. For typical parameter values, the am-
plitude of the 3-point function is generically large, with fNL around the current WMAP
bound [7]: −36 < fNL < 100. That is, assuming all parameters are O(1), fNL approaches
the limits of this bound, depending on the sign of a parameter. These values are well above
the expected sensitivity of the Planck experiment: |fNL| <∼ 20. The amplitude of the 4-point
function is also generically large: τNL ∼ 104, which is again near the estimated WMAP bound
and within the reach of Planck: τNL

<∼ 600 [8].
This is in stark contrast with the highly Gaussian spectrum predicted by slow-roll inflation.

Comparably large non-Gaussianity does arise in non-slow roll models, such as DBI inflation [9],
and whenever the precursor of density fluctuations is a light spectator field, such as in the
curvaton [10, 11] or modulon scenarios [12, 13]. However, as we will see, New Ekpyrosis
predicts a different shape dependence in momentum space for the 3- and/or 4-point spectrum
than the simplest such models.

Non-Gaussianity therefore offers a distinguishing prediction of New Ekpyrotic Cosmology,
potentially testable in CMB experiments within the next few years.

2 New Ekpyrotic Cosmology

As with inflation, ekpyrosis relies on a scalar field φ rolling down a potential V(φ). Instead
of being flat and positive, however, here V(φ) must be steep, negative and nearly exponential
in form. For concreteness, we take

V(φ) = −V0e
−φ/Λ , (1)
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where Λ ≡ √εMPl and ε ¿ 1. The Friedmann and scalar field equations then yield a
background scaling solution,

a(t) ∼ (−t)2ε ; φ̄(t) = Λ log
(

V0

2Λ2(1− 6ε)
t2

)
, (2)

with Hubble parameter H = 2ε/t. Since ε ¿ 1, this describes a slowly-contracting universe
with rapidly increasing H, again in contrast with the rapid expansion and nearly constant H
in inflation.

In single-field ekpyrosis, fluctuations in φ acquire a scale invariant spectrum. As we review
shortly, this traces back to the fact that the above solution satisfies V̄,φφ = −2/t2. However
this contribution exactly projects out of ζ, leaving the latter with an unacceptably blue
spectrum. Since ζ is conserved on super-horizon scales barring entropy perturbations, it is
generally expected to match continuously through the bounce, although stringy effects could
alter this picture [2].

New Ekpyrotic Cosmology introduces a second field, χ, as the progenitor of the scale-
invariant perturbation spectrum [3, 5]. This field has no dynamics during the ekpyrotic phase
and remains approximately fixed at χ̄ = 0. However, as we describe below, its fluctuations
generate a scale-invariant spectrum of entropy perturbations, which gets imprinted onto ζ at
the end of the ekpyrotic phase.

An essential condition in obtaining a scale-invariant spectrum is that at χ̄ = 0 the cur-
vature of the potential be nearly the same along the χ and φ directions: V̄,χχ ≈ V̄,φφ. An
example of such a potential is

V (φ, χ) = V(φ)
(

1 +
χ2

2Λ2
+
α3

3!
χ3

Λ3
+
α4

4!
χ4

Λ4
+ . . .

)
. (3)

The higher-order χ terms are naturally expected to be suppressed by the same scale Λ as the
quadratic term, hence the form (3). For simplicity we take α3, α4, . . . to be constants. While
potential (3) yields a slightly blue spectral tilt, a more general potential is presented in [3]
which allows for the observed red tilt without altering the conclusions for non-Gaussianity
arrived at in this paper. Note that the required field trajectory lies along an unstable point.
However, a pre-ekpyrotic, stabilizing phase can easily create initial conditions so that this
trajectory is arbitrarily close to the tachyonic ridge [3].

Power spectrum for χ: Since our space-time background is nearly static, we ignore gravity
in studying χ perturbations. To linear order, the Fourier modes δχ(0)

k around χ̄ = 0 satisfy a
free field equation with time-dependent mass V̄,χχ = V̄,φφ = −2/t2:

¨δχk
(0)

+
(
k2 − 2

t2

)
δχ

(0)
k = 0 . (4)

Assuming the usual adiabatic vacuum, we find

δχ
(0)
k =

e−ikt√
2k

(
1− i

kt

)
. (5)

On super-Hubble scales, k(−t)¿ 1, the power spectrum, defined by 〈δχ(0)
k δχ

(0)
k′ 〉 = (2π)3δ3(~k+

~k′)Pχ(k), is

k3Pχ(k) =
1

2t2
, (6)
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which is scale invariant. Including gravity and departing from the pure exponential form (1)
results in small deviations from scale invariance. This can yield a small red tilt, consistent
with current CMB observations [3].

Evolution of ζ: We focus for simplicity on the regime where all relevant modes are well-
outside the horizon, k ¿ aH. In the small-gradient approximation, the metric can be written
as ds2 = −N 2dt2 +e2ζ(~x,t)a2(t)d~x2 [14], where N is the lapse function, and ζ is the curvature
perturbation. The evolution of ζ on uniform-density hypersurfaces is governed by

ζ̇ = 2H
δV

˙̄φ2 − 2δV
, (7)

where δV ≡ V (φ, χ) − V (φ̄, χ̄). A key simplification is that δφ has a steep blue spectrum
at long wavelengths and, hence, can be neglected. Thus, for the potential (3), we have
δV ≈ V(φ̄)δχ2/2Λ2 + . . .

To proceed further, one needs an expression for δχ to higher-order than the “free” part
δχ(0). To do this, we solve δ̈χ + V̄χχδχ = 0, valid at long wavelengths, perturbatively:
δχ = δχ(0) + δχ(1) + . . . To lowest order, this equation reduces to (4) in the limit k → 0.

The next order, δχ(1), satisfies δ̈χ
(1)

+ V̄χχδχ
(1) + V̄,χχχ(δχ(0))2/2 = 0. Using (2), (3) and

δχ(0) ∼ 1/t, we find

δχ = δχ(0) +
α3

4Λ

(
δχ(0)

)2

+ . . . (8)

Substituting into (7), one can integrate to obtain

ζek =
1
2

(
δχ(0)

MPl

)2

+
5α3

18
√
ε

(
δχ(0)

MPl

)3

+ . . . (9)

The ekpyrotic phase must eventually end if the universe is to undergo a smooth bounce and
reheat into a hot big bang phase. This is achieved by adding a feature to the potential (3)
which eventually pushes χ away from the tachyonic ridge [3]. Denote the time at which
ekpyrosis stops as tend. For simplicity, we model this with V,χ suddenly becoming non-zero
and nearly constant at χ = 0. Denote this constant by V,χ|. The exit phase is assumed to
last for a time interval ∆t which is short compared to a Hubble time: |Hend|∆t ¿ 1. This
will be the case provided the potential satisfies

εχ ≡ H4
endM

2
Pl

V,χ|2
<∼ 1 . (10)

The exit phase generates an additional contribution to ζ. To compute this in the rapid-exit
approximation, we can treat the right-hand side of (7) as approximately constant. In evaluat-
ing this constant, note that, to leading order in δχ, we have δV ≈ V,χ|δχ = ±H2

endMPlδχ/
√
εχ.

(Higher-order terms in δχ yield small corrections to (9) and are therefore negligible.) Thus ζ
changes from ζek by an amount ζc during the exit, given by

ζc = ∓2
√
εβ
δχ(tend)
MPl

, (11)

where β ≡ |Hend|∆t
√
ε/εχ. Noting that to lowest order δχ ≈ δχ(0) and substituting (6)

evaluated at tend, it follows from (11) that the ζ power spectrum is

k3Pζ(k) =
4εβ2

M2
Pl

k3Pχ(k) = β2 H
2
end

2εM2
Pl

. (12)
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Up to the prefactor β2, this is identical to the inflationary result, with ε playing the role of
the usual slow-roll parameter. In the exit mechanism of [3], β denotes the overall change in
angle in the field trajectory: β = ∆θ.

Let us pause to discuss the parameter values that satisfy the CMB constraint k3Pζ(k) ≈
10−10. Although H passes through zero at the bounce, as argued in [3] its magnitude is
essentially the same at the beginning of the hot big bang phase as it was at tend, the end
of the ekpyrotic phase. In other words, Hend sets the reheat temperature in the expanding
phase. For GUT-scale reheat temperature, we have Hend/MPl ≈ 10−6. Meanwhile, β is a
free parameter whose value depends on the exit dynamics. For the explicit exit mechanism
of [3], however, the natural value is β ∼ O(1). In this case, setting k3Pζ(k) = 10−10 implies
ε ≈ 10−2. We will henceforth take β = 1 and ε = 10−2 as fiducial parameter values.

Combining (11) with (8) and (9) yields

ζ(x) = ζc(x) +
1

8εβ2
ζ2
c (x)∓

5α3

144ε2β3
ζ3
c (x) + . . . . (13)

The exit from the ekpyrotic phase is followed by a ghost condensate phase which leads to
a non-singular bounce and reheating. Meanwhile, χ gets stabilized and further evolution is
governed by the single scalar φ. It follows that ζ is conserved through the bounce and emerges
unscathed in the hot big bang phase.

3 Non-Gaussianity

3-point function: The 3-point ζ correlation function in New Ekpyrotic Cosmology is given
by [3]

〈ζk1ζk2ζk3〉 = (2π)3δ3(~k1 + ~k2 + ~k3)B(k1, k2, k3) , (14)

where the shape function B(k1, k2, k3) is

B(k1, k2, k3) =
6
5
fNL {Pζ(k1)Pζ(k2) + perm.} . (15)

This is of the so-called local form [15]. Equations (14) and (15) are consistent with ζ(x) of the
form ζ(x) = ζg(x) + 3

5fNLζ
2
g (x), where ζg is Gaussian. The correlation function is evaluated

at tend ignoring gravity.
Thus the 3-point function is fully specified by fNL [16]. This parameter receives two

contributions. To begin with, the non-Gaussianity of δχ, due to its cubic interaction in (3),
is inherited by ζ through (11). Following Maldacena [18], the δχ 3-point function is given by

〈δχ1δχ2δχ3〉 = −i
∫ tend

−∞
ds〈0|[δχ1δχ2δχ3,Hint(s)]|0〉

+ c. c. , (16)

where δχi ≡ δχ(xi), andHint = V(φ̄)α3χ
3/3!Λ3 is the cubic interaction Hamiltonian from (3).

An explicit calculation yields the intrinsic contribution

f int
NL = ∓ 5

24
α3

βε
. (17)

The ∓ sign corresponds to choosing V,χ| to be ±.
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The second contribution comes from the non-linear relation between δχ and ζ embodied
in (11) and (13). Even if δχ were Gaussian, this non-linearity would make ζ non-Gaussian.
This conversion contribution to fNL is:

f conv
NL =

5
24

1
β2ε

. (18)

Summing (17) and (18) yields a combined fNL:

fNL ≡ f int
NL + f conv

NL =
5

24β2ε
(1∓ α3β) . (19)

Since this is inversely proportional to ε ¿ 1, non-Gaussianity tends to be large in New
Ekpyrotic Cosmology. Related ekpyrotic models [6, 17] also give fNL ∼ ε−1. (A ghost
condensate bounce and second scalar field are also invoked in [6], albeit without an explicit
conversion mechanism; and while the two-field ekpyrotic phase of [17] is similar to ours,
the bounce physics remains unspecified.) This is in sharp contrast with slow-roll inflation,
where fNL is proportional to the slow-roll parameters and therefore unobservably small. For
concreteness, consider our fiducial model with GUT-scale reheating, β = 1 and ε = 10−2.
Taking, for example, the − sign in (17) and choosing 2.728 > α3 > −3.8 yields fNL within
the present WMAP 2σ range: −36 < fNL < 100. Thus α3 ∼ O(1) yields a non-Gaussian
signal near the WMAP bound. Lower reheating temperatures correspond to smaller ε and,
therefore, larger non-Gaussian signal. Of course, |fNL| can always be made smaller by taking
β, ε to be larger and/or by suitably choosing α3.

4-point function: The connected 4-point function,

〈ζk1ζk2ζk3ζk4〉 = (2π)3δ3(~k1 + ~k2 + ~k3 + ~k4)
·[T (k1, k2, k3, k4) + T ′(k1, k2, k3, k4)], (20)

involves two different shape functions, evaluated at tend:

T =
1
2
τNL {Pζ(k1)Pζ(k2)Pζ(k14) + 23 perm.} ;

T ′ = κNL {Pζ(k1)Pζ(k2)Pζ(k3) + 3 perm.} , (21)

where ~kij ≡ ~ki+~kj . Thus T and T ′ are specified respectively by the τNL and κNL parameters.
(Note that κNL is proportional to the f2 parameter of [8].) Equations (20) and (21) are
consistent with ζ(x) of the form ζ(x) = ζg(x) +

√
τNL

2 ζ2
g (x) + κNL

6 ζ3
g (x), where ζg is Gaussian.

Note that we can obtain τNL immediately by simply comparing its definition with that of
fNL:

τNL =
36
25
f2
NL =

1
16β4ε2

(1∓ α3β)2 . (22)

This was also checked by explicitly computing the three and four-point functions.
Let us now consider κNL. It receives two contributions: i) an intrinsic piece due to cubic

and quartic δχ interactions; ii) a conversion piece from the non-linear relation between δχ
and ζ. The first contribution arises from cubic and quartic terms in χ in the potential (3).
An explicit calculation gives

κint
NL =

2α4 + 3α2
3

40β2ε2
. (23)

The second contribution is encoded in the ζ2
c and ζ3

c terms in (13). Comparing with (20), we
obtain

κconv
NL = ∓ 5α3

24β3ε2
. (24)
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Combining the above results, we find

κNL ≡ κint
NL + κconv

NL =
α3(9α3β ∓ 25) + 6α4β

120β3ε2
. (25)

Both τNL and κNL are inversely proportional to ε2 and therefore also tend to be relatively
large. Note that τNL is always positive, whereas κNL can be positive, zero or negative depend-
ing on the choices of α3 and α4. For instance, our fiducial parameter values for GUT-scale
reheating with α3, α4 ∼ O(1) yield τNL ∼ 104, which is around the estimated bound for the
WMAP experiment [8]. Lower non-Gaussianity can again be achieved by taking larger β, ε
and/or by a suitable choice of α3 and α4.

4 Discussion

The simplest inflationary models, consisting of one or more slowly-rolling scalar fields, all
predict negligible 3-point and higher-order correlation functions. Non-Gaussianity therefore
offers a robust test to distinguish New Ekpyrotic Cosmology from slow-roll inflation.

Significant inflationary non-Gaussianity can be obtained in non-slow-roll models, such
as DBI inflation, albeit with a distinguishable shape dependence. Our 3-point function is
“local”, characterized by a momentum dependence that peaks for squeezed triangles, whereas
the DBI amplitude peaks for equilateral triangles [15].

Large non-Gaussianity may also be achieved in the curvaton scenario. The curvaton 3-
point function is also of the local form and hence cannot be used to distinguish curvatons from
New Ekpyrotic Cosmology. There is, however, an essential difference at the 4-point level. In
the simplest curvaton model, the progenitor of density perturbations is a free field. Thus,
κNL ∼ fNL [11]. In contrast, in New Ekpyrosis, τNL and κNL are generically of comparable
magnitude (∼ ε−2) and are expected to exhibit a distinguishable shape dependence. More
intricate curvaton models with self-interactions can also yield large κNL. Similarly for general
modulon scenarios [13].

Near-future non-Gaussianity observations will, therefore, test the new ekpyrotic paradigm
and can potentially distinguish it from its inflationary alternatives.

In this paper we have used a simplifying approximation so as to obtain an analytic expres-
sion for non-Gaussianity. Our results give the exact parametric dependence while the details
of the potential, roll-off time and so on are encoded in model dependent parameters, such as
β. We have checked that different quasi-analytic approximations continue to give the same
parametric dependence as presented here, although with model-dependent coefficients that
can at most differ from those in this paper by factors of order unity.
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Professor I. L. Buchbinder has been active in various fields of theoretical physics, among
them gravity, e.g. [1, 2, 3], and noncommutative field theories, e.g. [4, 5, 6]. For this volume
honouring his contribution to theoretical physics, I have chosen a work representative of our
common interests.

Abstract

Based on a gauge theory of gravitation in noncommutative space-time, the deformed
Reissner-Nordström solution is found. Interesting features related to the black hole
physics and the cosmological constant are discussed.

1 Introduction

Questioning the nature of space-time at infinitely small scales has been a fundamental
issue for physics. It is generally believed that the visionary Riemann hinted to a possible
breakdown of space-time as a manifold already in 1854, in his famous inaugural lecture [7].
The quantum nature of space-time, expressed as noncommutativity of space-time coordinates,
has been lately a subject of active research, especially in connection with string theory [8].

Naturally, various effects of space-time noncommutativity in cosmology have been studied,
principally motivated by the fact that, since noncommutativity is believed to be significant at
the Planck scale - the same scale where quantum gravity effects become important - it is most
sensible to search for signatures of noncommutativity in the cosmological observations (for a

1Work done in collaboration with M. R. Setare, A. Tureanu and G. Zet.
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review, see [9] and references therein). One of the most compelling reasons for the study of
noncommutative inflation is the fact that in an inflationary model the physical wavelengths
observed today in cosmological experiments emerged from the Planckian region in the early
stages of inflation, and thus carry the effects of the Planck scale physics [10]. Among other
things, the observed anisotropies of the cosmic microwave background (CMB) may be caused
by the noncommutativity of space-time [11]. The noncommutativity has been taken into
account either through space-space uncertainty relations or space-time uncertainty relations
[12], as well as noncommutative description of the inflaton (with gravity as background which
is not affected by noncommutativity) [11]. On the side of noncommutative black-hole physics,
the studied effect of noncommutativity was the smearing of the mass-density of a static,
spherically-symmetric, particle-like gravitational source [13].

These very interesting ideas have been developed lacking a noncommutative theory of
gravity. Although various proposals have been made (see, for a list of references, [14]), an
ultimate noncommutative theory of gravity is still elusive. We believe that the most natural
way towards this goal is the gauging of the twisted Poincaré symmetry [15]. Although the
formulation of twisted internal gauge theories has not yet been achieved [16], the possibility
of gauging the (space-time) twisted Poincaré algebra has not been ruled out and the issue is
under investigation.

At the moment, one of the most coherent approaches to noncommutative gravity is the
one proposed by Chamseddine [17], consisting in gauging the noncommutative SO(4, 1) de
Sitter group and using the Seiberg-Witten map with subsequent contraction to the Poincaré
(inhomogeneous Lorentz) group ISO(3, 1). Although this formulation is not a final theory
of noncommutative gravity, it still can serve as a concrete model to be studied, whose main
features shall illustrate at least qualitatively the influence of quantum space-time on gravita-
tional effects. The study of specific examples as such can cast light upon the reasonable and
unreasonable assumptions proposed so far in the field. Besides, up to now, there have been
no calculations presented in the literature (except [14]) to obtain the metric by solving a NC
version of gravitational theory, dues to the technical difficulty of the task.

In a recent paper [14] a deformed Schwarzschild solution in noncommutative gauge the-
ory of gravitation was obtained based on [17]. The gravitational gauge potentials (tetrad
fields) were calculated for the Schwarzschild solution and the corresponding deformed metric
ĝµν (x,Θ) was defined. According to the result of [14] corrections appear only in the second
order of the expansion in Θ, i.e. there are no first order correction terms.

In this paper we attempt to extend the results of [14] to include as well the Reissner-
Nordström solution. Having these two classical solutions known in the noncommutative setup,
we can embark upon a more rigorous study of noncommutative black-hole physics. Black
hole thermodynamical quantities depend on the Hawking temperature via the usual thermo-
dynamical relations. The Hawking temperature undergoes corrections from many sources:
the quantum corrections [18], the self-gravitational corrections [19], and the corrections due
to the generalized uncertainty principle [20]. In this paper we focus on the corrections due to
the space-space noncommutativity.

The results of this paper have been obtained using a program devised for GRTensor II
application of Maple. For the self-consistence of the paper we shall present, in the commu-
tative case, results of the de Sitter gauge theory with spherical symmetry, obtained with a
similar type of program [21] and recall the derivation of the metric tensor components in the
noncommutative case, as obtained in [14].
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2 de Sitter gauge theory with spherical symmetry

2.1 Commutative case

In the following we shall sketch the principal aspects of a model of gauge theory for
gravitation having the de Sitter group (dS) as local symmetry and gravitational field created
by a point-like source of mass m and carrying also the electric charge Q. The detailed
treatment, including the analytical GRTensor II program used for the calculations, can be
found in Ref. [21].

The base manifold is a four-dimensional Minkowski space-time M4, in spherical coordi-
nates:

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (1)

The corresponding metric gµν has the following non-zero components:

g00 = −1, g11 = 1, g22 = r2, g33 = r2 sin2 θ. (2)

The infinitesimal generators of the 10-dimensional de Sitter group will be denoted by Πa

and Mab = −Mba, a, b = 1, 2, 3, 0, where Πa generate the de Sitter ”translations” and Mab -
the Lorentz transformations. In order to give a general formulation of the gauge theory for the
de Sitter group dS, we will denote the generators Πa and Mab by XA, A = 1, 2, . . . , 10. The
corresponding 10 gravitational gauge fields will be the tetrads eaµ(x), a = 0, 1, 2, 3, and the spin
connections ωabµ (x) = −ωbaµ (x), [ab] = [01], [02], [03], [12], [13], [23]. Then, the corresponding
components of the strength tensor can be written in the standard form, as the torsion tensor:

F aµν = ∂µe
a
ν − ∂νeaµ +

(
ωabµ e

c
ν − ωabν ecµ

)
ηbc , (3)

with ηab the flat space metric, and the curvature tensor:

F abµν ≡ Rabµν = ∂µω
ab
ν − ∂νωabµ +

(
ωacµ ω

db
ν − ωacν ωdbµ

)
ηcd + 4λ2

(
δbcδ

a
d − δac δbd

)
ecµe

d
ν , (4)

where λ is a real parameter. The integral of action associated to the gravitational gauge fields
eaµ(x) and ωabµ (x) will be chosen as [22]:

Sg =
1

16πG

∫
d4x eF, (5)

where e = det(eaµ) and
F = F abµν e

µ
a e

ν
b . (6)

Here, eµa(x) denotes the inverse of eaµ(x) satisfying the usual properties:

eaµe
µ
b = δab , eaµe

ν
a = δνµ. (7)

We assume that the source of the gravitation creates also an electromagnetic field Aµ(x),
with the standard action [23]:

Sem = − 1
4Kg2

∫
d4x eAaµA

µ
a , (8)

where Aaµ = Aνµe
a
ν , A

ν
µ = eνae

ρ
bη
abAµρ and respectively Aµa = Aνµe

ν
a, with Aµρ being the

electromagnetic field tensor, Aµρ = ∂µAρ−∂ρAµ. Here K is a constant that will be chosen in
a convenient form to simplify the solutions of the field equations and g is the gauge coupling
constant [23].
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Then, the total integral of action associated to the system composed of the two fields is
given by the sum of the expressions (5) and (8):

S =
∫
d4x

[
1

16πG
F − 1

4Kg2
AaµA

µ
a

]
e. (9)

The field equations for the gravitational potentials eaµ(x) are obtained by imposing the vari-
ational principle δeS = 0 with respect to eaµ(x). They are [24]:

F aµ −
1
2
F eaµ = 8πGT aµ , (10)

where F aµ is defined by:
F aµ = F abµν e

ν
b , (11)

and T aµ is the energy-momentum tensor of the electromagnetic field [25]:

T aµ =
1

Kg2

(
AbµA

a
ν e

ν
b −

1
4
Abν A

ν
b e

a
µ

)
. (12)

The field equations for the other gravitational gauge potentials ωabµ (x) are equivalent with:

F aµν = 0. (13)

The solutions of the field equations (10) and (13) were obtained in [21], under the as-
sumption that the gravitational field has spherical symmetry and it is created by a point-like
source of mass m, which also produces, due to its constant electric charge Q, the electromag-
netic field Aµ(x). The particular form of the spherically symmetric gravitational gauge field
adopted in [21] is given by the following Ansatz:

e0µ = (A, 0, 0, 0) , e1µ =
(

0,
1
A
, 0, 0

)
, e2µ = (0, 0, r, 0) , e3µ = (0, 0, 0, r sin θ) , (14)

and

ω01
µ = (U, 0, 0, 0) , ω02

µ = ω03
µ = 0, ω12

µ = (0, 0, A, 0) , (15)

ω13
µ = (0, 0, 0, A sin θ) , ω23

µ = (0, 0, 0, cos θ) ,

where A and U are functions only of the 3D radius r. With the above expressions the
components of the tensors F aµν and F abµν defined by the Eqs. (3) and (4) were computed.
Here we give only the expressions of F abµν components, which we need to use further, in the
derivation of the expressions of the deformed tetrads:

F 01
10 = U ′ + 4λ2, F 02

20 = A
(
U + 4λ2r

)
, F 03

30 = A sin θ
(
U + 4λ2r

)
,

F 12
21 =

−AA′ + 4λ2r

A
, F 13

31 =

(−AA′ + 4λ2r
)
sin θ

A
,

F 23
32 =

(
1−A2 + 4λ2r2

)
sin θ, (16)

where A′ and U ′ denote the derivatives with respect to the variable r.
Using the field equations, the solution is obtained [21] as:

U = −AA′,
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A2 = 1 +
α

r
+
Q2

r2
+ βr2, (17)

where α and β are constants of integration. It is well-known [25] that the constant α is
determined by the mass m of the point-like source that creates the gravitational field, by
comparison with the Newtonian limit at very large distances:

α = −2m. (18)

The other constant β was determined in [21] (see also [26]) as β = 4λ2 = −Λ
3 , where Λ is the

cosmological constant, such that the solution finally reads:

A2 = 1− 2m
r

+
Q2

r2
− Λ

3
r2, U = −m

r2
+
Q2

r3
+

Λ
3
r. (19)

If we consider the contraction Λ → 0, then the de Sitter group becomes the Poincaré
group, and the solution (19) reduces to the Reissner-Nordström one.

2.2 Noncommutative case using the Seiberg-Witten map

The noncommutative corrections to the metric of a space-time with spherically symmetric
gravitational field have been obtained in [14], based on the general outline developed by
Chamseddine [17].

The noncommutative structure of the space-time is determined by the commutation rela-
tion

[xµ, xν ] = iΘµν , (20)

where Θµν = −Θν µ are constant parameters. It is well known that noncommutative field
theory on such a space-time requires is defined by introducing the star product “*” between
the functions f and g defined over this space-time:

(f∗g) (x) = f (x) e
i
2 Θµν←−∂µ

−→
∂νg (x) . (21)

The gauge fields corresponding to the de Sitter gauge symmetry for the noncommutative
case are denoted by êaµ (x, Θ) and ω̂abµ (x, Θ), generically denoted by ω̂ABµ (x, Θ), with the
obvious meaning for the indices A,B. The main idea of the Seiberg-Witten map is to ex-
pand the noncommutative gauge fields, transforming according to the noncommutative gauge
algebra, in terms of commutative gauge fields, transforming under the corresponding com-
mutative gauge algebra, in such a way that the noncommutative and commutative gauge
transformations are compatible, i.e.

ω̂ABµ (ω) + δλ̂ω̂
AB
µ (ω) = ω̂ABµ (ω + δλω). (22)

where δλ̂ are the infinitesimal variations under the noncommutative gauge transformations
and δλ are the infinitesimal variations under the commutative gauge transformations.

Using the Seiberg-Witten map [8], one obtains the following noncommutative corrections
up to the second order [17]:

ωABµνρ (x) =
1
4
{ων , ∂ρωµ + Fρµ}AB , (23)

ωABµνρλτ (x) =
1
32

(−{ωλ, ∂τ {ων , ∂ρωµ + Fρµ}}+ 2 {ωλ, {Fτν , Fµρ}} (24)

− {ωλ, {ων , DρFτµ + ∂ρFτµ}} − {{ων , ∂ρωλ + Fρλ} , (∂τωµ + Fτµ)}
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+ 2 [∂νωλ, ∂ρ (∂τωµ + Fτµ)] )
AB

,

where
{α, β}AB = αAC βBC + βAC αBC , [α, β]AB = αAC βBC − βAC αBC (25)

and
DµF

AB
ρσ = ∂µF

AB
ρσ +

(
ωACµ FDB

ρσ + ωBCµ FDA
ρσ

)
ηCD. (26)

The noncommutative tetrad fields were obtained in [17] up to the second order in Θ in the
limit Λ→ 0 as:

êaµ (x,Θ) = eaµ (x)− i Θνρ eaµνρ (x) + Θνρ Θλτ eaµνρλτ (x) +O
(
Θ3

)
, (27)

where

eaµνρ =
1
4

[
ωa cν ∂ρe

d
µ +

(
∂ρω

a c
µ + F a cρµ

)
edν

]
ηc d, (28)

eaµνρλτ =
1
32

[
2 {Fτν , Fµρ}a b ecλ − ωa bλ

(
Dρ F

c d
τµ + ∂ρ F

c d
τµ

)
emν ηdm

− {ων , (DρFτµ + ∂ρFτµ)}a b ecλ − ∂τ {ων , (∂ρ ωµ + Fρµ)}a b ecλ (29)
− ωa bλ ∂τ

(
ωc dν ∂ρe

m
µ +

(
∂ρ ω

c d
µ + F c dρµ

)
emν

)
ηdm + 2 ∂νωa bλ ∂ρ∂τ e

c
µ

− 2 ∂ρ
(
∂τ ω

a b
µ + F a bτµ

)
∂ν e

c
λ − {ων , (∂ρωλ + Fρλ)}a b ∂τ ecµ

− (
∂τ ω

a b
µ + F a bτµ

) (
ωc dν ∂ρe

m
λ +

(
∂ρ ω

c d
λ + F c dρλ

)
emν ηdm

)]
ηb c.

Using the hermitian conjugate êa†µ (x,Θ) of the deformed tetrad fields given in (27),

êaµ
† (x,Θ) = eaµ (x) + i Θνρ eaµνρ (x) + ΘνρΘλτeaµνρλτ (x) +O

(
Θ3

)
. (30)

the real deformed metric was introduced in [14] by the formula:

ĝµν (x,Θ) =
1
2
ηa b

(
êaµ ∗ êbν† + êbµ ∗ êaν†

)
. (31)

2.3 Second order corrections to Reissner-Nordström de Sitter so-
lution

Using the Ansatz (14)-(15), we can determine the deformed Reissner-Nordström de Sitter
metric by the same method as the Schwarzschild metric was obtained in [14]. To this end,
we have to obtain first the corresponding components of the tetrad fields êaµ (x,Θ) and their
complex conjugated êaµ

+ (x,Θ) given by the Eqs. (27) and (30). With the definition (31) it
is possible then to obtain the components of the deformed metric ĝµν (x,Θ).

Taking only space-space noncommutativity, Θ0i = 0 (due to the known problem with
unitarity), we choose the coordinate system so that the parameters Θµν are given as:

Θµν =




0 Θ 0 0
−Θ 0 0 0
0 0 0 0
0 0 0 0


 , µ, ν = 1, 2, 3, 0. (32)

The non-zero components of the tetrad fields êaµ (x,Θ) are:

ê11 =
1
A

+
A′′

8
Θ2 +O(Θ3), (33)

ê12 = − i
4

(A+ 2 r A′) Θ +O(Θ3),
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ê22 = r +
1
32

(
7AA′ + 12 r A′2 + 12 r AA′′

)
Θ2 +O(Θ3),

ê33 = r sin θ − i

4
(cos θ)Θ +

1
8

(
2r A′2 + rAA′′ + 2AA′ − A′

A

)
(sin θ)Θ2 +O(Θ3),

ê00 = A+
1
8

(
2 r A′3 + 5 r AA′A′′ + r A2A′′′ + 2AA′2 +A2A′′

)
Θ2 +O(Θ3) ,

where A′, A′′, A′′′ are first, second and third derivatives of A(r), respectively, with A2 given
in (19).

Then, using the definition (31), we obtain the following non-zero components of the de-
formed metric ĝµν (x,Θ) up to the second order:

ĝ1 1 (x,Θ) =
1
A2

+
1
4
A′′

A
Θ2 +O(Θ4), (34)

ĝ22 (x,Θ) = r2 +
1
16

(
A2 + 11 r AA′ + 16 r2A′2 + 12 r2AA′′

)
Θ2 +O(Θ4),

ĝ33 (x,Θ) = r2 sin2 θ

+
1
16

[
4

(
2 r AA′ − r

A′

A
+ r2AA′′ + 2 r2A′2

)
sin2 θ + cos2 θ

]
Θ2 +O(Θ4)

ĝ00 (x,Θ) = −A2 − 1
4

(
2 r AA′3 + r A3A′′′ +A3A′′ + 2A2A′2 + 5 r A2A′A′′

)
Θ2

+ O(Θ4).

For Θ → 0 we obtain the commutative Reissner-Nordström de Sitter solution with A2 =
1− 2m

r + Q2

r2 − Λ
3 r

2.
We should mention that the expressions for the noncommutative corrections to the de-

formed tetrad fields and noncommutative metric elements are the same as the ones obtained
in [14], although here we have also the electromagnetic field involved. The reason is that
the first order noncommutative corrections to the electromagnetic field in the Seiberg-Witten
map approach, i.e. A(1)

µ is a pure gauge and thus can be gauged away [27]. As a result, in
this order noncommutative corrections involving the electromagnetic field do not appear.

Now, if we insert A into (34), then we obtain the deformed Reissner-Nordström-de Sitter
metric with corrections up to the second order in Θ. Its non-zero components are:

ĝ11 =
(

1− 2m
r

+
Q2

r2
− Λ

3
r2

)−1

+
(−2mr3 + 3m2r2 + 3Q2r2 − 6mQ2r + 2Q4)

16r2(r2 − 2mr +Q2)
Θ2 ,(35)

ĝ22 = r2 +
r4 − 17mr3 + 34m2r2 + 27Q2r2 − 75mQ2r + 30Q4

16r2(r2 − 2mr +Q2)
Θ2 ,

ĝ33 = r2 sin2 θ +
cos2 θ(r4 + 2mr3 − 7Q2r2 − 4m2r2 + 16mQ2r − 8Q4)

16r2(r2 − 2mr +Q2)
Θ2

+
(−4mr3 + 4m2r2 + 8Q2r2 − 16mQ2r + 8Q4)

16r2(r2 − 2mr +Q2)
Θ2 ,

ĝ00 = −
(

1− 2m
r

+
Q2

r2
− Λ

3
r2

)
+

4mr3 − 9Q2r2 − 11m2r2 + 30mQ2r − 14Q4

4r6
Θ2 .

In the expressions above, we have neglected the terms containing ΛΘ2 and Λ2Θ2, which
are extremely small by comparison to the other corrections. In the further calculations, we
retained the Λ corrections coming only from the 0th order in Θ expression of the metric.
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2.4 Noncommutative scalar curvature and cosmological constant

It is well known that, in the commutative case, the scalar curvature of the vacuum so-
lutions (like the Schwarzschild and Reissner-Nordström, when Λ = 0) vanishes, i.e. the
corresponding space-time is Ricci-flat. It is interesting to study whether this property holds
also in the noncommutative case. Moreover, this study is motivated also by the fact that
in the commutative case the addition of a cosmological term leads to nonvanishing scalar
curvatures even in the space devoid of any gravitational source. Should the scalar curvature
not vanish for the deformed vacuum solutions, the noncommutative behaviour, in some sense
or another, may naturally imitate the commutative solution with cosmological term.

The noncommutative Riemann tensor is expanded in powers of Θ as [17]:

F̂ abµν = F abµν + iΘρτF abµνρτ + ΘρτΘκσF abµνρτκσ +O(Θ3) , (36)

where

F abµνρτ = ∂µω
ab
νρτ + (ωacµ ω

db
νρτ + ωacµρτ + ωdbν −

1
2
∂ρω

ac
µ ∂τω

db
ν )ηcd − (µ↔ ν) (37)

and

F abµνρτκσ = ∂µω
ab
νρτκσ+(ωacµ ω

db
νρτκσ+ω

ac
µρτκσ+ω

db
ν −ωacµρτωdbνκσ−

1
4
∂ρ∂κω

ac
µ ∂τ∂σω

db
ν )ηcd−(µ↔ ν) ,

(38)
where ωabµνρ and ωabµνρλτ are given by Eqs. (23) and (24), respectively, with A = a and B = b.
After we calculate F̂ abµν and have also êaµ we can obtain the noncommutative scalar curvature:

F̂ = êµa ∗ F̂ abµν ∗ êνb (39)

where êµa is the inverse of êaµ with respect to the star product, i.e. êµa ∗ êbµ = δba. The general
expression of the scalar curvature, expanded in powers of Θ, is:

F̂ = F + ΘρτΘκσ(eµaF
ab
µνρτκσe

ν
b + eµaρτκσF

ab
µνe

ν
b + eµaF

ab
µνe

ν
bρτκσ − eµaρτF abµνeνbκσ

− eµaρτF
ab
µνκσe

ν
b − eµaF abµνρτeνbκσ) +O(Θ4) . (40)

Here, we have to calculate also eµaρτ and eµaρτκσ, using:

êµa = eµa − iΘνρeµaνρ + ΘνρΘκσeµaνρκσ +O(Θ3) . (41)

The noncommutative scalar curvature for the Reissner-Nordström de Sitter solution is
then obtained in the form:

F̂ = 4Λ +
96mr5 − 552m2r4 − 72Q2r4 + 896m3r3 + 1174mQ2r3 − 2740m2Q2r2

32r8(r2 − 2mr +Q2)
Θ2

+
−550Q4r2 + 2362mQ4r − 614Q6

32r8(r2 − 2mr +Q2)
Θ2

+
(−16m2r4 + 28Q2r4 − 24mQ2r3 + 12Q4r2)

32r8(r2 − 2mr +Q2)
(cot2 θ) Θ2 (42)

For the charge Q = 0 one obtains the scalar curvature for the deformed Schwarzschild de
Sitter solution, which is also non-zero.

The very interesting feature of these scalar curvatures is that for finite values of the radius
r they are non-zero for the pure Schwarzschild and Reissner-Nordström vacuum solutions
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(when Λ = 0), although asymptotically they do vanish. In a away, this situation locally
mimics the presence of a nonvanishing cosmological term in the Einstein equations, where
it is well known that the space-time curvature does not vanish even in the absence of any
matter.

Another point of interest is the apparent singularity of the correction terms given by the
vanishing of the denominator in (42) at r0 = m ±

√
m2 −Q2. Inspired by the removal of

divergencies from the usual Schwarzschild metric by a change of coordinates (see, e.g., [25]),
we could be tempted to use the same procedure here. However, since F̂ is a scalar, the
singularity can not be removed by a change of coordinates. This aspect could jeopardize
this approach to noncommutative gravity. As we shall comment further, after deriving the
corrected horizon radii, this singularity is immaterial for the domain of validity of (42).

3 Noncommutativity corrections to the thermodynam-
ical quantities of black holes

In this section we derive the corrections to the thermodynamical quantities due to the
space-space noncommutativity.

For the Reissner-Nordstrom-de Sitter metric, there are four roots of A2(r) = 1 − 2m
r +

Q2

r2 − Λ
3 r

2, denoted ri, with i = 1, ..., 4. In the Lorentzian section, 0 ≤ r < ∞, the first root
is negative and has no physical significance. The second root r2 is the inner (Cauchy) black-
hole horizon, r = r3 = r+ is the outer (Killing) horizon, and r = r4 = rc is the cosmological
(acceleration) horizon. The solution of

A2(r) = 1− 2m
r

+
Q2

r2
− Λ

3
r2 = 0 (43)

is found as a series expansion in the cosmological constant:

r = r0 + aΛ + bΛ2 + ... , (44)

where r0 is the Reissner-Nordström horizon radius because for Λ = 0 we obtain the Reissner-
Nordström solution. We know that:

r0 = m±
√
m2 −Q2 . (45)

Therefore, we obtain the following cosmological and black-hole horizon radius solutions with
cosmological constant, respectively:

rc = m+
√
m2 −Q2 +

(m+
√
m2 −Q2)5

6(m(m+
√
m2 −Q2)−Q2)

Λ , (46)

r+ = m−
√
m2 −Q2 +

(m+
√
m2 −Q2)5

6(m(m+
√
m2 −Q2)−Q2)

Λ . (47)

On the other hand, for the Schwarzschild-de Sitter metric, with A2(r) = 1− 2m
r − Λ

3 r
2, the

number of positive roots (and thus the number of event horizons) depends on the ratio of m
and 8π

Λ . There are no event horizons if m > 1
3
√

Λ
. There is only one event horizon, r1 = 1√

Λ
,

if m = 1
3
√

Λ
. In the case m < 1

3
√

Λ
, there are two distinct event horizons:

r2 =
2√
Λ

cos

(
π

3
+

1
3

arctan

√
1

9m2Λ
− 1

)
, (48)
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r3 =
2√
Λ

cos

(
π

3
− 1

3
arctan

√
1

9m2Λ
− 1

)
. (49)

It can be shown that r2 < r1 < r3.
In the noncommutative case, we consider the corrected event horizon radius up to the

second order as
r̂1,2 = A1,2 +B1,2Θ + C1,2Θ2 . (50)

Substituting the above r̂1,2 into the equation ĝ00 = 0, we obtain the corrected cosmological
and black hole (Killing) event horizon radii respectively as solutions of this equation:

r̂1 = m+
√
m2 −Q2 +

(m+
√
m2 −Q2)5

6(m(m+
√
m2 −Q2)−Q2)

Λ

+
(6m4 +

√
m2 −Q2(6m3 − 8mQ2)− 11Q2m2 + 5Q4)

8(8m5 +
√
m2 −Q2(8m4 − 8m2Q2 +Q4)− 12m3Q2 + 4mQ4)

Θ2 (51)

and

r̂2 = m−
√
m2 −Q2 +

(m+
√
m2 −Q2)5

6(m(m+
√
m2 −Q2)−Q2)

Λ

+
(6m4 −

√
m2 −Q2(6m3 − 8mQ2)− 11Q2m2 + 5Q4)

8(8m5 −
√
m2 −Q2(8m4 − 8m2Q2 +Q4)− 12m3Q2 + 4mQ4)

Θ2 (52)

The distance between the corrected event horizon radii is given by following relation in an
example case, when m = 2Q

d̂ = r̂1 − r̂2 = d−∆d = 2
√

3Q+
51
√

3
4Q

Θ2 (53)

Therefore in the noncommtative space-time the distance between horizons is more than in
the commutative case. Then we obtain from (53):

∆d
d

=
51Θ2

8Q2
(54)

The ratio of this change due to the noncommutativity correction to the distance has a value
which is much too small.

Returning to the singularity of the scalar curvature mentioned in the end of the previous
section, one can now see that at the corrected horizons (51) and (52) the noncommutative
scalar curvature (42) is well behaved, since the denominator does not vanish. In fact, the
noncommutative corrections to the horizon radii are such, that the points r0 = m±

√
m2 −Q2

are inside the black hole, while the metric and the scalar curvature F̂ have been obtained
outside of the black hole. As a result, the scalar curvature (42) is not singular throughout its
domain of validity.

The modified Hawking-Bekenstein temperature and the horizon area of the Reissner-
Nordström de Sitter black hole in noncommutative space-time to the second order in Θ are
as follows, respectively:

T̂+ =
1
4π

dĝ00(r̂1)
dr

=
m2 −m

√
m2 −Q2 −Q2

2π(m−
√
m2 −Q2)

(55)

+
Q2(−4m2Q2

√
m2 −Q2 − 48m5 + 68m3Q2 − 21mQ4 +

√
m2 −Q2Q4)

12π(m−
√
m2 −Q2)4(−m2 −m

√
m2 −Q2 +Q2)

Λ
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+ (
(448m9 − 1648Q2m7 + 2112Q4m5 − 1091Q6m3 + 179Q8m)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

+

√
m2 −Q2(−2240Q2m6 + 2597Q4m4 − 1053Q6m2 + 612m8 + 84Q8)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

+
(m2 −Q2)3/2(264Q2m4 − 473Q4m2 − 152m6 + 51Q6)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

+
(m2 −Q2)5/2(16Q2m2 − 12m4)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

)
Θ2

16π
,

Â+ = 4πr̂21 = 4π((m−
√
m2 −Q2)2 +

(m−
√
m2 −Q2)(m+

√
m2 −Q2)5

3(m(m+
√
m2 −Q2)−Q2)

Λ) (56)

+
π(m+

√
m2 −Q2)[6m4 − 11Q2m2 + 5Q4 +

√
m2 −Q2(6m3 − 8Q2m)]

8m5 − 12Q2m3 + 4Q4m+
√
m2 −Q2(8m4 − 8Q2m2 +Q4)

Θ2 .

The corresponding quantities for the cosmological horizon are as follows, respectively:

T̂c =
−1
4π

dĝ00(r̂2)
dr

=
−m2 −m

√
m2 −Q2 +Q2

2π(m+
√
m2 −Q2)

(57)

+
(−4m2 − 4m)

√
m2 −Q2 + 5Q2)(m+

√
m2 −Q2)

12π(−m2 −m
√
m2 −Q2 +Q2)

Λ

+ (
(448m9 − 1648Q2m7 + 2112Q4m5 − 1091Q6m3 + 179Q8m)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

+

√
m2 −Q2(−2240Q2m6 + 2597Q4m4 − 1053Q6m2 + 612m8 + 84Q8)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

+
(m2 −Q2)3/2(264Q2m4 − 473Q4m2 − 152m6 + 51Q6)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

+
(m2 −Q2)5/2(16Q2m2 − 12m4)

(m+
√
m2 −Q2)7[8m5 − 12Q2m3 + 4Q4m+

√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

)
Θ2

16π
,

Âc = 4πr̂22 = 4π((m+
√
m2 −Q2)2 +

(m+
√
m2 −Q2)6

3(m(m+
√
m2 −Q2)−Q2)

Λ) (58)

+
π(m+

√
m2 −Q2)[6m4 − 11Q2m2 + 5Q4 +

√
m2 −Q2(6m3 − 8Q2m)]

8m5 − 12Q2m3 + 4Q4m+
√
m2 −Q2(8m4 − 8Q2m2 +Q4)

Θ2 .

According to the Bekenstein-Hawking formula the thermodynamic entropy of a black hole is
proportional to the area of the event horizon S = A/4, where A is the area of the horizon. The
corrected entropy due to noncommutativity for the black-hole horizon and the cosmological
horizon are:

Ŝ+ =
Â+

4
= π2((m−

√
m2 −Q2)2 +

(m−
√
m2 −Q2)(m+

√
m2 −Q2)5

3(m(m+
√
m2 −Q2)−Q2)

Λ) (59)

+
πΘ2(m+

√
m2 −Q2)[6m4 − 11Q2m2 + 5Q4 +

√
m2 −Q2(6m3 − 8Q2m)]

8m5 − 12Q2m3 + 4Q4m+
√
m2 −Q2(8m4 − 8Q2m2 +Q4)
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+
πΘ2(m+

√
m2 −Q2)[6m4 − 11Q2m2 + 5Q4 +

√
m2 −Q2(6m3 − 8Q2m)]

4[8m5 − 12Q2m3 + 4Q4m+
√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

Ŝc =
Âc
4

= π2((m+
√
m2 −Q2)2 +

(m+
√
m2 −Q2)6

3(m(m+
√
m2 −Q2)−Q2)

Λ) (60)

+
πΘ2(m+

√
m2 −Q2)[6m4 − 11Q2m2 + 5Q4 +

√
m2 −Q2(6m3 − 8Q2m)]

8m5 − 12Q2m3 + 4Q4m+
√
m2 −Q2(8m4 − 8Q2m2 +Q4)

+
πΘ2(m+

√
m2 −Q2)[6m4 − 11Q2m2 + 5Q4 +

√
m2 −Q2(6m3 − 8Q2m)]

4[8m5 − 12Q2m3 + 4Q4m+
√
m2 −Q2(8m4 − 8Q2m2 +Q4)]

If we consider the Q = 0 case, we obtain the corresponding quantities for the Schwarzschild
de Sitter black holes.

4 Conclusions and discussions

Following Ref. [21], in the present paper we constructed a gauge theory for gravitation
using the de Sitter group as the local symmetry. The gravitational field has been described
by gauge potentials. The solutions of the gauge field equations were studied considering a
spherically symmetric case. Assuming that the source of the gravitational field is a point-like
mass electrically charged, we obtained the Reissner-Nordström solution. Then, a deformation
of the gravitational field has been performed along the lines of Ref. [17] by gauging the non-
commutative de Sitter SO(4, 1) group and using the Seiberg-Witten map. The correspond-
ing space-time is also of Minkowski type, but endowed now with spherical noncommutative
coordinates. We determined the deformed gauge fields up to the second order in the non-
commutativity parameters Θµν . The deformed gravitational gauge potentials (tetrad fields)
êaµ (x,Θ) have been obtained by contracting the noncommutative gauge group SO(4, 1) to the
Poincaré (inhomogeneous Lorentz) group ISO(3, 1). Then, we have calculated these poten-
tials for the case of the Reissner-Nordström solution and defined the corresponding deformed
metric ĝµν (x,Θ). By finding the Reissner-Nordström solution, as well as the Schwarzschild
solution in [14], for a noncommutative theory of gravity we came closer to plausible black-
hole physics on noncommutative space-time. The event horizon of the black hole undergoes
corrections from the noncommutativity of space as in Eq. (51). Since the noncommutativ-
ity parameter is small in comparison with the length scales of the system, one can consider
the noncommutative effect as perturbations of the commutative counterpart. Then we have
obtained the corrections to the temperature and entropy given in Eqs. (55) and (56).

The noncommutativity of space-time drastically changes the topology of the space-time in
the vicinity of the source in the presence of gravitational fields, in the sense that the curvature
is not zero, locally, while asymptotically is does vanish. This situation is, in a limited sense,
similar to the effect of a nonvanishing cosmological term in usual Einstein’s equations. It could
not be a priori ruled out that in a fully consistent treatment of a noncommutative theory of
gravity, without expansion in Θ, the effects of the cosmological constant could be less locally
imitated by the noncommutativity. In any case, one can say that the NC corrections are of
the same form as those arising from the quantum gravity effects [28].

The use of the Seiberg-Witten map for constructing the noncommutative gauge theory of
gravity leads inevitably to some loss of information, at least concerning the ”big picture”, i.e.
the global features of the space-time. The reason is that the compatibility of the commutative
and noncommutative gauge transformation is required at algebraic level, for infinitesimal
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transformations. As a result, the noncommutative fields and, consequently, the observables,
will always be expressed as power series in Θ, starting from the 0th order, which is inevitably
the corresponding field or observable of the commutative theory. Thus, the Seiberg-Witten
map approach is useful for calculating corrections, but some phenomena which may be peculiar
to the entire noncommutative setting will be concealed. The phenomenon of UV/IR mixing
[29] is a show-case for this. If we did perturbation in Θ, the nonplanar diagram (which is
finite when using the whole star-product) would no more be finite and the planar diagram
would remain UV-divergent.

This features of the Seiberg-Witten map may hide interesting aspects when it comes to sin-
gularities. In this paper we have obtained the same singularity structure for the Schwarzschild
and Reissner-Nordström metrics: if the 0th order in Θ is singular, then higher order correc-
tions could never cancel this singularity.2. This is valid for the deformed Ricci scalar curvature,
as well as the Kretschmann invariant, F̂µνρσF̂µνρσ, where F̂µνρσ is the deformed Riemann ten-
sor. This is in sharp contradiction with the conclusions of Ref. [13], where a nonsingular
de Sitter geometry was found in the origin. In Ref. [13] the noncommutativity is taken into
account by one of its major effects, the infinite nonlocality which it produces - the source
of gravitational field is not point-like, but it has a Gaussian extension, while the noncom-
mutativity effects of the gravitational field have not been taken into account. A clear-cut
conclusion can be provided only by a full treatment of the noncommutative theory of gravity.
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Abstract

Some nonlocal and nonpolynomial scalar field models originated from p-adic string
theory are considered. Infinite number of spacetime derivatives is governed by the Rie-
mann zeta function through d’Alembertian 2 in its argument. Construction of the
corresponding Lagrangians begins with the exact Lagrangian for effective field of p-adic
tachyon string, which is generalized replacing p by arbitrary natural number n and then
taken a sum of over all n. Some basic classical field properties of these scalar fields
are obtained. In particular, some trivial solutions of the equations of motion and their
tachyon spectra are presented. Field theory with Riemann zeta function nonlocality is
also interesting in its own right.

1 Introduction

The first paper on a p-adic string is published in 1987 [1]. After that various p-adic
structures have been observed not only in string theory but also in many other models of
modern mathematical physics (for a review of the early days developments, see e.g. [2, 3]).

One of the remarkable achievements in p-adic string theory is construction of a field model
for open scalar p-adic string [4, 5]. The effective tachyon Lagrangian is very simple and exact.
It describes four-point scattering amplitudes as well as all higher ones at the tree-level.

This field theory approach to p-adic string theory has been significantly pushed forward
when was shown [6] that it may describes tachyon condensation and brane descent rela-
tions. After this success, many aspects of p-adic string dynamics have been investigated and
compared with dynamics of ordinary strings (see, e.g. [7, 8, 9, 10] and references therein).
Noncommutative deformation of p-adic string world-sheet with a constant B-field was investi-
gated in [11] (on p-adic noncommutativity see also [12]). A systematic mathematical study of
spatially homogeneous solutions of the relevant nonlinear differential equations of motion has

1e-mail: dragovich@phy.bg.ac.yu
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2. Construction of zeta nonlocal Lagrangians 147

been of considerable interest (see [9, 13, 14, 15] and references therein). Some possible cosmo-
logical implications of p-adic string theory have been also investigated [16, 17, 18, 19, 20]. It
was proposed [21] that p-adic string theories provide lattice discretization to the world-sheet
of ordinary strings. As a result of these developments, some nontrivial features of ordinary
string theory have been reproduced from the p-adic effective action. Moreover, there have
been established many similarities and analogies between p-adic and ordinary strings.

Adelic approach to the string scattering amplitudes enables to connect p-adic and ordinary
counterparts ([2, 3] as a review, and see also [22]). Moreover, it eliminates unwanted prime
number parameter p contained in p-adic amplitudes and also cures the problem of p-adic
causality violation. Adelic generalization of quantum mechanics was also successfully formu-
lated, and it was found a connection between adelic vacuum state of the harmonic oscillator
and the Riemann zeta function [23]. Recently, an interesting approach toward foundation of
a field theory and cosmology based on the Riemann zeta function was proposed in [24]. Note
that p-adic and ordinary sectors of the four point adelic string amplitudes separately contain
the Riemann zeta function (see, e.g. [2], [3] and [25]).

The present paper is mainly motivated by our intention to obtain the corresponding ef-
fective Lagrangian for adelic scalar string. Hence, as a first step we investigate possibilities
to derive Lagrangian related to the p-adic sector of adelic string. Starting with the exact La-
grangian for the effective field of p-adic tachyon string, extending prime number p to arbitrary
natural number n and undertaking various summations of such Lagrangians over all n, we
obtain some scalar field models with the operator valued Riemann zeta function. Emergence
of the Riemann zeta function at the classical level can be regarded as its analog of quantum
scattering amplitude. This zeta function controls spacetime nonlocality. In the sequel we
shall construct and explore some classical field models which should help in investigation of
some properties of adelic scalar strings.

2 Construction of zeta nonlocal Lagrangians

The exact tree-level Lagrangian of effective scalar field ϕ for open p-adic string tachyon is

Lp =
mD
p

g2
p

p2

p− 1

[
− 1

2
ϕp
− 2

2m2
p ϕ+

1
p+ 1

ϕp+1
]
, (1)

where p is any prime number, 2 = −∂2
t +∇2 is the D-dimensional d’Alembertian.

The equation of motion for (1) is

p
− 2

2m2
p ϕ = ϕp , (2)

and its properties have been studied by many authors (see e.g. [9, 13, 14, 15] and references
therein).

Prime number p in (1) and (2) can be replaced by any natural number n ≥ 2 and such
expressions also make sense. Moreover, if p = 1 + ε→ 1 there is the limit of (1)

L =
mD

g2

[1
2
ϕ

2

m2
ϕ+

ϕ2

2
(lnϕ2 − 1)

]
(3)

which corresponds to the ordinary bosonic string in the boundary string field theory [26].
Now we want to introduce a model which incorporates all the above string Lagrangians

(1) with p replaced by n ∈ N. To this end, we take the sum of all Lagrangians Ln in the form
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L =
+∞∑
n=1

Cn Ln =
+∞∑
n=1

Cn
mD
n

g2
n

n2

n− 1

[
− 1

2
φn
− 2

2m2
n φ+

1
n+ 1

φn+1
]
, (4)

whose explicit realization depends on particular choice of coefficients Cn, string masses mn

and coupling constants gn. To avoid a divergence problem in 1/(n − 1) when n = 1 one
has to take that CnmD

n /g
2
n is proportional to n − 1. In this paper we shall consider a

case when coefficients Cn are proportional to n − 1, while masses mn as well as coupling
constants gn do not depend on n, i.e. mn = m, gn = g. Since this is an approach towards
effective Lagrangian of an adelic string it seems natural to take mass and coupling constant
independent on particular p or n. To emphasize that Lagrangian (4) describes a new field,
which is different from a particular p-adic one, we introduced notation φ instead of ϕ. The
two terms in (4) with n = 1 are equal up to the sign, but we remain them because they
provide the suitable form of total Lagrangian L.

2.1 Case Cn = n−1
n2+h

Let us first consider the case

Cn =
n− 1
n2+h

, (5)

where h is a real number. The corresponding Lagrangian is

Lh =
mD

g2

[
− 1

2
φ

+∞∑
n=1

n−
2

2m2−h φ+
+∞∑
n=1

n−h

n+ 1
φn+1

]
(6)

and it depends on parameter h.
According to the famous Euler product formula one can write

+∞∑
n=1

n−
2

2 m2−h =
∏
p

1

1− p− 2

2 m2−h
.

Recall that standard definition of the Riemann zeta function is

ζ(s) =
+∞∑
n=1

1
ns

=
∏
p

1
1− p−s , s = σ + iτ , σ > 1 , (7)

which has analytic continuation to the entire complex s plane, excluding the point s = 1,
where it has a simple pole with residue 1. Employing definition (7) we can rewrite (6) in the
form

Lh =
mD

g2

[
− 1

2
φ ζ

( 2

2m2
+ h

)
φ+

+∞∑
n=1

n−h

n+ 1
φn+1

]
. (8)

Here ζ
(

2
2m2 + h

)
acts as a pseudodifferential operator

ζ
( 2

2m2
+ h

)
φ(x) =

1
(2π)D

∫
eixk ζ

(
− k2

2m2
+ h

)
φ̃(k) dk , (9)
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where φ̃(k) =
∫
e(−ikx) φ(x) dx is the Fourier transform of φ(x). Lagrangian L0, with the

restriction on momenta −k2 = k2
0−
−→
k 2 > (2−2h)m2 and field |φ| < 1, is analyzed in [27]. In

the sequel we shall consider Lagrangian (8) with analytic continuations of the zeta function
and the power series

∑
n−h

n+1 φ
n+1, i.e.

Lh =
mD

g2

[
− 1

2
φ ζ

( 2

2m2
+ h

)
φ+AC

+∞∑
n=1

n−h

n+ 1
φn+1

]
, (10)

where AC denotes analytic continuation.
Nonlocal dynamics of this field φ is encoded in the pseudodifferential form of the Riemann

zeta function. When the d’Alembertian is in the argument of the Riemann zeta function we
say that we have zeta nonlocality. Accordingly, this φ is a zeta nonlocal scalar field.

Potential of the above zeta scalar field (10) is equal to −Lh at 2 = 0, i.e.

Vh(φ) =
mD

g2

(φ2

2
ζ(h)−AC

+∞∑
n=1

n−h

n+ 1
φn+1

)
, (11)

where h 6= 1 since ζ(1) =∞. The term with ζ-function vanishes at h = −2,−4,−6, · · · .
The equation of motion in differential and integral form is

ζ
( 2

2m2
+ h

)
φ = AC

+∞∑
n=1

n−h φn , (12)

1
(2π)D

∫

RD

eixk ζ
(
− k2

2m2
+ h

)
φ̃(k) dk = AC

+∞∑
n=1

n−h φn , (13)

respectively. It is clear that φ = 0 is a trivial solution for any real h. Existence of other trivial
solutions depends on parameter h. When h > 1 we have another constant trivial solution
φ = 1.

In the weak field approximation (|φ(x)| ¿ 1) the above expression (13) becomes
∫

RD

eikx
[
ζ
(
− k2

2m2
+ h

)
− 1

]
φ̃(k) dk = 0 , (14)

which has a solution φ̃(k) 6= 0 if equation

ζ
(−k2

2m2
+ h

)
= 1 (15)

is satisfied. According to the usual relativistic kinematic relation k2 = −k2
0 +
−→
k 2 = −M2,

equation (15) in the form

ζ
( M2

2m2
+ h

)
= 1 , (16)

determines mass spectrum M2 = µhm
2, where set of values of spectral function µh depends

on h.
Equation (16) gives infinitely many tachyon mass solutions. Namely, function ζ(s) is

continuous for real s 6= 1 and changes sign crossing its zeros s = −2n, n ∈ N. Ac-
cording to relation ζ(1 − 2n) = −B2n/(2n) and values of the Bernoulli numbers (B0 =
1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, B12 =
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−691/2730, B14 = 7/6, B16 = −3617/510, B18 = 43867/798, · · · ) it follows that |ζ(1−2n)| =
|B2n/(2n)| > 1 if and only if n ≥ 9. Taking into account also regions where ζ(1 − 2n) > 0
we conclude that ζ(s) = 1 has two solutions when −20 − 4j < s < −18 − 4j for every
j = 0, 1, 2, · · · . Consequently, for any h ∈ Z, we obtain infinitely many tachyon masses M2:

M2 = −(40 + 8j + 2h− aj)m2 and M2 = −(36 + 8j + 2h+ bj)m2, (17)

where aj ¿ 1, bj ¿ 1 and j = 0, 1, 2, · · · .
An elaboration of the above Lagrangian for h = 0,±1,±2 is presented in [28].

2.2 Case Cn = n2−1
n2

In this case Lagrangian (4) becomes

L =
mD

g2

[
− 1

2
φ

+∞∑
n=1

(
n−

2

2m2 +1 + n−
2

2m2

)
φ+

+∞∑
n=1

φn+1
]

(18)

and it yields

L =
mD

g2

[
− 1

2
φ

{
ζ
( 2

2m2
− 1

)
+ ζ

( 2

2m2

)}
φ +

φ2

1− φ
]
. (19)

The corresponding potential is

V (φ) = −m
D

g2

31− 7φ
24 (1− φ)

φ2 , (20)

which has the following properties: V (0) = V (31/7) = 0 , V (1± 0) = ±∞ , V (±∞) = −∞.
At φ = 0 potential has local maximum.

The equation of motion is

[
ζ
( 2

2m2
− 1

)
+ ζ

( 2

2m2

)]
φ =

φ((φ− 1)2 + 1)
(φ− 1)2

, (21)

which has only φ = 0 as a constant real solution. Its weak field approximation is
[
ζ
( 2

2m2
− 1

)
+ ζ

( 2

2m2

)
− 2

]
φ = 0 , (22)

which implies condition on the mass spectrum

ζ
( M2

2m2
− 1

)
+ ζ

( M2

2m2

)
= 2 . (23)

From (23) it follows one solution for M2 > 0 at M2 ≈ 2.79m2 and many tachyon solutions
when M2 < −38m2.

3 Extension by ordinary Lagrangian

Let us now add ordinary bosonic Lagrangian (3) to the above constructed ones, i.e. Lh =
Lh + L and L = L+ L.

Respectively, one has Lagrangian, potential, equation of motion and mass spectrum con-
dition:
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Lh =
mD

g2

[φ
2

{ 2

m2
− ζ

( 2

2m2
+ h

)}
φ+

φ2

2
(lnφ2 − 1) +AC

+∞∑
n=1

n−h

n+ 1
φn+1

]
, (24)

Vh(φ) =
mD

g2

[φ2

2

(
ζ(h) + 1− lnφ2

)
−AC

+∞∑
n=1

n−h

n+ 1
φn+1

]
, (25)

[
ζ
( 2

2m2
+ h

)
− 2

m2

]
φ = φ lnφ2 +AC

+∞∑
n=1

φn

nh
, (26)

ζ
( M2

2m2
+ h

)
− M2

m2
= −1 . (27)

An analysis of these expressions depending on parameter h will be presented elsewhere.
When Cn = n2−1

n2 one respectively obtains:

L =
mD

g2

[φ
2

{ 2

m2
− ζ

( 2

2m2
− 1

)
− ζ

( 2

2m2

)
− 1

}
φ+

φ2

2
lnφ2 +

φ2

1− φ
]
, (28)

V(φ) =
mD

g2

φ2

2

[
ζ(−1) + ζ(0) + 1− lnφ2 − 1

1− φ
]
, (29)

[
ζ
( 2

2m2
− 1

)
+ ζ

( 2

2m2

)
− 2

m2
+ 1

]
φ = φ lnφ2 + φ+

2φ− φ2

(1− φ)2
, (30)

ζ
( M2

2m2
− 1

)
+ ζ

( M2

2m2

)
=
M2

m2
. (31)

Potential (29) has one local minimum V(0) = 0 and two local maxima, which are approx-
imately: V(−0.6) ≈ 0.15 mD

g2 and V(0.3) ≈ 0.06 mD

g2 . It has also the following properties:
V(1± 0) = ±∞ and V(±∞) = −∞.

In addition to many tachyon solutions, equation (31) has two solutions with positive mass:
M2 ≈ 2.67m2 and M2 ≈ 4.66m2.

4 Concluding remarks

As a first step towards construction of an effective field theory for adelic open scalar string,
we have found a few Lagrangians which contain all corresponding n-adic Lagrangians (n ∈ N).
As a result one obtains that an infinite number of spacetime derivatives and related nonlocality
are governed by the Riemann zeta function. Potentials are nonpolynomial. Tachyon mass
spectra are determined by definite equations and they are contained in all the above cases. p-
Adic Lagrangians can be easily restored from a zeta Lagrangian using just an inverse procedure
for its construction.

This paper contains some basic classical properties of the introduced scalar field with zeta
function nonlocality. There are rather many classical aspects which should be investigated.
One of them is a systematic study of the equations of motion and nontrivial solutions. In
the quantum sector it is desirable to investigate scattering amplitudes and make comparison
with adelic string.
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Abstract

We give a short review of the construction of gauge invariant Lagrangians for inter-
acting bosonic higher spin fields.

1 Introduction

Higher spin gauge theory has been a subject of intensive research (see [1] for recent reviews)
during the last decades. Other than being a fascinating topic by itself this theory has attracted
a significant amount of attention due to its close relation with the string and M-theory.

The problem of building consistent interactions between massless higher spin fields is
highly nontrivial. An important landmark was reached in [2]–[3] with the understanding that
the AdS background can accommodate consistent self interactions of massless higher spin
fields. This picture has two crucial features: the presence of an infinite tower of massless
higher spin fields and nonlocality. It seems to be of extreme importance to understand the
results of [2]–[3] in terms of the so called “metric– like” formulation of the higher spin fields
where basic objects are tensor fields of an arbitrary rank and symmetry. For this reasons the
method of BRST constructions [4]–[13] (see also [14]–[15] for the gauge invariant approach
and [16] for the light cone approach) seems to be the most appropriate one. The method
of BRST constructions is based upon the principle of gauge invariance. Namely the free
Lagrangians must possess enough gauge invariance to remove nonphysical states-ghosts- from
the spectrum, while interactions are constructed via consistent deformations of the “free”
abelian gauge transformations.

Below we describe a general method for such constructions [10] and give some explicit
examples [11], which are exact up to the first order in the coupling constant g. Finally, we
derive a vertex [12] which is invariant in all orders in g and is derived from the exact vertex
of the open bosonic string field theory [17].
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2 Free Massless Fields

A way to construct the nilpotent BRST charge whose cohomologies describe arbitrary
massless reducible representations of the Poincare group is to start with the BRST charge for
the open bosonic string

Q =
+∞∑

k,l=−∞
(C−kLk − 1

2
(k − l) : C−kC−lBk+l :)− C0, (1)

perform the rescaling of oscillator variables

ck =
√

2α′Ck, bk =
1√
2α′

Bk, c0 = α′C0, b0 =
1
α′
B0, (2)

αµk →
√
kαµk

and then take the high energy limit α′ →∞. In this way one obtains a BRST charge

Q = c0l0 + Q̃− b0M (3)

Q̃ =
∞∑

k=1

(ckl+k + c+k lk), M =
∞∑

k=1

c+k ck, l0 = pµpµ, l+k = pµα+
kµ (4)

which is nilpotent in any space-time dimension. The oscillator variables obey the usual
(anti)commutator relations

[αkµ, α
l,+
ν ] = δklηµν , {ck,+, bl} = {ck, bl,+} = {ck0 , bl0} = δkl , (5)

and the vacuum in the Hilbert space is defined as

αµk |0〉 = 0, ck|0〉 = 0 k > 0, bk|0〉 = 0 k ≥ 0. (6)

Let us note that one can take the value of k to be any fixed number without affecting the
nilpotency of the BRST charge (3). Fixing the value k = 1 one obtains the description of
totally symmetric massless higher spin fields, with spins s, s− 2, ..1/0. The string functional
(named ”triplet” [18]) in this simplest case has the form

|Φ〉 = |φ1〉+ c0|φ2〉 = |ϕ〉+ c+ b+ |d〉+ c0 b
+ |c〉

whereas for an arbitrary value of k one has the so called ”generalised triplet”

|Φ〉 =
c+k1 . . . c

+
kp
b+l1 . . . b

+
lp

(p!)2
|Dl1,...lp

k1,...lp
〉+

c0c
+
k1
. . . c+kp−1

b+l1 . . . b
+
lp

(p− 1)!p!
|Cl1,...lpk1,...kp−1

〉,

where the vectors |Dk1,...kp

l1,...lp
〉 and |Ck1,...kp

l1,...lp
〉 are expanded only in terms of oscillators αµ+

k , and
the first term in the ghost expansion of (7) with p = 0 corresponds to the state |ϕ〉 in (7).
One can show that the whole spectrum of the open bosonic string decomposes into an infinite
number of generalised triplets, each of them describing a finite number of fields with mixed
symmetries [6].

In order to describe the cubic interactions one introduces three copies (i = 1, 2, 3) of the
Hilbert space defined above, as in bosonic OSFT [17]. Then the Lagrangian has the form

L =
3∑

i=1

∫
dci0〈Φi|Qi |Φi〉 + g(

∫
dc10dc

2
0dc

3
0〈Φ1|〈Φ2|〈Φ3||V 〉+ h.c) , (7)
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where |V 〉 is the cubic vertex and g is a string coupling constant. The Lagrangian (7) is
completely invariant with respect to the nonabelian gauge transformations

δ|Φi〉 = Qi|Λi〉 − g
∫
dci+1

0 dci+2
0 [(〈Φi+1|〈Λi+2|+ 〈Φi+2|〈Λi+1|)|V 〉] , (8)

provided that the vertex |V 〉 satisfies the BRST invariance condition

Q|V 〉 =
∑

i

Qi|V 〉 =
∑

i

QiV c
1
0c

2
0c

3
0|0〉 . (9)

The function V is a polynomial of the combinations

γ+,ij
(kp) = c+,i(k)b

+,j
(p) , β+,ij

(kp) = c+,i(k)b
j
0,(p) M+,ij

(kp) =
1
2
α+,µ,i

(k) α+,j
µ(p), l+,ij(k) = α+,i,µ

(k) pjµ (10)

with the coefficients to be determined from the BRST invariance conditions. The ghost
number of the function V is zero as it is for the combinations (10). The additional constraints
imposed by the closure of the algebra of gauge transformations will be discussed in the last
section. The gauge parameter |Λ〉 in each individual Hilbert space has the ghost structure

|Λ〉 = b+|λ〉 (11)

for the totally symmetric case, while the gauge parameters for the generalised triplets take
the form

|Λ〉 =
c+k1 . . . c

+
kp
b+l1 . . . b

+
lp+1

(p!)(p+ 1)!
|Λl1,...lp+1
k1,...kp

〉+
c0c

+
k1
. . . c+kp−1

b+l1 . . . c
+
lp+1

(p− 1)!(p+ 1)!
|Λ̂l1,...lp+1
k1,...kp−1

〉.

Further, the interaction vertex must belong to the nontrivial cohomologies of the BRST charge
Q =

∑
iQi. And finally since the number operator

Ñ = α+,i,µ
(k) αiµ,(k) + b+,i(k)c

i
(k) + c+,i(k)b

i
(k) (12)

commutes with the BRST charge Q one can solve (9) for each eigenvalue of Ñ separately.
In order to extend the discussion to the case of an arbitrary dimensional AdS space let

us recall some relevant facts about the triplet formulation on anti –de Sitter space [6]– [7] we
restrict ourselves to the case of totally symmetric fields on D-dimensional AdS space-time i.e.,
to the case of the ”triplet”. The formulas given for the case of a flat space-time background
apply to the case of AdS space as well (see [10] for details) , but now the ordinary partial
derivative is replaced by the operator

pµ = − i (∇µ + ωabµ α+
a α b

)
, (13)

where ωabµ is the spin connection of AdS and ∇µ is the AdS covariant derivative. The AdS
counterpart of the BRST charge (3) has the form

Q = c0(l0 +
1
L2

(N2 − 6N + 6 +D − D
2

4
− 4M+M + c+b(4N − 6) (14)

+ b+c(4N − 6) + 12c+bb+c− 8c+b+M + 8M+bc)) + c+l + cl+ − c+cb0
where l0 is the AdS covariant d’Alembertian, L is the radius of the AdS space and

N = αµ+αµ +
D
2
, M =

1
2
αµαµ . (15)
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3 Some explicit examples

Spin-2 with two scalars We assign the field with spin two to the third Fock space, put
the scalars in the first and the second Fock spaces respectively, and the vector field in the
third Fock space. Since the oscillators αi,+µ , ci,+ and bi,+ occur only in the third Fock space
we omit the index i for them in what follows. Therefore we have [11]

|Φ3〉 = (
1
2!
hµν(x)αµ+αν+ +D(x)c+b+ − iCµ(x)αµ+c30b

+)|0〉 , (16)

|Λ〉 = iλµ(x)αµ+b+|0〉 . (17)

According to our discussion in the previous section since the operator Ñ acting on the product
|Φ1〉|Φ2〉|Φ3〉 gives 2, then the operator Ñ acting on the function V should give 2 as well in
order to “saturate” the last term in (7). Solving the BRST invariance condition (9) one
obtains the Lagrangian

L = Lfree + Lint , (18)

Lfree = (∂µφ1)(∂µφ1) + (∂µφ2)(∂µφ2) +m2(φ2
1 + φ2

2) + (∂ρhµν)(∂ρhµν)
−4(∂µhµν)Cν − 4(∂µCµ)D − 2(∂µD)(∂µD) + 2CµCµ , (19)

Lint = C2,0 (hµν(∂µ∂νφ1)φ2 + hµν(∂µ∂νφ2)φ1 − 2hµν(∂µφ1)(∂νφ2))
−C2,1 φ1φ2(hµµ − 2D) . (20)

and the relevant gauge transformations

δφ1 = C2,0 (2λµ∂µφ2 + φ2∂µλ
µ) , (21)

δφ2 = C2,0 (2λµ∂µφ1 + φ1∂µλ
µ) , (22)

δhµν = ∂µλν + ∂νλµ, δCµ = 2λµ, δD = ∂µλ
µ (23)

where C2,0 and C2,1 are arbitrary real constants. Note that we have added a mass - term for
the scalars in the Lagrangian. Curiously enough the Lagrangian describing the interaction of
two massless scalars with a spin two triplet is still gauge invariant after the addition of the
mass terms for the scalar. This opens the interesting possibility to start with the Lagrangian
for the free massive scalars and gauge its symmetries. In this way one recovers the Lagrangian
given above after gauging the symmetries generated by the parameter λµ. A similar result
holds for the case of two scalars interacting with a spin 3 gauge field. In this case one gauges
the symmetries of the free Lagrangian generated by the parameter λµν [11].

According to our general construction we have obtained the cubic vertex which involves
two different scalars and the triplet with higher spin 2. To obtain the interaction of a single
scalar with the spin-2 field we need to set φ1 = φ2

∗. It should also be noted that for
φ1 = φ2 (20) is equivalent to the linearised interaction of a scalar field with gravity. The
generalisation for the coupling of a spin-2 triplet with an arbitrary number of scalar fields n
goes in an analogous manner.

In AdSD we replace ordinary derivatives with covariant ones. There will be no other
changes for the gauge transformation rules (i.e., for all fields δAdS = δ) (23) except for

δAdSCµ = δCµ +
1−D
L2

λµ , (24)

∗Note that setting i.e., φ2 = 0 is meaningless since in our formalism that would mean to consider two Fock
spaces, hence no cubic interaction vertex.
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The free Lagrangian is modified to include the standard AdS ”mass -terms” of order 1/L2

∆Lfree = − 1
L2

(2hµµh
ν
ν − 16hµµD + 2hµνhµν + (4D + 12)D2 + (2D − 6) (φ2

1 + φ2
2)) . (25)

The interaction part also changes and gains an additional piece

∆Lint. = C2,0
D − 1
L2

Dφ1φ2 . (26)

This is an additional interaction of the D scalar with a ”spin-0” current.
Spin-3 with two scalars
The spin-3 triplet is described by the field [11]

|Φ3〉 = (
1
3!
hµνρ(x)αµ+αν+αρ+ +Dµ(x)αµ+c+b+ − i

2
Cµν(x)αµ+αν+c30b

+)|0〉, (27)

|Λ〉 =
i

2
λµν(x)αµ+αν+b+|0〉 . (28)

Now one has to solve the BRST invariance condition (9) for the polynomial V , such that
ÑV = 3V . As a result one gets the gauge transformations

δφ1 = 3i C3,0 (4λµν∂µ∂νφ2 + φ2∂µ∂νλ
µν + 4(∂µφ2)(∂νλµν)) + i C3,1 φ2λ

µ
µ , (29)

δφ2 = −3i C3,0 (4λµν∂µ∂νφ1 + φ1∂µ∂νλ
µν + 4(∂µφ1)(∂νλµν))− i C3,1 φ1λ

µ
µ , (30)

δhµνρ = ∂µλνρ + ∂νλµρ + ∂ρλµν , δCµν = 2λµν , δDµ = ∂νλ
ν
µ . (31)

and the free and interacting parts of the Lagrangian

Lfree = (∂µφ1)(∂µφ1) + (∂µφ2)(∂µφ2) +m2(φ2
1 + φ2

2) + (∂τhµνρ)(∂τhµνρ) (32)
−6(∂ρhµνρ)Cµρ − 12(∂µCµν)Dν − 6(∂µDν)(∂µDν) + 3CµCµ ,

Lint. = i C3,0 (hµνρφ1∂µ∂ν∂ρφ2 − hµνρφ2∂µ∂ν∂ρφ1 − 3hµνρ(∂µ∂νφ2)(∂ρφ1)
+3hµνρ(∂µ∂νφ1)(∂ρφ2))
+i C3,1 (hµνν − 2Dµ)(φ1∂µφ2 − φ2∂µφ1) + h.c. (33)

where C3,0 and C3,1 are arbitrary real constants. Note that in this case, had we set φ1 = φ2

the interaction would vanish. Unlike the previous example for the case of an interacting
triplet with higher spin 3 with two scalars one cannot make the scalars φ1 and φ2 equal to
each other so one needs a complex scalar in analogy with scalar electrodynamics. There is one
more difference with respect to the previous example, namely when doing the deformation
to the AdSD case, apart from changing ordinary derivatives to covariant ones, both the
Lagrangian and gauge transformation rules for scalars get deformed

∆Lfree = − 1
L2

(6hµρµ hννρ − 48hµνµ Dν − (D − 3)hµνρhµνρ +

+18(D + 3)DµDµ + (2D − 6) (φ2
1 + φ2

2)) (34)

∆Lint = i C3,0
6D
L2

Dµ (φ1∇µφ2 − φ2∇µφ1) + h.c. (35)

δAdSφ1 = δ0φ1 − i C3,0
6
L2
λµµφ2, δAdSφ2 = δφ2 + i C3,0

6
L2
λµµφ1, (36)

δAdSCµν = δCµν +
2(1−D)

L2
λµν +

2
L2
gµνλ

ρ
ρ. (37)
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4 An exact vertex

In this subsection we will give a solution to the cubic vertex which is exact to all orders
in the constant g [12]. We begin first with the simple case of a vertex for totally symmetric
fields. This means we consider only one set of oscillators as in (5). The form of the vertex
can be deduced from the high energy limit of the corresponding vertex of OSFT. In bosonic
OSFT the cubic vertex has the form

|V3〉 =
∫

dp1 dp2 dp3 (2π)d δd(p1 + p2 + p3) (38)

×exp

1

2

3∑

i,j=1

∞∑
n,m=0

α+,i
n,µ N

ij
nmα

+,j
m,ν η

µν +
3∑

i,j=1

∑

n≥1,m≥0

c+,in Xij
nmb

+,j
m


 |−〉123,

|−〉123 = c10c
2
0c

3
0|0〉

where the solution is given in terms of the Neumann coefficients.
Let us note first that since the BRST charge takes the form (3), it can be truncated to

contain any finite number of oscillator variables [6]. For this reason it is possible to look
for the BRST invariant vertex that describes the interaction among only totally symmetric
tensor fields of arbitrary rank, without the inclusion of modes with mixed symmetries. One
possibility is to start from the OSFT vertex (38) and keep only terms proportional to at least
one momentum prµ in the exponential, therefore dropping all trace operators (αrµη

µναsν), as
one does when obtaining the BRST charge (3) from (1) since they are leading in the α′ →∞
limit. However, since these terms are exponentiated and the term α+,r

n,µN
rs
n0p

s
µ is of the same

order as α+,r
n,µN

rs
n0p

s
µ (α+,r

n,µ N
rs
nmα

+,s
m,ν)

p, m, n ≥ 1, a priori one can keep them both . The same
is true regarding the ghost part where although the term c+,rn bs0 is leading compared to the
term c+,rn Xrs

nmb
s
m, n,m ≥ 1 one cannot neglect the later one in the exponential. Let us stress

that all these terms will be essential to maintain the off shell closure of the algebra of gauge
transformations and complete gauge invariance of the action.

Based on the discussion above one can make the following ansatz for the vertex which
describes interactions between massless totally symmetric fields with an arbitrary spin

|V 〉 = V 1 × V mod|−〉123 (39)

where the vertex contains two parts: a part considered in [19] (see also [20])

V 1 = exp ( Yij l+,ij + Zijβ
+,ij ) . (40)

and the part which ensures the closure of the nonabelian algebra as well as the gauge invariance
at all orders in g

V mod = exp ( Sijγ+,ij + PijM
+,ij ), (41)

where Pij = Pji. Putting this ansatz into the BRST invariance condition and using momen-
tum conservation p1

µ + p2
µ + p3

µ = 0 one can obtain a solution for Y rs and Zrs

Zi,i+1 + Zi,i+2 = 0 (42)

Yi,i+1 = Yii − Zii − 1/2(Zi,i+1 − Zi,i+2)

Yi,i+2 = Yii − Zii + 1/2(Zi,i+1 − Zi,i+2).



160 A. Fotopoulos, M. Tsulaia. Interacting massless higher spins in the BRST approach

Sij = Pij = 0 i 6= j (43)
Pii − Sii = 0 i = 1, 2, 3

In what follows we will assume cyclic symmetry in the three Fock spaces which implies along
with (42)

Z12 = Z23 = Z31 = Za, Z21 = Z13 = Z32 = Zb = −Za, (44)

Y12 = Y23 = Y31 = Ya, Y21 = Y13 = Y32 = Yb,

Yii = Y, Zii = Z, Pii = −Sii = −S = P.

By having determined the form of the vertex from (42) and (43) we will proceed in
computing the commutator of two gauge transformations with gauge parameters |Ξ〉 and |Λ〉.
One can check via direct computations that the Lagrangian is invariant in all orders in g
provided

|S|2 = 1 (45)

In a similar manner one can prove the closure of the algebra at order g2. In general,
closure of the algebra to order O(g) implies

[δΛ, δΞ]|Φ1〉 = δΛ̃|Φ1〉 = Q1|Λ̃1〉 − g[(〈Φ2|〈Λ̃3|+ 〈Φ3|〈Λ̃2|)|V 〉] + O(g2)
(46)

where
|Λ̃1〉 = g(〈Λ2|〈Ξ3|+ 〈Λ3|〈Ξ2|)|V 〉+ O(g2). (47)

and therefore for a commutator of two gauge transformations one gets

[δΛ, δΞ]|Φ1〉 = Q1|Λ̃1〉 (48)
+g2[〈V | (|Φ1〉|Λ3〉+ |Λ1〉|Φ3〉 ) 〈Ξ3||V 〉+ 〈V | (|Φ1〉|Λ2〉+ |Λ1〉|Φ2〉) 〈Ξ2||V 〉
−〈V | (|Φ1〉|Ξ3〉+ |Ξ1〉|Φ3〉) 〈Λ3||V 〉 − 〈V | (|Φ1〉|Ξ2〉+ |Ξ1〉|Φ2〉) 〈Λ2||V 〉

where we have suppressed the integrations over the ghost fields of (8). One can show that
the condition (45) leads to the closure of the algebra at order g2.

The case of arbitrary mixed symmetry fields is completely analogous to the construction
for totally symmetric fields. As in (39) we make the ansatz

V = exp (
∞∑
n=1

Y
(n)
ij l

+,(n)
ij + Z

(n)
ij β

+,(n)
ij )× exp (

∞∑
n,m=1

S
(nm)
ij γ

+,(nm)
ij + P

(nm)
ij M

+,(nm)
ij ) (49)

where in this case we are summing over n,m as well. We put the oscillator level indices in
parentheses in order to distinguish them from the Fock space ones. The oscillator algebra
takes the form

[α(m),i
µ , α+,(n),j

ν ] = δmnδijgµν , {c+,(m),i, b(n),j} = {c(m),i, b+,(n),j} = δmnδij . (50)

The BRST invariance with respect to (3) implies

Z
(r)
i,i+1 + Z

(r)
i,i+2 = 0 (51)

Y
(r)
i,i+1 = Y

(r)
ii − Z(r)

ii −
1
2
(Z(r)

i,i+1 − Z(r)
i,i+2) (52)
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Y
(r)
i,i+2 = Y

(r)
ii − Z(r)

ii +
1
2
(Z(r)

i,i+1 − Z(r)
i,i+2). (53)

and

S
(ps)
ij = P

(ps)
ij = 0 i 6= j or p 6= s (54)

P
(ss)
ii − S(ss)

ii = 0 i = 1, 2, 3

We can once more choose a cyclic solution in the three Fock spaces as in (44) and in this
way get an obvious generalisation of (51). Finally, as in the case of only one oscillator, the
complete invariance of the vertex requires

|S(r)| 2 = 1, (55)

for all r being integer numbers.
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Abstract

Different aspects of particle dynamics on AdS2 × S2 background with two–form flux
are discussed. These include explicit solution to the equations of motion and a canonical
transformation to conformal mechanics.

1 Introduction

It is a great pleasure to contribute to the volume celebrating the 60th birthday of Professor
I.L. Buchbinder. I was lucky to attend the lecture course on Quantum Field Theory which
Professor Buchbinder gave in 1991-1992 for graduate students at Tomsk State University. To
a large extend those beautiful lectures led me to choose the research career. I would like to
heartily congratulate Professor Buchbinder and wish him every success.

Recently particle dynamics on AdS2×S2 background with two–form flux was extensively
investigated [1]–[13]. This line of research was mostly motivated by the study of different
aspects of AdS2/CFT1 correspondence (for a review see [14]). As was demonstrated in
[1], an interesting example of this correspondence is provided by a massive charged particle
propagating near the horizon of an extreme Reissner-Nordström black hole. The geometry
characterizing this case is AdS2 × S2 and in the limit of large black hole mass one recovers
the conventional d = 1 conformal mechanics [15]. In particular, an infinite number of
quantum states of a particle probe localized near the horizon of the black hole was related to
the absence of a ground state in the conformal mechanics and the necessity to redefine the
Hamiltonian [15].

It is worth mentioning also that the conformal group SO(2, d−1) is the isometry group of
anti de Sitter space AdSd. As a result, particle models on such a background automatically
exhibit conformal symmetry. Since anti de Sitter space describes the near horizon geometry
of a wide class of extreme black holes (for a review see e.g. [16]), it was conjectured [1, 17]
that the study of conformal invariant models in d = 1 and their AdS duals might provide

1Email: galajin@mph.phtd.tpu.edu.ru
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164 A.V. Galajinsky. Massive charged particle on AdS2 × S2

new insight into quantum mechanics of black holes. This idea was pushed further in [18]–[20],
where a conformal mechanics on the moduli space of a system of static black holes in d=5
was constructed and investigated.

A relation between a particle probe propagating near the horizon of an extreme Reissner-
Nordström black hole and the conformal mechanics was established in a specific limit when the
black hole mass M is large, the difference between the particle mass and the absolute value of
its charge (m−|e|) tends to zero and M2(m−|e|) is kept fixed [1]. It should be noted, however,
that in this limit angular variables effectively decouple and show up only in an indirect way
via the effective coupling constant. In [9] a simple conformal mechanics was constructed
which is canonically equivalent to a particle moving on AdS2×S2 background, with both the
radial and angular variables retained. The clue to finding the canonical transformation was
to require the conserved charges to coincide in both theories.

In [1, 9] the magnetic charge on the extreme Reissner-Nordström black hole was set to zero.
The purpose of this note is to generalize the results of [9] to the case when a particle probe also
couples to the magnetic charge of the black hole. The corresponding conformal mechanics is
shown to coincide with the bosonic limit of a new variant of N = 4 superconformal mechanics
constructed recently in [11]. We also discuss in some detail the aspects of classical dynamics
of a particle propagating on AdS2 × S2 background with two–form flux.

In the next section we briefly review the near horizon geometry of the extreme Reissner-
Nordström black hole solution of Einstein–Maxwell equations. In sect. 3 we use global
symmetry of the model in order to construct solutions of equations of motion. Peculiar fea-
tures of the orbits are discussed. In Sect. 4 a simple conformal mechanics in three dimensions
is considered. It can be viewed as the bosonic limit of the N = 4 superconformal particle
[11]. A canonical transformation relating the conformal mechanics to the particle moving near
the horizon of the extreme Reissner-Nordström black hole (with a non–vanishing magnetic
charge) is constructed.

2 Geometry of background fields

Our starting point is the extreme Reissner-Nordström black hole solution of Einstein–
Maxwell equations (for a review see e.g. [16])

ds2 = −
(

1− M

r

)2

dt2 +
(

1− M

r

)−2

dr2 + r2dΩ2 , A = −q
r
dt+ p cos θdϕ . (1)

Here M , q, p are the mass, the electric and magnetic charges, respectively, and dΩ2 = dθ2 +
sin2 θdϕ2 is the standard metric on a sphere. For the extreme solution one has M =

√
q2 + p2.

Throughout the paper we use units for which G = 1.
The near horizon limit is most easily accessible in isotropic coordinates (r → r −M)

which cover the region outside the horizon only

ds2 = −
(

1 +
M

r

)−2

dt2 +
(

1 +
M

r

)2 (
dr2 + r2dΩ2

)
. (2)

When r → 0 the metric takes the form

ds2 = −
( r

M

)2

dt2 +
(
M

r

)2

dr2 +M2dΩ2 , (3)
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while implementing the limit in the two–form field strength, one finds the background vector
field

A =
q

M2
rdt+ p cos θdϕ . (4)

The last two lines give the Bertotti-Robinson solution of the Einstein–Maxwell equations.
From (3) it follows that in the near horizon limit the space–time geometry is the product of

a two-dimensional sphere of radius M and a two-dimensional pseudo Riemannian space–time
with the metric

ds2 = −
( r

M

)2

dt2 +
(
M

r

)2

dr2 . (5)

The latter proves to be the metric of AdS2. In order to see this, consider the hyperboloid in
R2,1

−ηABxAxB = M2 , ηAB = diag(−,+,−) , (6)

parameterized by the Poincaré coordinates (t, r)

x0 =
1
2r

(1 + r2(M2 − t2)), x1 =
1
2r

(1− r2(M2 + t2)), x2 = Mrt . (7)

Since x0 − x1 > 0, the local coordinates cover only half of the hyperboloid1. Calculating the
metric ds2 = ηABdx

AdxB induced on the surface (7) and making the shift r →M2r, one gets
precisely (5). Notice that in this picture the black hole mass M is equal to the radius of S2

(AdS2). It is worth mentioning also that, by construction, the isometry group of the metric
(3) is SO(2, 1)× SO(3).

To summarize, the background geometry is that of the AdS2 × S2 space–time with the
2–form flux.

3. Particle dynamics on AdS2 × S2

Having fixed the geometry of background fields, we now consider the action of a rela-
tivistic particle moving on such a background, i.e. near the horizon of the extreme Reissner-
Nordström black hole

S = −
∫
dt

(
m

√
(r/M)2 − (M/r)2ṙ2 −M2(θ̇2 + sin2 θϕ̇2) + eqr/M2 + ep cos θϕ̇

)
, (8)

where m, e are the mass and the electric charge of a particle, respectively.
The dynamics is most easily analyzed within the Hamiltonian formalism. Introducing the

momenta (pr, pθ, pϕ) canonically conjugate to (r, θ, ϕ), one finds the Hamiltonian

H = (r/M)
(√

m2 + (r/M)2p2
r + (1/M)2(p2

θ + sin−2 θ(pϕ + ep cos θ)2) + eq/M

)
, (9)

which generates time translations. In agreement with the isometries of the background metric
one also finds the conserved quantities

K = M3/r

(√
m2 + (r/M)2p2

r + (1/M)2(p2
θ + sin−2 θ(pϕ + ep cos θ)2)− eq/M

)
+

+t2H + 2trpr , D = tH + rpr , (10)
1In order to avoid closed time–like curves, one considers the universal covering of the hyperboloid with

−∞ < t < ∞, 0 < r.
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which generate special conformal transformations and dilatations, respectively. Together with
the Hamiltonian they form so(2, 1) algebra

{H,D} = H , {H,K} = 2D , {D,K} = K . (11)

The generators of rotations

J1 = −pϕ cot θ cosϕ− pθ sinϕ− ep cosϕ sin−1 θ ,

J2 = −pϕ cot θ sinϕ+ pθ cosϕ− ep sinϕ sin−1 θ ,

J3 = pϕ , {Ji, Jj} = εijkJk , ε123 = 1 . (12)

enter the Hamiltonian via the Casimir element

JiJi = p2
θ + sin−2 θ(pϕ + ep cos θ)2 + (ep)2 , (13)

and, hence, are conserved due to the su(2) algebra they form.
When analyzing solutions of equations of motion, two distinct cases should be examined.

First consider the situation when the magnetic charge of the black hole vanishes

p = 0 , M = |q| . (14)

In this case the particle moves on a plane orthogonal to the angular momentum vector Ji.
Making use of the rotation invariance one can choose the reference frame where Ji is along
x3-axis, i.e.

θ = π/2 , pθ = 0 → J1 = 0, J2 = 0, J3 = pϕ = L , (15)

with L a constant2. Then from the conservation laws (9) and (10) one can fix the dynamics
of the radial coordinate

r(t) =
EM2

√
a2(t) + b2 + c

, pr(t) =
a(t)(

√
a2(t) + b2 + c)
EM2

, (16)

where and E = H is the energy and we abbreviated

a(t) = D − tE , b2 = m2M2 + L2 , c = eq . (17)

Evolution of the angular variable is found by straightforward integration

ϕ(t) = − L√
b2 − c2

(
arctan

a(t)√
b2 − c2 − arctan

ca(t)√
a2(t) + b2

√
b2 − c2

)
+ ϕ0 , pϕ(t) = L .

(18)
It is important to notice that the conserved charges (9), (10) also specify the value of

the Casimir element of so(2, 1) algebra realized in the model in terms of parameters of the
particle and those of the background

EK −D2 = b2 − c2 = M2(m2 − e2) + L2 . (19)

This should correlate with the bound b2−c2 > 0 revealed by the explicit solution given above
which also assures that the energy of the particle E = (r/M)(

√
a2(t) + b2 + c) is positive

2We assume that L 6= 0. When L = 0 the particle travels towards the horizon at r = 0 along a straight
line.
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even if c is negative. Indeed, if c < 0 then from the condition b2 − c2 > 0 one immediately
gets

(
√
a2(t) + b2 + c)(

√
a2(t) + b2 − c) > 0 , (20)

which means that the first factor entering the last line is positive.
As ṙ is proportional to a(t) with a positive coefficient, depending on the initial data, the

particle either goes directly towards the black hole horizon located at r = 0, or it moves away
for some time, slows down with the turning point at t = D/E, and then travels back towards
r = 0. The orbit looks particularly simple when the particle is electrically neutral, i.e. c = 0

r(ϕ) =
EM2

b
| cos (b(ϕ− ϕ0)/L) | . (21)

The corresponding plot indeed reproduces the qualitative behavior mentioned above.
Now consider the case when the magnetic charge p of a black hole does not vanish. In

this case the particle moves on the cone (turning to Cartesian coordinates)

xiJi√
x2

= −ep . (22)

As before, one can use the rotation invariance so as to pass to the reference frame where Ji
is along x3-axis. This specifies the canonical pair (θ, pθ)

J1 = 0, J2 = 0, J3 = pϕ = L → cos θ = −ep/L , pθ = 0 , (23)

and imposes the natural bound | epL | ≤ 1. The solution of equations of motion for (r(t), pr(t))
and (ϕ(t), pϕ(t)) proves to maintain the previous form (16), (18) with a(t) and c unchanged,
but b2 modified

b2 = m2M2 + L2 − (ep)2 . (24)

Thus, for p 6= 0 the qualitative behavior of a particle is similar to the previous case but this
time it is confined to move on the cone (22).

4. A relation to conformal mechanics

The conventional conformal mechanics in one dimension is governed by the action func-
tional [15]

S =
1
2

∫
dt

(
ẋ2 − g

x2

)
, (25)

where g is the coupling constant. Passing to the Hamiltonian formalism one finds the con-
served charges

H ′ =
p2

2
+

g

2x2
, D′ = tH ′ − 1

2
xp, K ′ = t2H ′ − t(xp) +

1
2
x2 , (26)

which altogether form the so(2, 1) algebra (11). Guided by this observation, the authors of [1]
argued that the quantum mechanics of a test particle moving near the horizon of the extreme
Reissner-Nordström black hole3 reproduces the old conformal mechanics (25) in the limit of
large black hole mass

M →∞ , (m− e)→ 0 , (27)

3In [1] only the case of the vanishing magnetic charge p = 0 was discussed.
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with M2(m− e) fixed. The relation between the two models was recognized to be a manifes-
tation of the AdS2/CFT1 correspondence.

In [9] the conformal mechanics (25) was extended by a couple of angular variables in such
a way that the resulting model is related to a particle moving near the horizon of the extreme
Reissner-Nordström black hole by a canonical transformation (for a related work see [10, 12]).
The construction in [9] does not appeal to any specific limit and is valid for any finite value
of the black hole mass.

In this section we generalize the results of [9] to the case when a test particle couples to
the magnetic charge of the black hole. In constrast to the calculation in [9], the use of the
rotation invariance allows us to simplify the analysis notably.

Consider a specific extension of the model (25) by two angular degrees of freedom (Θ,Φ)

S =
1
2

∫
dt

(
ẋ2 +

1
4
x2(Θ̇2 + sin2 ΘΦ̇2)− g

x2
− 2ν cos ΘΦ̇

)
, (28)

where ν is a new coupling constants and x is now treated as a radial coordinate in the
enlarged configuration space. This theory arises, in particular, in the bosonic limit of the
N = 4 superconformal mechanics associated with the supergroup D(2, 1;α) [11] for α = −1.
Notice, however, that in [11] the coupling g was identified with ν2. That the new degrees of
freedom do not destroy the conformal symmetry of the original model is most easily verified
within the Hamiltonian formalism. Indeed, given the Hamiltonian

H ′ =
p2

2
+

g

2x2
+

2
x2

(p2
Θ + sin−2 Θ(pΦ + ν cosΘ)2) , (29)

where (p, pΘ, pΦ) designate momenta canonically conjugate to (x,Θ,Φ), the generators of
dilatations D′ and special conformal transformations K ′ are constructed following the pre-
scription in (26) and the full algebra proves to be so(2, 1).

As might be anticipated from the form of the action (28), the new variables accommodate
rotation invariance. The corresponding generators are derived from (12) by the obvious change
of the canonical variables and the coupling constants (ϕ, pϕ) → (Φ, pΦ), (θ, pθ) → (Θ, pΘ),
ep→ ν. They are trivially conserved because the angular variables enter the Hamiltonian via
the Casimir element of so(3) algebra realized in the model.

Now let us demonstrate that the system (29) and a particle on AdS2×S2 background with
the 2–form flux are related by a canonical transformation. In order to simplify the analysis,
first we use the rotation invariance intrinsic to both the models and pass for each system to
the reference frame where the conserved angular momentum is along x3–axis4. This allows
one to disregard the pairs (θ, pθ), and (Θ, pΘ)

cos θ = −ep/L , pθ = 0 , cosΘ = −ν/L , pΘ = 0 . (30)

Following [9], we then search for a canonical transformation which brings the symmetry
generators characterizing the model (8) (including the Hamiltonian) precisely to those of the
system (28). Comparing the conserved charges in both the pictures, one immediately finds
the desired transformation

x =
[
2M2

r

(√
m2M2 + (rpr)

2 + (Lpϕ − (ep)2)
2
/(L2 − (ep)2)− eq

)]1/2

,

p = −2rpr

[
2M2

r

(√
m2M2 + (rpr)

2 + (Lpϕ − (ep)2)
2
/(L2 − (ep)2)− eq

)]−1/2

,

pΦ = pϕ . (31)
4As explained below, our construction implies pΦ = pϕ = L on–shell.
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The corresponding Poisson brackets are indeed canonical. When establishing the correspon-
dence above, one has to specify the couplings of the conformal mechanics in terms of the
parameters characterizing a particle on AdS2 × S2

ν = ep , g = 4(m2M2 − (eq)2) . (32)

A transformation law of the last missing variable Φ is then found with the help of (31).
Imposing the Poisson bracket relations

{Φ, x} = 0 , {Φ, p} = 0 , {Φ, pΦ} = 1 , (33)

which are to be calculated with respect to the variables (r, pr), (ϕ, pϕ), and making the ansatz

Φ = ϕ+A(s, pϕ) , (34)

where s = (rpr) and A(s, pϕ) is an arbitrary function to be fixed below, one then reduces (33)
to a single ordinary differential equation for A(s, pϕ) as a function of the variable s. This
yields the solution

A(s, pϕ) = − α√
k2 − c2

(
arctan

s√
k2 − c2 + arctan

cs√
k2 − c2√k2 + s2

)
, (35)

where we denoted

α =
L(Lpϕ − (ep)2)
(L2 − (ep)2)

, k2 = m2M2 +
(Lpϕ − (ep)2)

2

(L2 − (ep)2)
, c = eq . (36)

Thus, the canonical transformation exposed above establishes the equivalence relation
between the charged massive particle moving near the horizon of the extreme Reissner-
Nordström black hole, which has a non–vanishing magnetic charge, and the conformal me-
chanics (28). Different aspects of dynamics in one model can be studied in terms of the other
and vice versa. It is noteworthy that the equivalence holds for any fixed value of the black hole
mass and does not refer to any specific limit. This is to be contrasted with the consideration
in [1].
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Abstract

We discuss hidden symmetries of five-dimensional supergravity coupled to vector
multiplets inherited from diagonal dimensional reduction of the eleven-dimensional su-
pergravity on T 6. This model containing three vector and three constrained scalars,
recently attracted attention in connection with supertubes and black rings. We perform
dimensional reduction along the lines of the Julia and Pope formalism which directly
reveals the symmetries of the scalar cosets in terms of the so called dilaton vectors. By
hidden symmetries we understand classical U-duality groups arising in dimensional re-
duction of 5D theory to four and three dimensions. In four dimensions the U-duality
group is SL(2,R)3, in three dimensions it is SO(4, 4). Identification of the vectors and
freezing out the scalar moduli leads to contraction of SO(4, 4) to G2(2) corresponding to
the hidden symmetry of minimal 5D supergravity. This contraction provides a simple
physical interpretation of the embedding of G2(2) into SO(4, 4). We obtain a new rep-
resentation of the coset G2(2)/SL(2,R)2 of the 3D sigma model of the reduced minimal
5D supergravity in terms of this embedding.

1 Introduction

This paper is devoted to hidden symmetries in five-dimensional supergravity coupled to
vector fields. It is a pleasure for us to participate in the volume dedicated to professor
I.L. Buchbinder whose contribution to the development of supersymmetric field theories is
widely recognized [1].

Current interest to five-dimensional supergravity is partly related to the discovery of
new soliton solutions which were called black rings [2]. These solutions violate the no-hair
theorems of the four-dimensional gravity/supergravity and give an interesting example of a
soliton with the topology of a closed string. Supersymmetric black rings can be found solving
the BPS equations of five-dimensional supergravity. More general (non-supersymmetric) black

1E-mail: galtsov@phys.msu.ru
2email: shcherbluck@mail.ru
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rings are supposed to exists and serve as their thermal counterparts. Black rings can carry
conserved (electric) charges associated with the gauge fields, as well as (non-conserved) dipole
charges of the magnetic type. Some particular solutions for thermal black rings were found
by an educated guess, but the most general solution still remains unknown. Since we are
interested in solutions effectively depending only on two spatial coordinates, one can hope
that dimensional reduction machinery, which reveals the so called hidden symmetries of the
theory, may help to solve this problem.

Dimensional reduction of minimal five-dimensional supergravity [3, 4] to four and three
dimensions was considered in number of papers [5, 6, 7, 8, 9, 10, 11]. The three-dimensional
classical U-duality group of the reduced theory is of particular importance an the above re-
spect, since it opens a way to create various solution generating techniques. This U-duality
is given by the lowest rank exceptional group G2, more precisely,( for the Euclidean signa-
ture of the three-space) by its non-compact version G2(2). The corresponding generating
technique opening a way to construct classical solution depending on three coordinates was
recently developed in [12, 13]. It amounts to using the 7 × 7 matrix representation of the
coset G2(2)/(SL(2,R) × SL(2,R)) and classifying the G2(2) isometries acting in the space
of potentials as a way to endow known solution with additional parameters such as charges
or angular momenta. In principle the problem to construct the most general five-parametric
black ring solution of the minimal five-dimensional supergravity can be solved using this tech-
nique. However, the algebraic structure of G2 and, correspondingly, the geometry of the coset
G2(2)/(SL(2,R)× SL(2,R)) is rather complicated, and stimulate us to search for alternative
techniques.

It turns out, that suitable extension of minimal five-dimensional supergravity leads to a
more clear U-duality group SO(4, 4), whose matrix realization is less sophisticated. Conse-
quently, truncation of this model leads again to the G2(2) supergravity, now in terms of an
embedding of this group into SO(4, 4). So finally we get a somewhat simpler matrix represen-
tation of the coset G2(2)/(SL(2,R) × SL(2,R)). The non-minimal theory is also interesting
by itself as providing wider classes of solitons known as supertubes. This extension is U(1)3

five-dimensional supergravity with three vector fields which can be regarded as a truncated
toroidal compactification of the D = 11 supergravity

I11 =
1

16πG11

∫ (
R11 ?11 1− 1

2
F[4] ∧ ?11F[4] −

1
6
F[4] ∧ F[4] ∧A[3]

)
, (1)

where F[4] = dA[3], according to the ansatz

ds211 = ds25 +X1
(
dz2

1 + dz2
2

)
+X2

(
dz2

3 + dz2
4

)
+X3

(
dz2

5 + dz2
6

)
, (2)

A[3] = A1 ∧ dz1 ∧ dz2 +A2 ∧ dz3 ∧ dz4 +A3 ∧ dz5 ∧ dz6 .

Here zi, i = 1, . . . , 6 are coordinates parameterizing the torus T 6. The three scalars XI , (I =
1, 2, 3) and the one-forms AI depend only on the five-dimensional coordinates. The scalars
XI satisfy the constraint X1X2X3 = 1, this implies the five-dimensional metric ds25 to be the
Einstein-frame metric. The reduced five-dimensional action reads

I5 =
1

16πG5

∫ (
R5 ?5 1− 1

2
GIJdX

I ∧ ?5dX
J − 1

2
GIJF

I ∧ ?5F
J (3)

− 1
6
δIJKF

I ∧ F J ∧AK
)
,

GIJ = diag
(
(X1)−2, (X2)−2, (X3)−2

)
, FI = dAI , I, J,K = 1, 2, 3,
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where the Chern-Simons coefficients δIJK = 1 if the indices I, J,K is a permutation of 1,2,3,
and zero otherwise. Supersymmetric solutions to this theory were studied in a number of
papers[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] The most general ring solution to this theory
constructed so far is a family of non-supersymmetric black rings depending on three conserved
charges QI , three dipole charges qI , and a radius of S1 [25], with the mass M and two angular
momenta Jψ, Jφ being some function of these seven free parameters. An existence of a larger
family of non-supersymmetric black rings with nine-parameters (M,Jψ, Jφ, QI , qI) is expected
reducing to the solutions of [21, 22, 23, 24] in the supersymmetric limit. The generating
technique developed in the present paper introduces a sufficient number of parameters to
construct the nine-parametric solution.

It is worth noting that the ansatz (2) is far from being the general toroidal compactifica-
tion of the D = 11 supergravity. The general toroidal reduction leads to the five-dimensional
theory with 27 vector fields and 42 scalar fields parameterizing a coset E6(6)/USp(8). Corre-
spondingly, the general black ring must contain 27 conserved charges and 27 dipole charges.
More accurate analysis [26] shows that 24 conserved charges can be generated from the above
three by duality transformations, while the number of independent dipole charges is 15 (the
number of the independent four-cycles of T 6).

Contraction to minimal 5D supergravity is effected via an identification of the vector fields

A1 = A2 = A3 =
1√
3
A

and elimination of the scalars X1 = X2 = X3 = 1. This leads to the Lagrangian

L5 = R5 ?5 1− 1
2
F ∧ ?5F − 1

3
√

3
F ∧ F ∧A.

In this case our results go back to those of the Refs. [12, 13]. However, our matrix represen-
tation of the coset SO(4, 4)/(SO(4)×SO(4)) leads upon contraction to a new representation
of the coset G2(2)/(SL(2,R)× SL(2,R)) which is different from that given in [12, 13].

2 D=4 reduction

In this section we investigate the Kaluza-Klein reduction of the D=5 action (3) to four
dimensions. We assume that the 5D space-time has the structureM5 =M4 × T 1, where T 1

is a circle, and can be parameterized by the coordinates {xµ, z}, µ = 1, . . . , 4 with z relating
to the circle. Following to the standard procedure we decompose the 5D metric as

ds25 = e
φ√
3 ds24 + e

− 2φ√
3 (dz + a)2, (4)

where the is ds24 = gµν(x)dxµdxν , the Kaluza-Klein one-form is a = aµdx
µ and φ is the

dilaton. In a similar way the 5D vector fields AI(xµ, z) are decomposed as

AI(xµ, z) = AI(xµ) + uIdz, (5)

where uI are the axions. All the above fields do not depend on z. Inserting these decompo-
sitions into the 5D action we get the 4D lagrangian

L4 = R4 ? 1− 1
2
? dφ ∧ dφ− 1

2
GIJ ? dX

I ∧ dXJ − 1
2
e

2φ√
3GIJ ? du

I ∧ duJ (6)

− 1
2
e−
√

3φ ? F ∧ F − 1
2
e
− φ√

3GIJ ? F
I ∧ F J − 1

2
δIJKdA

I ∧ dAJuK ,
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where F = da and F I = dAI − duI ∧ a are the field strength two-forms. Our purpose is to
rewrite this lagrangian in the form exhibiting the classical duality symmetry. First of all we
consider the scalar part of (6) written in the following form

e−1
4 Lscal =

1
2

(
(∂φ)2 +GIJ∂X

I∂XJ + e
2φ√

3GIJ∂u
I∂uJ

)
(7)

= ĜAB(Φ̂)∂Φ̂A∂Φ̂B , A,B = 1, . . . , 6,

where ∂ ≡ ∂/∂xµ, e4 is the Hodge dual to unity: e4 ≡ ?1 =
√−g d4x and all index operations

refer to the metric gµν . The potentials Φ̂A combine the six variables {X1, X2, φ, uI} and
realize the map Φ̂A : xµ ∈ M4 → Φ̂A(xµ) ∈ Mscal between the 4D Minkowskian space-
time and the target space with the metric ĜAB(Φ̂). Replacing the dilaton φ and the moduli
XI by new variables αI : αI = φ/

√
3− lnXI enable us to simplify Lscal as follows

e−1
4 Lscal =

1
2

∑

I

(
(∂αI)2 + e2α

I

(∂uI)2
)
.

The structure of the scalar manifoldMscal becomes more clear if we introduce three complex
potentials zI = uI + ie−α

I

:

e−1
4 Lscal =

1
2

∑
|∂zI |2/(Im zI)2.

It is well know that lagrangian L = 1
2 |∂z|2/(Im z)2 invariant under the group SL(2,R)

and the corresponding target space metric is the Kähler space SL(2,R)/SO(2). So in our
case the isometry group of Mscal is Ĝ = (SL(2,R))3 and the corresponding target space is
Ĝ/Ĥ =Mscal = (SL(2,R)/SO(2))3 with metric

ĜAB(Φ̂)dΦ̂AdΦ̂B =
1
2

(
(dφ)2 +GIJdX

IdXJ + e
2φ√

3GIJdu
IduJ

)
=

1
2

∑
|dzI |2/(Im zI)2.

As the second step, we reformulate the tensor part of the lagrangian (6) according with
the structure of the bosonic lagrangian of N = 2 supergravity coupled to vector multiplets
(for a review see the Ref.[27]). We express it in terms of the field two-forms F̃ I and F obeying
to the Bianchi identities dF̃ I = 0 and dF = 0 respectively. To determine the two-forms F̃ I

one needs to extract the exterior derivative d(uIa) in F I = dAI − duI ∧ a. As result we
have F I = F̃ I + uIF , where F̃ I = dÃ ≡ d(AI − uIa). Inserting the two-forms F I and dAI

expressed via F̃ and F into (6) and integrating by parts the terms like δIJK F̃ I ∧ duJuK ∧ a
and δIJKduIuJuK ∧ a ∧ F we will obtain for the tensor part of the 4D lagrangian

Ltens =
1
2

[
e−
√

3φ ? F ∧ F + e
− φ√

3GIJ

(
?F̃ I ∧ F̃ J + 2 ? Fu[I ∧ F̃ J] + uIuJ ? F ∧ F

)
(8)

+ δIJK

(
F̃ I ∧ F̃ JuK + F̃ IuJuK ∧ F +

1
3
uIuJuKF ∧ F

)]
.

Denote the field strength tensor and its Hodge dual as F = 1
2Fµνdxµ ∧ dxν and ?Fµν =

1
2Fαβεαβµν , where εαβµν is the totally antisymmetric Levi-Civita tensor related with the Levi-
Civita tensor density εαβµν as εαβµν = (−g)1/2εαβµν . Assuming that dxµ∧dxν ∧dxα∧dxβ =
−εµναβe4, we find

?F ∧ F =
1
2
FµνFµνe4 =

1
2
F2e4, F ∧ F = −1

2
Fµν ? Fµνe4 = −1

2
F ? Fe4.
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Note that in the 4D space-time with Lorentzian signature the double Hodge dual is ?? = −1.

We also combine field tensors F̃ Iµν and Fµν into the 4-column Bµν =
(
F̃ Iµν
Fµν

)
. With these

definition one can rewrite (8) in the matrix form [28, 29]

e−1
4 Ltens =

1
4
BTαβ(µ̂Bαβ −

1√
2
ν̂ ? Bαβ),

where the symmetric 4× 4 matrices µ̂ and ν̂ are given by

µ̂ =

(
e
− φ√

3GIJ e
− φ√

3GIJu
J

e
− φ√

3GIJu
J GIJu

IuJ + e−
√

3φ

)
, ν̂ =

√
2

(
δIJKu

K 1
2δIJKu

JuK
1
2δIJKu

JuK 2u1u2u3

)
.

This lagrangian yields the field equations for BTαβ : ∇α(µ̂Bαβ − 1√
2
ν̂ ? Bαβ) = 0. Introducing

the dual field strength Hαβ as ?Hαβ = µ̂Bαβ− 1√
2
ν̂ ?Bαβ we see that the above equations are

the Bianchi identities for Hαβ . Therefore the lagrangian Ltens take the form which manifestly
has the duality symmetry

e−1
4 Ltens =

1
4
BTαβ ?Hαβ =

1
8
=TΣ1 ? =, = =

( Bαβ
Hαβ

)
, Σ1 =

(
0 1
1 0

)
.

It can be checked that relation between = and ?= is given by

= = Ω P̂ ? =,

where Ω =
(

0 1
−1 0

)
is the 8× 8 symplectic invariant and P̂ is the 8× 8 matrix depending

on the potentials of the scalar manifolds Mscal

P̂ =
(
µ̂+ ν̂µ̂−1ν̂ ν̂µ̂−1

µ̂−1ν̂ µ̂−1

)
.

The matrix P̂ provides the matrix representation γ of the coset element π(Φ̂A), namely
γ : π ∈ Mscal → γ(π) = P̂ . It is evident from the following expression ĜABdΦ̂AdΦ̂B =
− 1

16Tr(dP̂ dP̂−1) = − 1
8Tr(dµdµ−1 − dνµ−1dνµ−1).

Let the fields Φ̂ be subject to the diffeomorphism Φ̂A → Φ̂A′, which leave invariant the
target space metric. This diffeomorphism corresponds to the action of some element ĝ belong-
ing to the isometry group of the target space ĝ ∈ Ĝ. In terms of the matrix representation γ
this means that the coset matrix R̂ ≡ Σ1P̂ transforms as R̂ → R̂′ = γ(ĝ)R̂γ(ĝ−1). Inserting
the expression ?= = −ΩP̂= into the Ltens and keeping in mind that Σ1Ω = −ΩΣ1 we will
obtain for the tensor part of the lagrangian:

e−1
4 Ltens =

1
8
=TΩR̂=.

If we now demand this lagrangian to be invariant under the action of γ(ĝ), we get the re-
strictions for the element g̃ ∈ Ĝ acting on the column as = → γ(g̃)=. Performing the
transformation we have

Ltens → L′tens =
1
8
=T γ(g̃)TΩγ(ĝ)R̂γ(ĝ−1)γ(g̃)=.
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Thus the conditions for γ(g̃) are γ(g̃) = γ(ĝ) and γ(ĝ)TΩγ(ĝ) = Ω. The former relation
means that there is the symplectic embedding of the isometry group into the symplectic
group Ĝ → Sp(8,R) [30]. In other words, γ(ĝ) provides the symplectic representation of ĝ
which rotates the fields =. Note the full 4D lagrangian can be written in the following form

e−1
4 L = R4 +

1
16

Tr(∂R̂ ∂R̂−1)− 1
8
=TΩR̂=.

3 D=3 reduction

Dimensional reduction of U(1)3 five-dimensional supergravity (3) on a two-torus was dis-
cussed recently in [31] and we reproduce some of the results here assuming that the 5D
Minkowskian space-time admits two independent Killing symmetries. Thus the initial space-
time can be represented asM5 =M3 × Σ, where Σ is T 2 if both Killing vectors are asymp-
totically space-like or T 1 × R if one of their is asymptotically time-like. The full set of 5D
coordinates then splits on xi ∈M3, i = 1, . . . , 3 and za ∈ Σ, a = 4, 5. The decomposition of
the 5D metric on the fields independent on za is given by

ds25 = e−
2√
3
ϕ1(dz4 + Â4)2 + κe

1√
3
ϕ1−ϕ2(dz5 +A5)2 + e

1√
3
ϕ1+ϕ2ds23,

where A5 is the 3D KK one-form, Â4 = A4 + χdz5 is the 4D KK one-form reducing to the
3D KK one-form A4 and the axion χ and finally ϕ1, ϕ2 is a set of the dilaton. The factor κ
is responsible for the signature: κ = 1 for z5 space-like, and κ = −1 for z5 time-like. This
ansatz can be represented in the 2D-covariant form

ds25 = λab(dza + aa)(dzb + ab)− κτ−1hijdx
idxj ,

where the 2× 2 matrix is introduced

λ = e−
2√
3
ϕ1

(
1 χ

χ χ2 + κe
√

3ϕ1−ϕ2

)
, detλ ≡ −τ = κe−

1√
3
ϕ1−ϕ2 , (9)

and aa are the KK one-forms: a4 = A4 − χA5, a5 = A5. The 5D U(1) gauge fields AI

reduce to the 3D one-forms AI(xi) and the six axions denoted as the 2D-covariant doublet
ψIa = (uI , vI) with the index a relative to the metric λab

AI(xi, z4, z5) = AI(xi) + ψIadz
a = AI(xi) + uIdz4 + vIdz5.

Therefore the lagrangian (3) in the new variables will read [32]

e−1
3 L3 = R3 − 1

2
(∂~ϕ)2 − 1

2
GIJ∂X

I∂XJ − 1
2
e

2√
3
ϕ1GIJ∂u

I∂uJ (10)

− 1
2
eϕ2− 1√

3
ϕ1GIJ∂v

I∂vJ − 1
2
eϕ2− 3√

3
ϕ1(∂χ)2 − 1

4
κτGIJF

IF J (11)

− 1
4
e−

3√
3
ϕ1−ϕ2(F4)2 − 1

4
κe−2ϕ2(F5)2 − 1

2
e−1
3 δIJKε

abdψIa ∧ dψJb ∧AK ,

with ~ϕ = (ϕ1, ϕ2) and εab = −εba, ε45 = 1. The field strength tensors entering (10) are
defined as

F I = dAI − dψIa ∧ aa, F4 = da4 + χda5, F5 = da5. (12)

An approach suggested in the Ref. [33] has an advantage to provide the roots of the hidden
symmetry group directly in terms of the so called dilaton vectors (coefficients in the dilaton
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exponentials entering the reduced action). Following this we replace the scalar fields ~φ, XI

by the new set of scalars ~φ = (φ1, φ2, φ3, φ4) related to the old variables as

φ1 =
1√
2

(
− ln(X3) +

1√
3
ϕ1 + ϕ2

)
, φ2 =

1√
2

(
ln(X3)− 1√

3
ϕ1 + ϕ2

)
, (13)

φ3 =
1√
2

(
ln(X3) +

2√
3
ϕ1

)
, φ4 =

1√
2

ln
X1

X2
(14)

and rewrite the lagrangian (10) with dilaton exponentials manifest (we take for simplicity
κ = 1)

e−1
3 L3 = R3 − 1

2
(∂~φ)2 − 1

2

∑

I,a

e~eI+3(a−3)·~φ (∂ψIa)
2 − 1

4

∑

I

e−~eI ·~φ(F I)2 (15)

− 1
4

∑
a

e−~ea+6·~φ (Fa)2 − 1
2
e~e12·~φ (∂χ)2 + e−1

3 LCS ,

where LCS is the Chern-Simons term. The set of the four-dimensional vectors ~ek, k =
1, . . . , 12 given by

~e1 =
√

2(1, 0, 0, 1), ~e2 =
√

2(1, 0, 0,−1), ~e3 =
√

2(0, 1, 1, 0),

~e4 =
√

2(0, 0, 1,−1), ~e5 =
√

2(0, 0, 1, 1), ~e6 =
√

2(1,−1, 0, 0),

~e7 =
√

2(0, 1, 0,−1), ~e8 =
√

2(0, 1, 0, 1), ~e9 =
√

2(1, 0,−1, 0),

~e10 =
√

2(1, 0, 1, 0), ~e11 =
√

2(1, 1, 0, 0), ~e12 =
√

2(0, 1,−1, 0).

To obtain a purely scalar 3D lagrangian we have to perform dualisation of the 2-forms
F I and Fa. Following the lines of [33] we introduce into the lagrangian (10) three Lagrange
multipliers µI ensuring the Bianchi identities for the two-forms F I −ψIadaa = dAI − d(ψIaaa)
and two Lagrange multipliers ωa ensuring the Bianchi identities for the two-forms daa =
γabFb, where γ4

4 = γ5
5 = 1, γ4

5 = −χ. We also rewrite the Chern-Simons term as (see Eq.
(3.29) in [33]):

LCS =
1
2
δIJKε

ab(dψIaψ
J
b ∧ FK +

1
3
dψIaψ

J
b ψ

K
c γ

c
d ∧ Fd)

Integrating by parts the terms with the Lagrangian multipliers we can represent (10) as

L3 = R3 ? 1− 1
2
? d~φ ∧ d~φ− 1

2

∑

I,a

e~eI+3(a−3)·~φ ? dψIa ∧ dψIa −
τκ

2
GIJ ? F

I ∧ F J +GI ∧ F I

− 1
2
e−~e10·~φ ? F4 ∧ F4 − 1

2
κ e−~e11·~φ ? F5 ∧ F5 +Ga ∧ Fa,

where the one-forms GI , Ga are related to the scalars µI , ωa as follows:

GI = dµI +
1
2
δIJKdψ

J
aψ

K
b ε

ab,

G7 = V7, G8 = V8 − χV7,

Va = dωa − ψIa
(
dµI +

1
6
δIJKdψ

J
b ψ

K
c ε

bc
)
.

Then, eliminating the initial two-forms F I , Fa via the equations of motion

F I = τ−1GIJ ? GJ , F4 = −κe~e10·~φ ? G4, F5 = −e~e11·~φ ? G5, (16)
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we obtain the lagrangian in the dual terms:

L3 = R3 ? 1− 1
2
? d~φ ∧ d~φ− 1

2

∑

I,a

e~eI+3(a−3)·~φ ? dψIa ∧ dψIa

+
1
2
τ−1GIJ ? GI ∧GJ − κ1

2
e~e10·~φ ? G4 ∧G4 − 1

2
e~e11·

~φ ? G5 ∧G5,

where GIJ is the inverse moduli metric GIJ . Note that the signs in the dilaton expo-
nents were inverted under dualisation. The Eqs. (12) together with the relations e−~e10·~φ =
−κτλ44, e−~e11·~φ = τ(χλ45 − λ55), which follow from the definitions (9) and (13)-(14), enable
us to rewrite the Eqs.(16) as the dualisation equations covariant with respect to all indices:

τλabda
b = ?Va,

dAI = dψIb ∧ ab + τ−1GIJ ? GJ ,

or, explicitly:

λab∂
[iaj]b =

1
2τ
√
h
εijk

[
∂kωa − ψIa

(
∂kµI +

1
6
δIJK∂kψ

J
c ψ

K
d ε

cd

) ]
,

∂[iAj]I = ab[j∂i]ψIb +
1

2τ
√
h
εijkGIJ

(
∂kµJ +

1
2
δJKL∂kψ

K
a ψ

L
b ε

ab

)
,

where the antisymmetrization is assumed with 1/2.
Combining all the above formulas we can present the dualized action as that of a 3D

gravity coupled sigma model:

I3 =
1

16πG3

∫ √
|h|

(
R3 − GAB ∂ΦA

∂xi
∂ΦB

∂xj
hij

)
d3x,

where hij is the inverse metric of the three-space, R3 is the corresponding Ricci scalar and
GAB(ΦA), A,B = 1, . . . , 16 is the metric of the target space parameterized by sixteens scalar
variables ΦA = (~φ, ψI , µI , χ, ωp), which can be read off from the following line element:

dl2 = GABdΦAdΦB (17)

=
1
2

(
(d~φ)2 + κe

√
2(φ1+φ4)(G1)2 + κe

√
2(φ1−φ4)(G2)2 + κe

√
2(φ3+φ2)(G3)2

+ e
√

2(φ3−φ4)(du1)2 + e
√

2(φ4+φ3)(du2)2 + e
√

2(φ1−φ2)(du3)2

+ κe
√

2(φ2−φ4)
(
dv1 − χdu1

)2
+ κe

√
2(φ4+φ2)

(
dv2 − χdu2

)2
+ κe

√
2(φ1−φ3)

(
dv3 − χdu3

)2

+ κe
√

2(φ1+φ3)(G7)2 + e
√

2(φ1+φ2)(G8)2 + κe
√

2(φ2−φ3)dχ2
)
.

This line element can be more concisely rewritten in the 2D-covariant form:

dl2 =
1
2
GIJ (dXIdXJ+dψI

T
λ−1dψJ)− 1

2
τ−1GIJGIGJ

+
1
4
Tr

(
λ−1dλλ−1dλ

)
+

1
4
τ−2dτ2− 1

2
τ−1V Tλ−1V.

The set of the dilaton vectors ~ek, k = 1, . . . , 12 is directly related to the root system of the
isometry algebra of the target space [33]. One can check that the vectors ~e1, ~e2, ~e3, ~e7, ~e8, ~e9, ~e10,
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~e11 are expressed in terms of ~e4, ~e5, ~e6, ~e12 as follows

~eI =
∑

K 6=I
~eK+3 + ~e12, ~eI+6 = ~eI+3 + ~e12,

~e10 =
∑

K

~eK+3 + ~e12, ~e11 =
∑

K

~eK+3 + 2~e12.

It is clear that the vectors ~e4, ~e5, ~e6, ~e12 are the simple roots forming the Dynkin diagram of
so(8) [34].

The signature of the target space is +16 for κ = 1 (dimensional reduction in all space-like
directions) and (+8,−8) κ = −1 (one of the reduced dimensions is time-like). Then it is
easy to recognize that the isometry group G is actually the non-compact form SO(4, 4) of
the SO(8), whose Killing metric has the signature (−12,+16), while the target space is the
coset SO(4, 4)/(SO(4) × SO(4)) for κ = 1 and SO(4, 4)/(SO(2, 2) × SO(2, 2)) for κ = −1.
For these both symmetric spaces the scalar curvature R is constant and negative

R = −96.

Denoting the four-dimensional Cartan subalgebra of so(4, 4) as ~H, and the generators
corresponding to the non-zero roots ±~ek, k = 1, . . . , 12 as P±I , W±I , Z±I , Ω±a, X±, with
I = 1, 2, 3, a = 4, 5, we will have the relations

P±I ↔ ±~eI , W±I ↔ ±~eI+3, Z±I ↔ ±~eI+6, Ω±a ↔ ±~ea+6, X± ↔ ±~e12, X ≡ X+.

The commutators of these generators with the Cartan subalgebra ~H read:

[ ~H,X±] = ±~e12X±,
[ ~H,Σa±I ] = ±~eI+3(a−3)Σa±I , (18)

[ ~H,Ω±a] = ±~ea+6Ω±a,

[ ~H,P±I ] = ±~eIP±I ,

where we have arranged WI , ZI into a column vector ΣI =
(
WI

ZI

)
. The remaining non-zero

commutators are obtained from the relations between the root vectors

~eI+3 + ~eJ+6 = ~eK , ~eI+3 + ~e12 = ~eI+6, ~eI+3(l+1) + ~eI = ~el+10 (l = 0, 1), ~e12 + ~e10 = ~e11.

where in the first equations I, J,K are all different. One finds

[Σa±I ,Σ
b
±J ] = ∓εabδIJKP±K , [Σa∓I ,Σ

b
±J ] = ±εabδIJX±,

[X±,W±I ] = ∓Z±I , [X∓, Z±I ] = ∓W±I , (19)
[Σa±I , P

±J ] = ∓δJI Ω±a, [Σa±I , P
∓J ] = ±εa.bδIKδKJLΣb∓L,

[X±,Ω±4] = ∓Ω±5.

4 Matrix representation

As a convenient representative of the 3D sigma-model coset π(ΦA) one can choose the
matrix representation γ : π → γ(π) ≡ V, where V is the upper triangular matrix. We
assume that V transforms under the global action of the symmetry group G by the right
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multiplication and under the local action of the isotropy group H by the left multiplication:
V → V ′ = h(Φ)Vg, where g and h belong to the matrix representation γ of G and H
respectively. Given this representative, one can construct the H−invariant matrix

M = VTKV, (20)

where K is an involution matrix invariant under H:

h(Φ)TKh(Φ) = K, (21)

(dependent on the coset signature parameter κ). Then the transformation ofM under G will
be M→M′ = gTMg. The target space metric (17) in terms of the matrix M will read

dl2 = −1
8
Tr(dMdM−1). (22)

The desired upper-triangular matrix V can be constructed by an exponentiation of the Borel
subalgebra of the Lie algebra of G consisting of the Cartan H and the positive-root E+

generators (in what follows we omit the sign + in the indices):

V = VHVE+ = VHVXVΨVΩVP ,

where the matrices VH , VX , VΨ, VΩ, VP are the exponentials:

VH = e
1
2
~φ· ~H ,

VX = eχX ,

VΨ = eψ
IΣI , (23)

VΩ = eωaΩa

,

VP = eµIP
I

,

where we assume that generators ~H,X and so on belong to the matrix representation γ of
the Lie algebra of G. Using (22), one can rewrite the target space metric in terms of the
matrix current J = dVV−1 as follows:

dl2 =
1
4
Tr(J 2) +

1
4
Tr(J TKJK−1).

Using the Eqs.(23) and the commutators (18) and (19) for the positive-root generators, one
can show that the matrix current one-form J is spanned by the Borel subalgebra generators
as follows:

J = dV V−1 =
1
2
d~φ · ~H + e

1
2~e12·~φ dχX +

∑

I

e
1
2~eI+3·~φ duIWI +

∑

I

e
1
2~eI+6·~φ (

dvI

− χduI
)
ZI +

∑
a

e
1
2~ea+6·~φGa Ωa +

∑

I

e
1
2~eI ·~φGI P I .

We choose the following 8× 8 matrix representation γ of the so(4,4) algebra

E =
(
A B

C −AbT
)
, (24)
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where A, B, C are the 4×4 matrices, A, B being antisymmetric, B = −BT , C = −CT , and
the symbol T̂ in A

bT means the the transposition with respect to the minor diagonal. The
diagonal matrices ~H are given by the following A−type matrices (with B = 0 = C):

AH1 =




√
2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


 , AH2 =




0 0 0 0
0
√

2 0 0
0 0 0 0
0 0 0 0


 ,

AH3 =




0 0 0 0
0 0 0 0
0 0

√
2 0

0 0 0 0


 , AH4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

√
2


 .

Twelve generators corresponding to the positive roots are given by the upper-triangular ma-
trices Ek, k = 1, . . . , 12,. From these the generators labeled by k = 2, 4, 6, 7, 9, 12 are of pure
A-type (with B = 0 = C):

AE2 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , AE4 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , AE6 =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

AE7 =




0 0 0 0
0 0 0 −1
0 0 0 0
0 0 0 0


 AE9 =




0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0


 , AE12 =




0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


 .

while the other six are of pure B type (with A = 0 = C)

BE1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 , BE3 =




0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


 , BE5 =




0 0 0 0
0 0 0 0
−1 0 0 0
0 1 0 0


 ,

BE8 =




0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0


 , BE10 =




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , BE11 =




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


 .

The correspondence with the previously introduced generators is as follows:

P I ↔ EI , WI ↔ EI+3, ZI ↔ EI+6, Ωa ↔ Ea+6, X ↔ E12.

In this representation, the matrices corresponding to the negative roots,

P−I ↔ E−I , W−I ↔ E−(I+3), Z−I ↔ E−(I+6), Ω−a ↔ E−(a+6), X− ↔ E−12,

are the transposed ones with respect to the positive roots matrices: E−k = (Ek)T . The follow-
ing normalization conditions are assumed: Tr(Hi,Hj) = 4δij , i, j = 1, . . . , 4, Tr(Ek, E−k) =
2, and the involution matrix K is chosen as

K = diag(κ, κ, 1, 1, 1, 1, κ, κ).
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The generators of the isotropy subgroup are selected by the Eq.(21). They are given by the
following linear combinations of the above generators:

P I − κP−I , ZI − κZ−I , WI −W−I , X − κX−, Ω4 − κΩ−4, Ω5 − Ω−5.

Therefore given matrix representation enable us after the exponentiation of the Borel subal-
gebra (23) to get the coset matrix in the following block form (see in detail [31]):

V =
(
S R

0 S̃

)
, S̃ = (S−1)bT ,

where S and R are 4× 4 matrices. Finally, using the definition (20) one can finds the gauge-
invariant representative of the coset:

M =
( P PQ
QTP P̃ +QTPQ

)
, Q = S−1R, P = STES, P̃ = S̃T ẼS̃,

with E = diag(κ, κ, 1, 1), Ẽ = κE .

5 Contraction to G2(2)

The present model reduces to minimal five-dimensional supergravity under the following
indentifications

ψ1 = ψ2 = ψ3 = ψ, µ1 = µ2 = µ3 = µ, X1 = X2 = X3 = 1, (25)

leading to

φ1 =
1√
2
(ϕ2 +

1√
3
ϕ1), φ2 =

1√
2
(ϕ2 − 1√

3
ϕ1), φ3 =

√
2
3
ϕ1, φ4 = 0.

In this case the target space metric of the three-dimensional sigma-model will read

dl2 =
1
2
(
dϕ2

1 + dϕ2
2 + 3κeϕ2+

1√
3
ϕ1G2 + 3e

2√
3
ϕ1du2 + 3κeϕ2− 1√

3
ϕ1(dv − χdu)2 + κeϕ2+

√
3ϕ1G2

4

+ e2ϕ2G2
5 + κeϕ2−

√
3ϕ1dχ2

)
, (26)

where the one-forms are
G = dµ+ vdu− udv,
G4 = V4, G5 = V5 − χV4,

Va = dωa − ψa
(
3dµ+ εbcdψbψc

)

This manifold is invariant under the G2(2) subgroup of the SO(4, 4). Dimensional reduction
of the D = 5 minimal supergravity to three dimensions was recently studied in [12, 13]. In
the notation of [12, 13] the indices a, b, c take the values 0, 1, the coordinate z4 is time-like
and the matrix λ is related to the present one by transposition with respect to the minor
diagonal. In matrix terms the target-space metric (26) reads

dl2 =
1
4
Tr

(
λ−1dλλ−1dλ

)
+

1
4
τ−2dτ2 +

3
2
dψTλ−1dψ − 1

2
τ−1V Tλ−1V − 3

2
τ−1G2.
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This coincides with the result of [12, 13] for the Euclidean signature of the three-space (κ =
−1). The above contraction to G2(2) can be described in terms of the root space as follows.
Consider the root vectors of the so(4, 4) algebra in the following basis:

~e1 =
(
s− 1

2
, s+

1
2
,
1
2
, s

)
, ~e2 =

(
1,−1,

1
2
, s

)
, ~e3 =

(
−s− 1

2
,
1
2
− s, 1

2
, s

)
,

~e4 =
(

1
2
− s,−s− 1

2
, 1, 0

)
, ~e5 = (−1, 1, 1, 0), ~e6 =

(
s+

1
2
, s− 1

2
, 1, 0

)
,

~e7 =
(

1
2
− s,−s− 1

2
,−1

2
, s

)
, ~e8 =

(
−1, 1,−1

2
, s

)
, ~e9 =

(
s+

1
2
, s− 1

2
,−1

2
, s

)
,

~e10 =
(

0, 0,
3
2
, s

)
, ~e11 = (0, 0, 0, 2s), ~e12 =

(
0, 0,−3

2
, s

)
, s =

√
3

2
.

Examination of this pattern shows that the following combinations of the triplets of the
so(4, 4) root vectors

~α±4 =
1
3

∑

I

~e±I , ~α±1 =
1
3

∑

I

~e±(I+3), ~α±3 =
1
3

∑

I

~e±(I+6),

together with ~α±5 = ~e±10, ~α±6 = ~e±11, ~α±2 = ~e±12,

form the standard set of the G2 roots satisfying the relations:

~α±3 = ±(~α1 + ~α2), ~α±4 = ±(2~α1 + ~α2), ~α±5 = ±(3~α1 + ~α2), ~α±6 = ±(3~α1 + 2~α2).

The corresponding generators read:

M1 =
√

2
3

(H1 −H2 + 2H3), M2 =

√
2
3
(H1 +H2),

P± =
1√
3

∑
P±I , Z± =

1√
3

∑
Z±I , W± =

1√
3

∑
W±I , Ω±a, X±.

They obey the following commutation relations in the Cartan-Weyl form:

[P+, P−] =
1
2
M1 +

√
3

2
M2,

[W+,W−] = M1,

[Z+, Z−] = −1
2
M1 +

√
3

2
M2,

[Ω4,Ω−4] =
3
2
M1 +

√
3

2
M2, [Ω5,Ω−5] =

√
3

2
M2,

[X+, X−] = −3
2
M1 +

√
3

2
M2,

[W±, P±] = ∓Ω±4, [Z±, P±] = ∓Ω±5,

[W±, Z±] = ∓P±,
[X±,W±] = ∓Z±,
[X±,Ω±4] = ∓Ω±5,

and so on.
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Contracting the set of the potentials ΦA according to the conditions (25), we obtain the
following representation for the coset blocks P and Q:

Q =




µ, ω − µψT , 0
ψ̃T , µσ3, ω̃ − µψ̃T
0, ψT , −µ


 , σ3 =

(
1 0
0 −1

)
.

P = −τ−1




1, ηT , µ

η, ηηT − τ λ̃, ηµ− τ λ̃ψ̃T
µ, ηTµ− τψ̃λ̃, µ2 − τ − τψ̃λ̃ψ̃T


 , η = σ3ψ.

This gives a 8 × 8 representation of the coset G2(2)/(SL(2,R) × SL(2,R)) of the minimal
five-dimensional supergravity reduced to three dimensions, alternative to the 7× 7 one given
in [12, 13].

6 Conclusions

In this paper we have considered dimensional reduction of the U(1)3 5D supergravity
compactified on a circle and and a two-torus. This particular non-minimal five-dimensional
supergravity model was widely discussed recently in connection with the supertubes and the
black rings. Its dimensional reduction reveal hidden duality symmetries which may serve as
tools for generating new classical solutions for this theory. In the four-dimensional theory
the duality group is SL(2,R)3, and we gave a convenient matrix realization of it. This is a
subgroup of the U-duality group of the three-dimensional theory resulting from the compact-
ification on a two-torus. The latter theory after dualisation of the vector fields to scalars can
be presented as the the three-dimensional gravity coupled sigma model on symmetric spaces
SO(4, 4)/(SO(4) × SO(4)) or SO(4, 4)/(SO(2, 2) × SO(2, 2)) depending on the signature of
the three-space. The classical U-duality group of the three-dimensional theory is the 28-
parametric non-compact group SO(4, 4) which acts transitively on the target space. An iden-
tification of the three vector fields and freezing out the two scalar moduli reduce the present
theory to minimal five-dimensional supergravity with the three-dimensional U-duality group
G2(2), which was extensively studied recently along the same lines [12, 13]. For this limiting
case we have presented a new matrix representation for the coset G2(2)/(SL(2,R)×SL(2,R))
in terms of the 8× 8 matrices. Hopefully this new representation will be useful in the search
of new soliton solution of five-dimensional supergravity.
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Abstract

The discussion of experimental manifestations of torsion at low energies are mainly
related to the torsion-spin interaction. In this respect the behavior of Dirac field and the
spinning particle in an external torsion field deserves and received very special attention.
In the present paper we consider the combined action of torsion and strong magnetic
field on the massive spinor field and on the corresponding particle. Despite in this case
the Hamiltonian doesn’t admit the exact Foldy-Wouthuysen transformation, one can
perform the single transformation which is, simultaneously, exact in magnetic field and
perturbative in the torsion field backgrounds. It is remarkable that this new method
enables one to reproduce some known perturbative results and also derive the non-
relativistic equations of motion for a spin– 1

2
particle. Our results confirm and generalize

the ones obtained by Buchbinder et al in 1992.

1 Introduction

One of the most natural extensions of General Relativity is related to the inclusion of
torsion which is supposed to describe, along with the metric, the space-time geometry and
physical properties. The background of gravity with torsion are well known on both classical
and quantum levels (see, e.g., the reviews [1]). The physical aspects of torsion gravity has
a long story of study (see, e.g., [1, 4, 2, 3, 5, 6] for extensive reviews and references). The
issue which always called special attention was interaction of torsion with the spinor field and
with the spinning particle [7, 8, 9, 10]. In particular, the papers [11, 12, 13] were devoted

1On leave from: Dept. of Theoret. Physics, Moscow State University, 117234 Moscow, Russia.
2Also at Tomsk State Pedagogical University, Tomsk, Russia. E-mail address: shapiro@fisica.ufjf.br
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to the nonrelativistic approximation of Dirac equation and in [12, 13], correspondingly, the
Pauli equation and Foldy-Wouthuysen transformation have been obtained for the fermion
field on combined electromagnetic and torsion background. One can use these results for
exploring the possible manifestations of torsion in the domain of atomic physics [12, 14]. Let
us notice that the completely antisymmetric background torsion has been also investigated as
an independent parameter measuring the Lorentz and CPT symmetries violations (see, e.g.,
[15, 16] for the reviews).

The Foldy-Wouthuysen transformation provides, in general, more detailed information
about the nonrelativistic approximation, specially if the exact version of this transformation
is employed [18, 19, 20]. It is, in principle, safer to perform the exact transformation, for
otherwise there is a certain risk to miss some important terms. Recently it has been shown
that this is the case for the spinor field in the weak gravitational field [21]. Therefore it is
worthwhile to construct the exact Foldy-Wouthuysen transformation for the case of torsion
and electromagnetic background. Besides the possible technical advantages, this calculation
may provide the opportunity to explore the impact of a strong magnetic field on the possible
effect of torsion. One can imagine, for instance, the situation when the magnetic field could
enforce the effect of torsion and thus make the upper bound for torsion more precise. Recently,
we have used this approach for the case of fermion on the combined background of the
gravitational wave and magnetic field and found that in fact there are potentially interesting
nonlinear effects like the ones described above. In the present paper we consider the case of
torsion. Indeed, the same approach can be used, also, for other Lorentz and CPT violating
terms [15, 16].

The usual perturbative Foldy-Wouthuysen transformation can be constructed for the Dirac
field interacting with great variety of external fields, including torsion [13]. However, the pos-
sibility to have the exact Foldy-Wouthuysen transformation depends on whether some special
condition (the existence of the involution operator) is satisfied for a given choice of external
fields. Indeed, the exact transformation is more complicated and more interesting from the
mathematical point of view [18, 19]. As it was also mentioned above, in this paper we are
interested in the set of two external fields - one is torsion and another one is constant and
uniform magnetic field. One can safely assume that torsion is very week, for otherwise it
would be easy to detect [6], while the magnetic field of our interest showld be very strong,
because we expect that the presence of this field may enforce the effect of torsion. Therefore,
our goal should be the Foldy-Wouthuysen transformation which is exact in magnetic field
but may be just linear in torsion. Actually, the exact Foldy-Wouthuysen transformation with
torsion is not possible because the corresponding Hamiltonian does not admit the involution
operator. However, even in this situation the technique of exact Foldy-Wouthuysen trans-
formation turns out to be useful and efficient. One can make some as hoc modification of
the torsion-dependent term in the Hamiltonian, such that the modified expression admits
the involution operator. Then one can use the known technique developed for the exact
Foldy-Wouthuysen transformation. The main point is that, in the linear approximation, the
mentioned modification can be easily removed from the final result. In this way we can repro-
duce the known perturbative result [13] in a technically much more economic way and also
get the Foldy-Wouthuysen Hamiltonian which the terms which show explicitly the mixture
between the torsion and magnetic field. In other words, we have derived a Hamiltonian which
is exact in magnetic field and linear in torsion.

After performing the Foldy-Wouthuysen transformation we derive the non-relativistic
equations of motion for the particle with spin 1

2 . The result manifests the same field mixing
due to the exact nature of the Foldy-Wouthuysen transformation.

The paper is organized as follows. In the next section we present a brief information about
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gravity with torsion and rederive the Hamiltonian of the Dirac field. Section 3 is devoted to
the exact Foldy-Wouthuysen transformation and in section 4 the semiclassical nonrelativistic
equation of motion for the spinning particle is obtained. In section 5 we discuss the linear
expansion in the torsion field and finally in last section we draw our conclusions.

2 Hamiltonian of Dirac field interacting with torsion

Let us start with some details about gravity with torsion. We shall use the notations of
[6]. In the space - time with torsion Tαβγ the connection Γ̃αβγ is non symmetric, and we write
Γ̃αβγ − Γ̃αγβ = Tαβγ . In order to find the explicit expression for Γ̃αβγ , one can use the metricity
condition ∇̃µgαβ = 0. The solution for the connection can be easily found in the form

Γ̃αβγ = Γαβγ +Kα
βγ , (1)

where Γαβγ is the Christoffel symbol and Kα
βγ is the contorsion tensor

Kα
βγ =

1
2

(
Tαβγ − T α

β γ − T α
γ β

)
. (2)

It proves useful to divide torsion into following irreducible components: the trace Tβ = Tαβα,
the pseudotrace Sν = εαβµνTαβµ and the tensor qαβγ , satisfying the conditions qαβα =
εαβµνqαβµ = 0. Then torsion can be written in the form

Tαβµ =
1
3

(Tβgαµ − Tµgαβ)− 1
6
εαβµνS

ν + qαβµ . (3)

For the Dirac field is in an external gravitational field with torsion we can perform the
minimal covariant generalization

ηµν → gµν , ∂µ → ∇µ ,

∫
d4x→

∫
d4x
√−g .

Let us notice that the covariant derivative of the spinor field ψ is defined as

∇̃µψ = ∂µψ +
i

2
w̃ ab
µ σabψ ,

∇̃µψ̄ = ∂µψ̄ − i

2
w̃ ab
µ ψ̄σab , (4)

where w̃ ab
µ are the components of spinor connection. We use the standard representation for

the Dirac matrices (see, for example, [17])

β = γ0 =
(

1 0
0 −1

)
, αi = βγi =

(
0 σi
σi 0

)
,

γ5 = γ0γ1γ2γ3 , σa b =
i

2
(γaγb − γbγa) . (5)

The expression for spinor connection which agrees with (2) has the form

w̃ ab
µ =

1
4
(ebν∂µe

νa − eaν∂µeνb) + Γ̄ανµ(e
νaebα − eνbeaα) . (6)
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As far as metric and torsion are independent fields, and the physical effects of both in the
laboratory conditions are supposed to be very weak, it is a good idea to explore the torsion
effects separately and assume that the metric is the flat Minkowski one. Then the equation
(6) boils down to

w̃ ab
µ = Kα

νµ(e
νaebα − eνbeaα) . (7)

The action of spinor field minimally coupled with torsion has the form

S =
i

2

∫
d4x
√−g (

ψ̄γµ∇̄µψ − ∇̄µψ̄γµψ − 2imψ̄ψ
)
, (8)

where m is the mass of the Dirac field. In what follows we shall consider only the torsion
effects and therefore restrict ourselves by the only special case of flat metric. So we put
gµν = ηµν and keep Tαβγ arbitrary. After certain algebra the expression (6) can be rewritten
in the form

S =
∫
d4x

{
iψ̄γµ(∂µ + iη1γ5Sµ)ψ +mψ̄ψ

}
(9)

with η1 = 1/8. One can see that the spinor field minimally interacts only with the pseu-
dovector Sµ part of the torsion tensor. The nonminimal interaction is more complicated.
According to [22, 6] (see also further references therein) the consistent quantum theory can
be constructed only for the nonminimal interaction of Dirac field with torsion. Therefore in
what follows we shall keep the parameter η1 arbitrary.

3 Exact Foldy-Wouthuysen transformation

Consider the spin-1/2 particle in an external torsion and electromagnetic fields. We are
going to consider the magnetitic and torsion fields which can only vary with time, but do not
depend on the space coordinates. The equation of motion which follows from the action (9)
has the form

i~
∂Ψ
∂t

= HΨ =
(
c−→α · −→p − e−→α · −→A − η1−→α · −→S γ5 + eΦ + η1γ5S0 +mc2β

)
Ψ . (10)

Here we used notations Aµ = (Φ ,
−→
A ), Sµ = (S0 ,

−→
S ). In case of constant magnetic field one

can set Φ = 0. Before start making the exact Foldy-Wouthuysen transformation, one has to
consider the conditions

JH +HJ = 0 , where J = iγ5β (11)

is the involution operator. Only those theories where the Hamiltonian admits the involution
operator, enable one to perform the exact Foldy-Wouthuysen transformation [18, 19, 20, 21].
The case of potential corresponding to the constant magnetic field satisfies this criterion [18].
However, direct inspection shows that the term η1

−→α−→S γ5 in (10) does not satisfy the condition
(11). Thus, the Hamiltonian (10) does not enable one to perform the exact Foldy-Wouthuysen
transformation. However, due to the weakness of the torsion field we are really interested
only in the linear order in torsion while the magnetic field should be treated exactly.

Let us make an ad hoc modification of the the term η1
−→α−→S γ5, that is multiply it by

the β-matrix. The modified term satisfies the condition (11) and now the the exact Foldy-
Wouthuysen transformation is perfectly possible. The main point is that, in the linear order
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in the torsion field, an extra β has no effect. The reason is that, after deriving the final
Hamiltonian operator, it will have the block diagonal structure. We are interested only in the
upper block of Hamiltonian which is even (after transformation) to perform physical analysis.
At least in the first order in 1/m it does not matter if this term is multiplied by β or not,
because beta has the form (5) and its upper block is just the unity matrix. As a result we
arrive at what one can call semi-exact Foldy-Wouthuysen transformation, because it is exact
in only part of external fields and linear in other external fields.

After all, the Hamiltonian we are going to deal with has the form

H = c−→α · −→p − e−→α · −→A − η1
−→α · −→S γ5β + η1γ5S0 +mc2β . (12)

According to the standard prescription [18], the next step is to obtain H2. Direct calculations
gives the result

H2 = (c−→p − e−→A − η1−→ΣS0)2 +m2c4 + 2η1mc2
−→
Σ · −→S

+ (η1)2(
−→
S )2 + ~ce

−→
Σ · −→B − 2(η1)2(S0)2 + iη1γ5β

−→
Σ · [−→S × (c−→p − e−→A )

]
. (13)

The last term in (13) is odd. After computing
√
H2 we should multiply this by J (see equation

(17)). If we do this we get a term that transforms, under parity, in a different way of the
other terms in the Hamiltonian. To avoid this situation we suppose that

−→
S ,
−→
Σ and

−→
A satisfy

the relation
−→
Σ · [−→S × (c−→p − e−→A )] = 0 . (14)

In this way we obtain the operator H2 of the form

H2 = (c−→p − e
−→
A − η1

−→
ΣS0)2 + m2c4 + 2η1mc2

−→
Σ · −→S

+ ~ce
−→
Σ · −→B + (η1)2(

−→
S )2 − 2(η1)2 (S0)2 . (15)

The complete form for H2 is additionally discussed in appendix.
In order to get the transformed Hamiltonian Htr we rewrite H2 as H2 = A2 +B with A

being m-dependent terms in H2 and B the ones that do not depend on mass. In this case we
present

A = mc2 + η1
−→
Σ · −→S .

Than, we search for an operator K in the form

K = A+
1
A
K1 +K1

1
A

+ ϑ(
1
A2

) , (16)

such that K2 = A2. Finally, using (15) and the fact that

Htr = UHU∗ = β[
√
H2]EV EN + J [

√
H2]ODD , (17)

where the even (odd) terms in (17) are the ones that commutate (anticommutate) with the
matrix β, we get

Htr = βmc2 +
β

2mc2
(c−→p − e−→A − η1−→ΣS0)2 + βη1

−→
Σ · −→S

+ β
~e

2mc
−→
Σ · −→B − β (η1)2

mc2
(S0)2 . (18)
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The next step is to present the Dirac fermion ψ in the form

ψ =
(
ϕ
χ

)
e
−imc2t
~ , (19)

and use the equation

i~∂tψ = Hψ (20)

to derive the Hamiltonian for the two-spinor ϕ. Inserting (19) into (20), we obtain the two-
component equation

i~
∂

∂t

(
ϕ
χ

)
=

(−mc2 +H
) (

ϕ
χ

)
. (21)

Using the fact that the transformed Hamiltonian is an even function, we obtain, in the ϕ
sector, the nonrelativistic Hamiltonian

Htr
ϕ =

1
2m

(
−→
Π)2 +B0 +−→σ · −→Q ,

−→
Π = −→p − e

c

−→
A − η1

c
S0
−→σ , B0 = − (η1)

mc2

2

(S0)2 ,
−→
Q = η1

−→
S +

~e
2mc
−→
B . (22)

The epressions above are exactly the same as derived in [12] and in [13] through the usual
perturbative Foldy-Wouthuysen transformation.

One can also perform the canonical quantization of the theory in a way similar to [12].
In order to make this we introduce the operators of coordinate x̂i, momenta p̂i and spin σ̂i
and implement the equal-time commutation relations of the following form:

[x̂i, p̂j ] = i~δij , [x̂i, σ̂j ] = [p̂i, σ̂j ] = 0 , [σ̂i, σ̂j ] = 2iεijkσ̂k . (23)

The Hamiltonian operator Ĥ which corresponds to the energy (22) is easily constructed in
terms of the operators x̂i, p̂i, σ̂i and then these operators yield the equations of motion

i~
dx̂i
dt

= [x̂i,H] , i~
dp̂i
dt

= [p̂i,H] , i~
dσ̂i
dt

= [σ̂i,H] . (24)

After the computation of the commutators in (24) we arrive at the explicit form of the operator
equations of motion. Now we can omit all the terms which vanish when ~→ 0. Thus we obtain
the classical equations which can be interpreted as the (quasi)classical equations of motion
for the particle in an external torsion and electromagnetic fields. Note that the operator
arrangement problem is irrelevant because of the use of ~ → 0 limit. The straightforward
calculations lead to the equations

dxi
dt

=
1
m

(
pi − e

c
Ai − η1

c
σiS0

)
= vi ,

dpi
dt

=
1
m

(
pj − e

c
Aj − η1

c
σjS0

) e
c

∂Aj
∂xi

,

dσi
dt

=
[−→
R ×−→σ

]
i

,
−→
R =

2η1
~

[−→
S − 1

c
−→v S0

]
+

e

mc

−→
B . (25)

Using the first and second of equations (25) it is possible to obtain

m
dvi
dt

= −e
c

∂Ai
∂t

+
e

c

[−→v ×−→B
]
i
− η1

c
σi
∂S0

∂t
− η1

c
S0
dσi
dt

. (26)
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4 Linear expansion in Sµ

Now let us take again the equation (15) and rewrite it using the linear approximation in
Sµ. From now on all the terms that have power greater than two in Sµ will be considered
neglectable. We get

H2 = H2
0 + 2η1mc2

−→
Σ · −→S + 2η1γ5S0

−→α · (c−→p − e−→A ) , (27)

where

H2
0 = (c−→p − e−→A )2 + ~ce

−→
Σ · −→B +m2c4 . (28)

The idea now is to consider the expansion of
√
H2 not only in terms of the parameter m, but

also in terms of Sµ. To perform this let us presented equation (27) in the form

H2 = H2
0

{
1 +

2η1mc2
−→
Σ · −→S

H2
0

+
2η1γ5S0

−→α · (c−→p − e−→A )
H2

0

}
. (29)

The next step is to extract the square root of (29). The term H2
0 we expand in power series

in 1/m (going to the second order in 1/m) and we get the same result of [18] which we call
HEK

0

HEK
o =

√
H2

0 = mc2 +
(c−→p − e−→A )2

2mc2
+
~e

2mc
−→
Σ · −→B . (30)

The term between brackets in (29) we expand em power series in Sµ,

√
H2 = HEK

0

{
1 +

η1
mc2
−→
Σ · −→S +

η1γ5S0

m2c4
−→α · (c−→p − e−→A )−

− η1
m3c6

−→
Σ · −→S (c−→p − e−→A )2 − η1~ce

m3c6
−→
Σ · −→S−→Σ · −→B}

. (31)

In this equation we impose the condition (see appendix)

−→
Σ · (−→S ×−→B ) = 0 (32)

and get the final Hamiltonian for this case, using (17)

H ′ tr = βmc2 + β
(c−→p − e−→A − η1S0

−→
Σ)2

2mc2
(
1− η1

2mc2
−→
Σ · −→S )

+

+β
~ce

2mc2
−→
Σ · −→B + βη1

−→
Σ · −→B − β ~ceη1

2m2c4
−→
S · −→B. (33)

Here, we used prime in H, just to make difference between Hamiltonians (22) and (33). In
Hamiltonian (33) we apply the same algorithm used between equations (19) and (22) and
finally get the Hamiltonian for the two-spinor ϕ

H ′ trϕ =
1

2m
(
−→
Π)2

(
1− η1

2mc2
−→σ · −→S )

+B1 +−→σ · −→Q ,
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−→
Π = −→p − e

c

−→
A − η1

c
S0
−→σ , B1 = − η1~ce

2m2c4
−→
S · −→B ,

−→
Q = η1

−→
S +

~e
2mc
−→
B . (34)

The next step is to derive the equations of motion using the same procedure as the one applied
in [12]. In our case the equations of motion are

vi =
dxi
dt

=
(
1− η1

2mc2
−→σ · −→S ) 1

m
(Pi − e

c
Ai − η1

c
S0σi) ,

dpi
dt

=
(
1− η1

2mc2
−→σ · −→S ) 1

m

(
pj − e

c
Aj − η1

c
σjS0

) e
c

∂Aj
∂xi

,

dσi
dt

= [−→r ×−→σ ]i , −→r =
2η1
~

[
(1− v2

4c2
)
−→
S − 1

c
−→v S0

]
+

e

mc

−→
B . (35)

Using the first two equations of (35), we write

m
dvi
dt

= −e
c

∂Ai
∂t

(
1− η1

2mc2
−→σ · −→S )

+
e

c

[−→v ×−→B
]
i

(
1− η1

2mc2
−→σ · −→S )−

−η1
c
σi
∂S0

∂t
− η1

c
S0

dσi
dt
− η1

2c2
vi
d

dt
(−→σ · −→S ) . (36)

All the new terms in these equations, in comparison with (25) and (26), are in order
1/m2, as it should be. The second term in equation (36) shows an interesting effect. This
equation is the analogous to Lorentz force acting on a particle with interacts with external
electromagnetic field. The term where Sµ appear can be seen as corrections for this case.
Thinking like that, this term shows an explicity mixture between torsion and magnetic field.
One can suppose a situation when the magnetic field is strong enough to compensate the fact
that Sµ is weak and this term begin to deflect the particle motion in some notable way.

5 Discussion and conclusion

In this paper, we have derived Foldy-Wouthuysen transformation for the Dirac spinor
field on the combined background of torsion and constant uniform magnetic fields. We have
constructed this for fermion in a new manner, using technique developed for exact Foldy-
Wouthuysen transformation. Despite the torsion case doesn‘t admit the exact transformation,
the method of [21, 18, 19, 20] proves efficient and in particular we were able to reproduce
known results [12, 13] in a much more economic way. The main practical output of our work is
expression for the Hamiltonian (34) with is linear in torsion and non-perturbative in external
(constant) magnetic field. The same structure was obtained for the non-relativistic equations
of motion for a spinning particle. The motivation for the presence of the magnetic field is to
check the possibility of the amplification of the influence of the torsion on a Dirac particle.
According to our calculations (35) and (36) such an effect is possible. The sufficient strong
magnetic field may enforce the effect of a weak torsion. In principle, this result can meet
some application in astrophysics with torsion.
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6 Appendix

If we write the complete form for H2 equation (15), without supposing the condition (14),
we get

H2 = (c−→p − e−→A − η1−→ΣS0)2 +m2c4 + 2η1mc2
−→
Σ · −→S

+ (η1)2(
−→
S )2 + ~ce

−→
Σ · −→B − 2(η1)2(S0)2 + iη1γ5β

−→
Σ · [−→S × (c−→p − e−→A )

]
. (37)

The last term in (37) is odd. After computing
√
H2 we should multiply this by J (see equation

(17)). If we do this we get a term that transforms, under parity, in a different way of the
other terms in the Hamiltonian. To avoid this situation we suppose (14) and we showed in
(25) and (26) and that if (14) is satisfied the equations of motion we get is the same of [12].

The second point to note in this appendix is the condition (32), that we imposed in (31).
If we didn‘t do this we should find instead of equation (32), the result

√
H2 = HEK

0 + η1
−→
Σ · −→S +

η1γ5S0

mc2
−→α · (c−→p − e−→A )−

− η1
2m2c4

−→
Σ · −→S (c−→p − e−→A )2 − η1~ce

2m2c4
−→
S · −→B − i~ceη1

2m2c4
−→
Σ · (−→S ×−→B ) . (38)

The last term in this equation is even. Therefore if we apply equation (17) in (38) we find
an imaginary term in final Hamiltonian. In analogy to the situation described above, for the
condition (14), in order to avoid an imaginary term, we supposed the condition (32).
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Abstract

On a few simple examples we explain salient features of the superfield gauging of isome-
tries in the models of extended supersymmetric mechanics. The gauging procedure
provides a manifestly supersymmetric realization of d = 1 automorphic dualities which
relate to each other various irreducible off- shell multiplets of d = 1 extended super-
symmetry with the same number of physical fermions but different splittings of bosonic
fields into the physical and auxiliary subsets.

1 Introduction

The study of d = 1 supersymmetric models (supersymmetric mechanics) is of importance
from many points of view. One of the basic motivations is that the d = 1 models provide
a useful laboratory for exploring characteristic features of higher- dimensional supersymmet-
ric theories. In particular, various versions of superconformal mechanics are related to the
AdS2/CFT1 correspondence and so give an opportunity to improve the understanding of
the general “gravity/gauge” paradigm. The superconformal d = 1 models also describe the
physics of supersymmetric black holes. Another source of interest in supersymmetric mechan-
ics models is the search for new superextensions of one-dimensional integrable systems such
as Calogero or Calogero-Moser systems.

The one-dimensional supersymmetry possesses some peculiar features which are not shared
by its higher-dimensional counterparts. This concerns, e.g. the irreducible off-shell multiplets
of the d = 1 extended supersymmetry. They are characterized by three integer numbers
(n1,n2,n3) where n1 is the number of physical bosons, n2 is the number of physical fermions
and n3 = n2−n1 stands for that of auxiliary bosons. Some of these off-shell multiplets can be
obtained as a reduction of those of the d > 1 supersymmetries, while others have as their d > 1
counterparts essentially on-shell multiplets (leaving aside a possibility of adding an infinite
number of auxiliary fields in the framework of the harmonic superspace approach). Also,
many off-shell linear multiplets of extended d = 1 supersymmetry have nonlinear analogs
which transform under the relevant d = 1 supersymmetry in intrinsically nonlinear way.
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One more specific feature of the d = 1 models is the so called automorphic duality [1, 2, 3, 4]
which relates to each other the supermultiplets with different divisions of the set of bosonic
fields into the physical and auxiliary subsets. This kind of relationships was established in
[1]-[4] at the linear level of free actions. Generalizations to the case of interacting multiplets
were discussed in [5, 6, 7, 8]. In particular, in [7], basically using the component approach,
many results related to the linear and nonlinear automorphic dualities in N = 4, d = 1
supersymmetry were summarized and the exceptional role of the “root” multiplet (4,4,0) as
the generating one for other N = 4 multiplets was pointed out.

Recently, in refs. [9, 10, 11], we proposed a systematic superfield way of relating various
multiplets of d = 1 supersymmetry by using the procedure of gauging isometries in superspace.
In the present contribution we explain this method and its possible implications on a few
simple examples of the N = 1,N = 2 and N = 4, d = 1 supersymmetric mechanics models.

2 N=1 and N=2 examples

The basic principles of our gauging construction can be explained already on the simple
N=1, d=1 example. Let the coordinate set (t, θ) parametrize N=1, d=1 superspace and
Φ(t, θ) = φ(t)+θχ(t) be a scalar N=1 superfield comprising the N=1 supermultiplet (1,1,0).
The invariant free action of Φ is

SN=1 = −i
∫
dtdθ ∂tΦDΦ =

∫
dt

[
(∂tφ)2 + iχ∂tχ

]
, (1)

where
D =

∂

∂θ
+ iθ

∂

∂t
, D2 = i∂t ,

∫
dθθ = 1 . (2)

The action (1) is invariant under constant shifts

Φ′ = Φ + λ . (3)

Let us now gauge this shifting symmetry by replacing λ → Λ(t, θ) in (3). To gauge-
covariantize the action (1), we are led to introduce the fermionic “gauge superfield” Ψ(t, θ) =
ψ(t) + iθA(t) transforming as

Ψ ′ = Ψ +DΛ , (4)

and to substitute the “flat” derivatives in (1) by the gauge-covariant ones

SgaugeN=1 = −i
∫
dtdθ∇tΦDΦ , (5)

with
∇tΦ = ∂tΦ + iDΨ , DΦ = DΦ−Ψ . (6)

Taking into account that Λ(t, θ) is an arbitrary superfunction, one can choose the “unitary
gauge” in (5)

Φ = 0 , (7)

in which
SgaugeN=1 = −

∫
dtdθDΨΨ =

∫
dt

(
iψ∂tψ +A2

)
. (8)

This is just the free action of the N=1 multiplet (0,1,1), with A(t) being the auxiliary
bosonic field. Thus we observe the phenomenon of transmutation of the physical bosonic field
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φ(t) of the N=1 multiplet (1,1,0) into an auxiliary bosonic field A(t) of another off-shell
N=1 multiplet, the (0,1,1) one. This comes about as a result of gauging a shift isometry of
the action (1) of the former multiplet. In other words, the (0,1,1) action (8) is a particular
gauge of the covariantized (1,1,0) action (5).

One can come to the same final result by choosing a Wess-Zumino gauge, in which Ψ(t, θ)
takes the form

ΨWZ(t, θ) = iθ A(t) , δA(t) = ∂tλ(t) , λ(t) = Λ(t, θ)|θ=0 . (9)

In this gauge (5) becomes

SgaugeN=1 =
∫
dt

[
(∂tφ−A)2 + iχ∂tχ

]
(10)

and the residual gauge freedom acts as an arbitrary shift of φ(t), φ′(t) = φ(t) + λ(t) . Fixing
this freedom by the gauge condition φ(t) = 0, we once again come to the (0,1,1) free action.

On this simplest example we see that the phenomenon of “duality” between the physical
and auxiliary degrees of freedom in d=1 supermultiplets can be given a clear interpretation in
terms of gauging appropriate isometries of the relevant superfield actions. After gauging, some
physical (Goldstone) bosons become pure gauge and can be eliminated, while the relevant d=1
“gauge fields” acquire status of auxiliary fields. This treatment can be extended to higher N
d=1 supersymmetries. In the next Sections we shall discuss how it works in N=4 mechanics.

In the N=2 case an analog of the gauge superfield Ψ(t, θ) is the real superfield V(t, θ, θ̄)
with the transformation law

V ′(t, θ, θ̄) = V(t, θ, θ̄) +
i

2
[
Λ(tL, θ)− Λ̄(tR, θ̄)

]
, tL = t+ iθθ̄ , tR = (tL) (11)

Though this transformation law mimics that of N=1, 4D gauge superfield, in the WZ gauge
only one bosonic field survives, as in (9):

VWZ = θθ̄A(t) . (12)

By making use of V, one can study various gaugings of N=2 supersymmetric mechanics
models and establish, in this way, the relations between off-shell N=2 multiplets (2,2,0),
(1,2,1) and (0,2,2). As an example, let us consider the gauging of the U(1) phase invariance
of the free action of the (2,2,0) multiplet.

This multiplet is described by the chiral N=2 superfield ϕ(tL, θ) = φ(tL) + θψ(tL), with
the bilinear action

SfreeN=2 = −
∫
dtd2θ

[
Dϕ(tL, θ)D̄ϕ̄(tR, θ̄) + 4c ϕ(tL, θ)ϕ̄(tR, θ̄)

]
, (13)

where
D =

∂

∂θ
+ iθ̄

∂

∂t
, D̄ = − ∂

∂θ̄
− iθ ∂

∂t
.

In (13) the first term yields the standard free action of the involved fields, ∼ ∂tφ∂tφ̄+. . ., while
the second piece is an N=2 superextension of the WZ-type Lagrangian ∼ i (∂tφφ̄− ∂tφ̄φ

)
.

The action (13) possesses the evident U(1) invariance ϕ′ = e−iλϕ , ϕ̄′ = eiλϕ̄ with a
constant parameter λ . Under the local version of these transformations

ϕ ′ = e−iΛϕ , ϕ̄ ′ = eiΛ̄ϕ̄ , Λ = Λ(tL, θ) , Λ̄ = Λ̄(tR, θ̄) (14)
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the action ceases to be invariant and should be covariantized with the help of the gauge
superfield V with the transformation law (11):

SgaugeN=2 = −
∫
dtd2θ

[Dϕ(tL, θ)D̄ϕ̄(tR, θ̄) e2V + 4c ϕ(tL, θ)ϕ̄(tR, θ̄) e2V + 2ξ V]
. (15)

Here
D = D + 2D V , D̄ = D̄ + 2D̄ V , (16)

and we also added a Fayet-Iliopoulos (FI) term for V . Using the gauge freedom (14), one can
choose the manifestly supersymmetric “unitary” gauge

ϕ = 1 . (17)

Now the gauge freedom (14) has been fully “compensated” and V becomes a general real
N=2, d=1 superfield with the off-shell content (1,2,1) . The action (15) in this particular
gauge becomes the specific action of the latter multiplet:

SWN=2 = −
∫
dtd2θ

(
DWD̄W + cW 2 + 2ξ lnW

)
, (18)

where we redefined W = 2eV . Thus we started from the bilinear action of the multiplet
(2,2,0), gauged its U(1) symmetry and came to the action of the multiplet (1,2,1) with a
non-trivial superpotential as a result of the special gauge-fixing in the covariantized (2,2,0)
action.

The superpotential in (18) is generated by the WZ and FI terms in the gauge-covariantized
action, and it is interesting to see what kind of scalar component potential they produce.
Expanding W as

W (t, θ, θ̄) = ρ(t) + θχ(t)− θ̄χ̄(t) + θθ̄ω(t) , (19)

and neglecting fermions, we find

S
W (bos)
N=2 =

∫
dt

[
(∂tρ)2 + ω2 − 2c ρω − 2ξ ωρ−1

]
, (20)

which, after eliminating the auxiliary field ω(t), is reduced to the simple expression

S
W (bos)
N=2 =

∫
dt

[
(∂tρ)2 − c2 ρ2 − ξ2

ρ2
− 2cξ

]
. (21)

Thus, gauging the free action of the (2,2,0) multiplet, we finally arrived at the action of the
multiplet (1,2,1) with a non-trivial scalar potential.

Note that the action (13) possesses also a shift isometry ϕ′ = ϕ + ω , ω being a complex
constant parameter. One can alternatively gauge this isometry, and in the corresponding
”unitary” gauge ϕ = 0 also recover a superfield action of (1,2,1) multiplet. It looks like (18),
but with the term ∼W instead of lnW (this linear term can in fact be removed by a shift of
W ).

3 N = 4 examples

3.1 General setting

Because the N=4, d=1 harmonic superspace (HSS) plays the central role in our construc-
tion for the N=4 case, we start by recollecting the basics of this approach [12, 13, 5, 9].
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The N=4, d=1 superspace is defined as the following coordinate set

z = (t, θi θ̄i) , θ̄i = (θi) . (22)

The covariant spinor derivatives are

Di =
∂

∂θi
+ iθ̄i∂t , D̄i =

∂

∂θ̄i
+ iθi∂t = −(Di) ,

{Di, D̄j} = 2iδij∂t , {Di, Dj} = {D̄i, D̄j} = 0 . (23)

The N=4, d=1 harmonic superspace (HSS) in the central basis is the following set

(z, u) = (t, θi , θ̄i , u±i ) . (24)

Here u±i ∈ SU(2)A/U(1) are the SU(2)A harmonic variables:

u−i = (u+i) , u+iu−i = 1 ⇔ u+
i u
−
k − u+

k u
−
i = εik . (25)

The coordinates of N=4, d=1 HSS in the analytic basis are
(
tA = t− i(θ+θ̄− + θ−θ̄+) , θ± = θiu±i , θ̄

± = θ̄iu±i , u
±
k

)
. (26)

The analytic subspace of HSS is defined as

(tA, θ+, θ̄+, u±i ) ≡ (ζ, u). (27)

It is closed under the N=4 supersymmetry

δtA = −2i
(
εiu−i θ̄

+ − ε̄iu−i θ+
)
, δθ+ = εiu+

i , δθ̄
+ = ε̄iu+

i , δu
±
i = 0 , (28)

and is real with respect to the generalized conjugation ˜ [12].
In the analytic basis, the spinor and harmonic derivatives read

D+ =
∂

∂θ−
, D̄+ = − ∂

∂θ̄−
, D− = − ∂

∂θ+
+ 2iθ̄−∂tA , D̄

− =
∂

∂θ̄+
+ 2iθ−∂tA ,

D++ = ∂++ − 2iθ+θ̄+∂tA + θ+
∂

∂θ−
+ θ̄+

∂

∂θ̄−
,

D−− = ∂−− − 2iθ−θ̄−∂tA + θ−
∂

∂θ+
+ θ̄−

∂

∂θ̄+
, ∂±± = u±i

∂

∂u∓i
. (29)

The derivatives D+ , D̄+ are short in the analytic basis, whence it follows that one can define
analytic N=4 superfields Φ(q)(ζ, u)

D+Φ(q) = D̄+Φ(q) = 0 ⇒ Φ(q) = Φ(q)(ζ, u) , (30)

where q is the external harmonic U(1) charge. This Grassmann harmonic analyticity is
preserved by the harmonic derivative D++ : when applied to Φ(q)(ζ, u), this derivative yields
an analytic N=4, d=1 superfield of charge (q + 2).

We shall deal with the multiplet (4,4,0) which is described by a doublet analytic superfield
q+a(ζ, u) of charge 1 satisfying the harmonic constraint 1

D++q+a = 0 ⇒ q+a(ζ, u) = f ia(t)u+
i + θ+χa(t) + θ̄+χ̄a(t) + 2iθ+θ̄+∂tf ia(t)u−i . (31)

1For brevity, in what follows we frequently omit the index “A” of tA.
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It satisfies the pseudoreality condition

q̃+a = −q+a ⇒ (f ia) = εabεikf
kb , (χa) = χ̄a . (32)

A general off-shell action for the (4,4,0) multiplet is

Sq =
∫
dudtd4θL(q+a, q−b, u±), q−a ≡ D−−q+a. (33)

The free action reads

Sfree
q = −1

4

∫
dudtd4θ (q+aD−−q+a ) =

i

2

∫
dudζ(−2) (q+a∂tq+a ). (34)

The free action (34) and constraint (31) exhibit a 7-parameter group of symmetries [10].
Some of them can be extended to the interaction case, leading to certain restrictions on the
form of the general action (33). In terms of the component fields, these symmetries become
isometries of the target bosonic metric. We list here some symmetries of this sort preserving
the constraint (31). We are interested only in those symmetries which commute with N=4
supersymmetry and so can be gauged without passing to the local supersymmetry [9].

The list of the relevant isometries is

1. Shift:
δ1q

+a = λ1m
a
bu

+b . (35)

2. SU(2)PG rotations:
δsu(2)q

+a = λab q
+b , λaa = 0 . (36)

3. U(1) ⊂ SU(2)PG rotation:

δ2q
+a = λ2c

a
bq

+b , caa = 0 . (37)

4. Scale transformation:
δ3q

+a = λ3q
+a . (38)

The transformations 1, 2 and 3 are invariances of the free action of the (4,4,0) multiplet.
Requiring invariance under the rescalings 4 picks up a more complicated action, with a non-
trivial bosonic target space metric.

The N=4, d=1 “gauge multiplet” is described by a charge 2 unconstrained analytic su-
perfield V ++(ζ, u) the gauge transformation of which in the abelian case reads

δV ++ = D++Λ , (39)

with Λ(ζ, u) being a charge zero unconstrained analytic superfield parameter. Using this gauge
freedom, one can choose the Wess-Zumino gauge, in which the gauge superfield becomes

V ++(ζ, u) = 2i(θ+θ̄+)A(t), δA(t) = −∂tΛ0(t), Λ0 = Λ(ζ, u)|θ=0 . (40)

As in the N=2, d=4 HSS [12, 13], V ++ gauge- covariantizes the analyticity-preserving har-
monic derivative D++ . Assume that the analytic superfield Φ(q) is transformed under some
abelian gauge isometry as

δΛΦ(q) = Λ I Φ(q) , (41)
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where I is the corresponding generator. Then the harmonic derivative D++ is covariantized
as

D++Φ(q) =⇒ D++Φ(q) = (D++ − V ++ I)Φ(q) . (42)

One can also define the second, non-analytic harmonic connection V −−

D−− = D−− − V −− I , δV −− = D−−Λ . (43)

From the requirement of preserving the algebra of flat harmonic derivatives,

[D++,D−−] = D0 , [D0,D±±] = ±2D±± , (44)

the well-known harmonic zero-curvature equation follows

D++V −− −D−−V ++ = 0 . (45)

It specifies V −− in terms of V ++. One can also define the covariant spinor derivatives

D− = [D−−, D+] = D− + (D+V −−) I , D̄− = [D−−, D̄+] = D̄− + (D̄+V −−) I , (46)

as well as the covariant time derivative Dt:

{D+, D̄−} = 2iDt , Dt = ∂t − i

2
(D+D̄+V −−) I . (47)

The vector gauge connection

V ≡ D+D̄+V −−, δV = −2i∂tAΛ , (48)

is an analytic superfield, so Dt preserves the analyticity. In the gauge (40)

V =⇒ 2i A(t) . (49)

We will exploit these relations in the sample examples below.

3.2 Gauging a shift symmetry

We shall specialize to the case of a shift symmetry (35) with ma
b = δab. The gauging pro-

cedure as its first step involves replacing the global parameter λ1 by a superfield Λ1(t, θ, θ̄, u)
which depends on the coordinates of harmonic superspace. We require the local transforma-
tions to respect the analyticity, and thus Λ1 is an analytic superfield

δ1q
+a = Λ1u

+a , D+Λ1 = D̄+Λ1 = 0 ⇔ Λ1 = Λ1(tA, θ+, θ̄+, u±) . (50)

The harmonic constraint needs to be covariantized. This can be done by introducing an
analytic gauge superfield V ++(tA, θ+, θ̄+, u±) with the gauge transformation law (39). Then,
the covariantized harmonic constraint reads

∇++q+a = D++q+a − V ++u+a = 0 .

The gauge-covariantization of D−−q+a is

∇−−q+a = D−−q+a − V −−u+a .



204 E. Ivanov. Gauged supersymmetric mechanics

where V −− was defined in (43), (45). The covariantization of the free action (34) is

Sg =
∫
dtd4θdu q+a∇−−q+a . (51)

The gauge transformation (50) implies

δ1
(
q+au−a

)
= Λ1 .

Thus we may choose a supersymmetric unitary gauge such that

q+au−a = 0 . (52)

Then, what remains from the superfield q+a is the projection W++ = q+au+
a . The harmonic

constraint expresses V ++ in terms of W++ , and also properly constrains W++

∇++q+a = 0 ⇒
{

V ++ = W++

D++W++ = 0 . (53)

We recognize W++ as the superfield providing the description of the (3,4,1) multiplet:

D++W++ = 0 ⇒ W++(ζ, u) = w(ik)(t)u+
i u

+
k + θ+ψi(t)u+

i + θ̄+ψ̄i(t)u+
i

+ iθ+θ̄+[F (t) + 2∂tw(ik)(t)u+
i u
−
k ]. (54)

The gauge invariant action Sg reduces to the action Sg ∝
∫
dtd4θW++(D−−)2W++ – the

free (3,4,1) action.
Instead of a supersymmetric gauge, we might equally choose the Wess-Zumino (WZ) gauge

V ++ = 2iθ+θ̄+A(t) , (55)

the only surviving component in V ++ being the gauge field A(t). in the supermultiplet in
the WZ gauge. in [9]. The residual gauge freedom of the component fields is given by

δ1A(t) = −∂tλ1(t) , δ1f
ia(t) = λ1ε

ai , δ1χ
a(t) = 0 , λ1 = Λ1|θ=θ̄=0 . (56)

In WZ gauge, the gauge invariant action Sg becomes, in terms of components,

Sg ∼
∫
dt

[
(ḟ ia −Aεia)(ḟia +Aεia) + iχ̄aχ̇a

]
. (57)

The essential degrees of freedom are revealed by imposing the further (unitary) gauge

δ1(f iaεia) = 2λ1(t) , ⇒ unitary gauge : f iaεia = 0 . (58)

The action then becomes

Sg ∼
∫
dt

[
ḟ (ia)ḟ(ia) + iχ̄aχ̇a + 2A2

]
. (59)

The remaining fields are a triplet of physical bosons f (ia), a complex doublet of fermions χa,
χ̄a and an auxiliary field A. This is just the component content of the (3,4,1) supermultiplet.

In order to reproduce the most general sigma-model type superfield action of the multiplet
(3,4,1)↔ W++, one should start from the general superfield q+ action invariant under the
shifts (50) and pass to the gauged action by the same rules as above.
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3.3 An example of non-abelian gauging

As our final example we consider non-abelian gauging of the (4,4,0) multiplet action.
The covariantized action in a fixed gauge yields an action of the (1,4,3) multiplet. Like in
the previous example, we shall limit our consideration to the gauging of the free action of the
q+a multiplet (34). The gauging of the general SU(2)PG invariant actions is considered in
[10].

The action (34) exhibits a manifest invariance under the global SU(2)PG transformations
(36). Let us gauge this symmetry by changing λab → Λab(ζ, u):

δq+a = Λabq
+b , Λaa = 0 . (60)

The constraint (31) is covariantized to

D++q+a − V ++a
bq

+b = 0 , (61)

where the traceless analytic gauge connection V ++a
b is transformed as

δV ++a
b = D++Λab + ΛacV

++c
b − V ++a

cΛ
c
b . (62)

Using this freedom, one can pass to the WZ gauge as in the abelian case (40)

V ++a
b = 2iθ+θ̄+Aab(t) , δrA

a
b = −∂tΛ(0)

a
b
+ Λ(0)

a
c
Acb −AacΛ(0)

c
b
. (63)

The action (34) written in the analytic superspace is covariantized by changing

∂tq
+a ⇒ ∇tq+a = ∂tq

+a − i

2
V abq

+b , (64)

where

V ab = D+D̄+V −−
a
b , D++V −−

a
b −D−−V ++a

b − V ++a
cV
−−c

b + V −−
a
cV

++c
b = 0 . (65)

In the WZ gauge (63):

V −−
a
b = 2iθ−θ̄−Aab(t) , V ab = D+D̄+V −−

a
b = 2iAab(t) . (66)

In this gauge, the solution of the covariantized constraint (61) is obtained from the solution
(31) just by the replacement

∂tf
ia ⇒ ∇tf ia = ∂tf

ia +Aabf
ib . (67)

After substituting this covariantized solution for q+a into the covariantization of the action
(34) and performing there the Grassmann and harmonic integration, we arrive at the following
component action

Sbosna =
∫
dt

(∇tf ia∇tfia − iχa∇tχ̄a
)
. (68)

Splitting f ia as

f ia = εia
1√
2
f + f (ia) , (69)

and assuming that f has a non-vanishing constant vacuum part, f =< f > + . . . , < f > 6= 0,
we observe that the symmetric part in (69) can be fully gauged away by the residual SU(2)
gauge freedom

f ia ⇒ εia
1√
2
f . (70)
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In this gauge, the action (68) becomes

Sbosna =
∫
dt

[
(∂tf)2 − iχa∂tχ̄a + f2 1

2
A(ab)A(ab) − iχ(aχ̄b)A

(ab)

]
(71)

where the former gauge field A(ab) becomes a triplet of auxiliary fields. So, gauging the
“Pauli-Gürsey” SU(2) symmetry of the free action of (4,4,0) multiplet and choosing the
appropriate gauge in the resulting covariantized action, we arrived at the action (71) which
describes an interacting system of 1 physical bosonic field f(t), the fermionic doublet χa(t)
and the triplet of auxiliary fields A(ab)(t), that is just the field content of off-shell N=4, d=1
multiplet (1,4,3) . TheN=4 supersymmetry of the action (71) is guaranteed, since we started
from the manifestly supersymmetric action and just fixed some gauges in it. Note that after
eliminating the auxiliary field from (71), the latter takes the following on-shell form

Sbosna =
∫
dt

[
(∂tf)2 − iχa∂tχ̄a +

3
8f2

(χaχa)(χ̄aχ̄a)
]
. (72)

Like in the previous examples, the passing from the multiplet (4,4,0) to the multiplet (1,4,3)
by gauging SU(2)PG can be performed at the level of superfield actions, without resorting to
WZ gauge at the intermediate steps [10].

4 Conclusions

The gauging procedure in supersymmetric mechanics exemplified above has in fact a wide
range of applicability. It was shown in [9]-[11] that all general superfield actions of the linear
N=4 multiplets with four fermions, i.e. (3,4,1), (2,4,2), (1,4,3) and (0,4,4), as well
as of nonlinear versions of these multiplets, can be recovered by gauging the subclasses of
the general superfield q+a action which enjoy invariance under one or another symmetry
implementable on q+a and giving rise to the proper isometries of the bosonic cores of these
particular q+a actions. The “root” q+a superfield can be taken either in its standard linear
form or in various nonlinear forms [9, 14]. Thus the full variety of all possible models of N=4
mechanics is embodied by the most general gauged q+ mechanics and can be alternatively
described in terms of the analytic (4,4,0) supermultiplets q+a (both linear and nonlinear)
and analytic gauge superfields V ++ (both abelian and non-abelian). This fact suggests, in
particular, that the analytic N=4, d = 1 superspace is the fundamental underlying superspace
of N=4, d = 1 supersymmetry.

As one of the possible directions of the further development of this gauging approach, it
would be tempting to generalize it to higher N supermechanics, e.g. N=8 mechanics [15].
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Àííîòàöèÿ
Ïîêàçàíî, ÷òî àêóñòè÷åñêèå ôîíîíû â æèäêîñòè îïèñûâàþòñÿ âîëíîâûì óðàâíå-

íèåì ñ ýôôåêòèâíîé ÷åòûðåõìåðíîé ìåòðèêîé, îïèñûâàþùåé íåòðèâèàëüíóþ ãåî-
ìåòðèþ ïðîñòðàíñòâà-âðåìåíè. Ýòà ìåòðèêà îïðåäåëÿåòñÿ êëàññè÷åñêèìè íåðåëÿ-
òèâèñòñêèìè óðàâíåíèÿìè ãèäðîäèíàìèêè. Äàí ýâðèñòè÷åñêèé �âûâîä� ðåøåíèÿ
Øâàðöøèëüäà â êîîðäèíàòàõ Ïåíëåâå�Ãóëñòðàíäà. Â òàêîì âèäå ìåòðèêà Øâàðö-
øèëüäà êîíôîðìíî ýêâèâàëåíòíà ýôôåêòèâíîé ìåòðèêå äëÿ àêóñòè÷åñêèõ ôîíîíîâ.

Acoustic phonons in liquid are shown to be governed by the wave equation with
the e�ective four-dimensional metric describing nontrivial geometry of the space-time.
This metric is de�ned by the classical nonrelativistic equations of hydrodynamics. The
heuristic �derivation� of the Schwarzschild metric in Panlev�e�Gullstrand coordinates is
presented. The Schwarzschild metric in this form is conformally equivalent to the metric
for acoustic phonons.

1 Ââåäåíèå
Â ôèçèêå âñåãäà áîëüøîé èíòåðåñ âûçûâàëè àíàëîãèè ìåæäó ÿâëåíèÿìè èç ðàçíûõ

îáëàñòåé. Â íàñòîÿùåé ñòàòüå ìû ïîêàæåì, ÷òî íåêîòîðûå ÿâëåíèÿ â ãèäðîäèíàìèêå è
îáùåé òåîðèè îòíîñèòåëüíîñòè îïèñûâàþòñÿ óðàâíåíèÿìè, êîòîðûå âî ìíîãèõ îòíîøå-
íèÿõ ïîõîæè è îáëàäàþò ðÿäîì îäèíàêîâûõ ñâîéñòâ.

Â ïîñëåäíèå ãîäû àêóñòè÷åñêèå ôîíîíû â æèäêîñòè [1, 2] ïðèâëåêàþò âñå âîçðàñòà-
þùèé èíòåðåñ, êàê ôèçè÷åñêè íàãëÿäíàÿ ìîäåëü ÷åðíûõ äûð. Óðàâíåíèÿ äâèæåíèÿ äëÿ
àêóñòè÷åñêèõ ôîíîíîâ ñëåäóþò èç êëàññè÷åñêèõ íåðåëÿòèâèñòñêèõ óðàâíåíèé ãèäðîäè-
íàìèêè ñëåäóþùèì îáðàçîì. Ðàññìîòðèì íåêîòîðîå òî÷íîå ðåøåíèå óðàâíåíèé ãèäðîäè-
íàìèêè. Òîãäà óðàâíåíèå äëÿ ìàëûõ âîçáóæäåíèé (ôîíîíîâ) âáëèçè ýòîãî ðåøåíèÿ ñâî-
äèòñÿ ê óðàâíåíèþ Äàëàìáåðà ñ íåòðèâèàëüíîé ýôôåêòèâíîé ÷åòûðåõìåðíîé ìåòðèêîé
ëîðåíöåâîé ñèãíàòóðû, â êîòîðîé ðîëü ñêîðîñòè ñâåòà èãðàåò ñêîðîñòü çâóêà â æèäêîñòè.

1E-mail: katanaev@mi.ras.ru
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Îòëè÷èå îò îáùåé òåîðèè îòíîñèòåëüíîñòè ñâîäèòñÿ ê òîìó, ÷òî ýôôåêòèâíàÿ ìåòðèêà
äëÿ ôîíîíîâ îïðåäåëÿåòñÿ óðàâíåíèÿìè ãèäðîäèíàìèêè, à íå óðàâíåíèÿìè Ýéíøòåéíà.
Òåì íå ìåíåå óðàâíåíèå äëÿ ôîíîíîâ çàäàåòñÿ íåòðèâèàëüíîé ÷åòûðåõìåðíîé ìåòðèêîé,
äëÿ êîòîðîé òåíçîð êðèâèçíû îòëè÷åí îò íóëÿ. Äðóãèìè ñëîâàìè, ôîíîíû äâèãàþòñÿ
íà ìíîãîîáðàçèè ñ íåòðèâèàëüíîé ãåîìåòðèåé. Ïðè ýòîì âîçìîæíî âîçíèêíîâåíèå ãîðè-
çîíòîâ, êîãäà ñêîðîñòü òå÷åíèÿ æèäêîñòè ïðåâûøàåò ñêîðîñòü çâóêà, è, ñëåäîâàòåëüíî,
îáðàçîâàíèå àêóñòè÷åñêèõ àíàëîãîâ ÷åðíûõ äûð.

Ìû ïðèâåäåì òàêæå ýâðèñòè÷åñêèé �âûâîä� ðåøåíèÿ Øâàðöøèëüäà, èñõîäÿ èç óðàâ-
íåíèé íåðåëÿòèâèñòñêîé ìåõàíèêè è ïðåîáðàçîâàíèÿ Ãàëèëåÿ [3]. Íåáîëüøàÿ öåïî÷êà
(íåñòðîãèõ!) ïðåîáðàçîâàíèé ïåðåâîäèò ìåòðèêó Ëîðåíöà â ìåòðèêó Øâàðöøèëüäà, çà-
ïèñàííóþ â êîîðäèíàòàõ Ïåíëåâå�Ãóëñòðàíäà [4, 5, 6]. Ïîêàçàíî, ÷òî ýòà ìåòðèêà êîí-
ôîðìíî ýêâèâàëåíòíà ýôôåêòèâíîé ìåòðèêå äëÿ àêóñòè÷åñêèõ ôîíîíîâ.

2 Àêóñòè÷åñêèå ôîíîíû â ãèäðîäèíàìèêå
Â íàñòîÿùåì ðàçäåëå ìû ñëåäóåì âûâîäó óðàâíåíèÿ äëÿ ôîíîíîâ, ïðåäëîæåííîìó â

[1, 2] (ñì. òàêæå [7]). Ðàññìîòðèì 4-ìåðíîå ãàëèëååâî ïðîñòðàíñòâî-âðåìÿ ñ äåêàðòîâîé
ñèñòåìîé êîîðäèíàò {xα}, α = 0, 1, 2, 3, êîòîðûå ìû áóäåì îáîçíà÷àòü èíäåêñàìè èç
íà÷àëà ãðå÷åñêîãî àëôàâèòà α, β, . . . . Êîîðäèíàòó x0 ∈ R ìû îòîæäåñòâëÿåì ñ âðåìåíåì,
x0 = t. Ïðîñòðàíñòâåííûå êîîðäèíàòû {xµ} ∈ R3 ìû áóäåì îáîçíà÷àòü èíäåêñàìè èç
ñåðåäèíû ãðå÷åñêîãî àëôàâèòà µ, ν, . . . . Æèäêîñòü áåç âÿçêîñòè íàçûâàåòñÿ èäåàëüíîé è
îïèñûâàåòñÿ ïëîòíîñòüþ ρ(x), äàâëåíèåì p(x) è âåêòîðîì ñêîðîñòè ~v = {vµ(x)}, ãäå x =
{xα}. Äâèæåíèå èäåàëüíîé æèäêîñòè èëè èäåàëüíîãî ãàçà â ïðîñòðàíñòâå îïðåäåëÿåòñÿ
ñëåäóþùåé çàìêíóòîé ñèñòåìîé èç ïÿòè íåëèíåéíûõ óðàâíåíèé äëÿ ïÿòè ïåðåìåííûõ
(ñì., íàïðèìåð, [8])

ρ~̇v + ρ(~v∇)~v = −∇p+ ~f, (1)
ρ̇+ div (ρ~v) = 0, (2)

p = p(ρ), (3)

ãäå òî÷êà îáîçíà÷àåò äèôôåðåíöèðîâàíèå ïî âðåìåíè. Óðàâíåíèå (1) íàçûâàåòñÿ óðàâíå-
íèåì Ýéëåðà è ïðåäñòàâëÿåò ñîáîé âòîðîé çàêîí Íüþòîíà äëÿ ýëåìåíòà îáúåìà æèäêî-
ñòè. Çäåñü ~f(x) � ïëîòíîñòü âíåøíèõ ñèë. Íàïðèìåð, â ãðàâèòàöèîííîì ïîëå ~f = −ρ∇ϕ,
ãäå ϕ(x) � ïîòåíöèàë ãðàâèòàöèîííîãî ïîëÿ. Â äàëüíåéøåì ìû îãðàíè÷èìñÿ òîëüêî ýòèì
ñëó÷àåì. Óðàâíåíèå (2) ÿâëÿåòñÿ óðàâíåíèåì íåïðåðûâíîñòè. Ïîñëåäíåå óðàâíåíèå (3)
ÿâëÿåòñÿ óðàâíåíèåì ñîñòîÿíèÿ æèäêîñòè, êîòîðîå õàðàêòåðèçóåò ñàìó æèäêîñòü è ñ÷è-
òàåòñÿ çàäàííûì. Çäåñü ìû ïðåäïîëàãàåì, ÷òî äàâëåíèå æèäêîñòè çàâèñèò òîëüêî îò
åå ïëîòíîñòè. Òàêàÿ æèäêîñòü ïðåäñòàâëÿåò ñîáîé îäèí èç íàèáîëåå ðàñïðîñòðàíåííûõ
âèäîâ æèäêîñòè è íàçûâàåòñÿ áàðîòðîïíîé. Äëÿ èäåàëüíîãî ãàçà óðàâíåíèå ñîñòîÿíèÿ
èìååò âèä

p =
ρ

µ
RT, (4)

ãäå µ,R è T åñòü ìîëåêóëÿðíûé âåñ, óíèâåðñàëüíàÿ ãàçîâàÿ ïîñòîÿííàÿ è àáñîëþòíàÿ
òåìïåðàòóðà. Ïðè ïîñòîÿííîé òåìïåðàòóðå T = const äàâëåíèå èäåàëüíîãî ãàçà ïðÿ-
ìî ïðîïîðöèîíàëüíî ïëîòíîñòè. Äëÿ íåñæèìàåìîé æèäêîñòè ρ = const è óðàâíåíèå
íåïðåðûâíîñòè ïðèíèìàåò âèä div~v = 0. Óðàâíåíèÿ (1)�(3) çàïèñàíû â ñòàíäàðòíîì äëÿ
ãèäðîäèíàìèêè âèäå, ãäå íå äåëàåòñÿ ðàçëè÷èå ìåæäó âåðõíèìè è íèæíèìè èíäåêñàìè.
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Åñëè óðàâíåíèå ñîñòîÿíèÿ çàäàíî, òî äàâëåíèå p (èëè ïëîòíîñòü ρ) ìîæíî èñêëþ÷èòü
èç ñèñòåìû óðàâíåíèé äâèæåíèÿ. Äëÿ ýòîãî çàìåòèì, ÷òî

∇p =
dp

dρ
∇ρ = c2∇ρ,

ãäå ââåäåíà ñêîðîñòü çâóêà c(ρ)
c2 =

dp

dρ
. (5)

Òîãäà óðàâíåíèå Ýéëåðà ìîæíî ïåðåïèñàòü â âèäå

~̇v + (~v∇)~v = −c2∇ρ
ρ
−∇ϕ, (6)

ãäå ñêîðîñòü çâóêà c = c(ρ) ðàññìàòðèâàåòñÿ, êàê çàäàííàÿ ôóíêöèÿ îò ïëîòíîñòè æèä-
êîñòè. Óðàâíåíèå Ýéëåðà (6) âìåñòå ñ óðàâíåíèåì íåïðåðûâíîñòè (2) îäíîçíà÷íî îïèñû-
âàþò äâèæåíèå òàêîé æèäêîñòè ïðè çàäàííûõ íà÷àëüíûõ è ãðàíè÷íûõ óñëîâèÿõ. Âîñ-
ïîëüçîâàâøèñü òîæäåñòâîì

1
2
∇v2 = [~v, rot~v] + (~v∇)~v, v2 = (~v)2,

óðàâíåíèå Ýéëåðà (1) ïîñëå äåëåíèÿ íà ρ ìîæíî ïåðåïèñàòü â âèäå

~̇v − [~v, rot~v] = −∇
(
h+

v2

2
+ ϕ

)
,

ãäå ââåäåíà ýíòàëüïèÿ æèäêîñòè

h(p) =
∫ p

0

dp′

ρ(p′)
.

Ïðåäïîëîæèì, ÷òî äâèæåíèå æèäêîñòè ÿâëÿåòñÿ áåçâèõðåâûì:

rot~v = 0 ⇔ ∂µvν − ∂νvµ = 0. (7)

Íà ãåîìåòðè÷åñêîì ÿçûêå ýòî îçíà÷àåò, ÷òî 1-ôîðìà dxµvµ ÿâëÿåòñÿ çàìêíóòîé íà ïðî-
ñòðàíñòâåííîì ñå÷åíèè x0 = const. Òîãäà ëîêàëüíî ñóùåñòâóåò ïîòåíöèàëüíîå ïîëå ψ(x)
(ïîòåíöèàë) òàêîå, ÷òî

vµ = −∂µψ. (8)
Äëÿ áåçâèõðåâîé æèäêîñòè óðàâíåíèå Ýéëåðà ýêâèâàëåíòíî óðàâíåíèþ Áåðíóëëè

−ψ̇ + h+
(∇ψ)2

2
+ ϕ = F (t), (9)

ãäå F (t) � ïðîèçâîëüíàÿ ôóíêöèÿ âðåìåíè. Ïîñêîëüêó ïîòåíöèàë ψ îïðåäåëåí ñ òî÷-
íîñòüþ äî äîáàâëåíèÿ ïðîèçâîëüíîé ôóíêöèè âðåìåíè, òî, áåç îãðàíè÷åíèÿ îáùíîñòè,
ïîëîæèì F (t) = 0. Äîïóñòèì, ÷òî ìû èìååì òî÷íîå ðåøåíèå óðàâíåíèé ãèäðîäèíàìèêè
ρ0(x), p0(x) è ~v0(x) = −∇ψ0. Ïîëó÷èì óðàâíåíèå, îïèñûâàþùåå ðàñïðîñòðàíåíèå àêó-
ñòè÷åñêèõ âîçáóæäåíèé (ôîíîíîâ) âáëèçè ýòîãî ðåøåíèÿ. Ïóñòü

ρ ≈ ρ0 + ερ1,

p ≈ p0 + εp1,

vµ ≈ vµ0 + εvµ1 ,

ψ ≈ ψ0 + εψ1.

(10)
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ãäå ε¿ 1 � ìàëûé ïàðàìåòð ðàçëîæåíèÿ. Ïðè ýòîì ìû ñ÷èòàåì âíåøíèå ñèëû çàäàííûìè
ϕ = ϕ0.

Â äàëüíåéøåì ìû áóäåì èñïîëüçîâàòü îáîçíà÷åíèÿ, ïðèíÿòûå â äèôôåðåíöèàëüíîé
ãåîìåòðèè, è ðàçëè÷àòü âåðõíèå è íèæíèå èíäåêñû. Ïðîñòðàíñòâåííûå èíäåêñû â äåêàð-
òîâîé ñèñòåìå êîîðäèíàò ïîäíèìàþòñÿ è îïóñêàþòñÿ ñ ïîìîùüþ ìåòðèêè ηµν = −δµν è
åå îáðàòíîé, êîòîðàÿ îòëè÷àåòñÿ îò åâêëèäîâîé ìåòðèêè çíàêîì. Â íàøèõ îáîçíà÷åíèÿõ
vµ = ∂µψ, vµ = ηµν∂νψ = −∂µψ.

Óðàâíåíèå Áåðíóëëè (9) â íóëåâîì è ïåðâîì ïîðÿäêå ïî ε èìååò âèä

ε0 : − ∂0ψ0 + h0 − 1
2
ηµν∂µψ0∂νψ0 + ϕ0 = 0, (11)

ε1 : − ∂0ψ1 +
p1

ρ0
− vµ0 ∂µψ1 = 0, (12)

ãäå ó÷òåíî ðàçëîæåíèå äëÿ ýíòàëüïèè

h(p) ≈ h(p0) + ε
p1

ρ0
.

Ó÷òåì, ÷òî
ρ1 =

dρ

dp
p1 =

p1

c2
,

è íàéäåì ïîïðàâêó ê ïëîòíîñòè ρ1 èç óðàâíåíèÿ (12)

ρ1 =
ρ0

c2
(∂0ψ1 + vµ0 ∂µψ1). (13)

Óðàâíåíèå íåïðåðûâíîñòè â íóëåâîì è ïåðâîì ïîðÿäêå ïî ε èìååò âèä

ε0 : ∂0ρ0 + ∂µ(ρ0v
µ
0 ) = 0, (14)

ε1 : ∂1ρ1 + ∂µ(ρ0v
µ
1 + ρ1v

µ
0 ) = 0. (15)

Ïîäñòàâèì âî âòîðîå óðàâíåíèå ðåøåíèå äëÿ ïîïðàâêè ê ïëîòíîñòè (13). Â ðåçóëüòàòå
ïîëó÷èì óðàâíåíèå äëÿ ïîïðàâêè ê ïîòåíöèàëó ñêîðîñòè:

∂0

[ρ0

c2
(∂0ψ1 + vµ0 ∂µψ1)

]
+ ∂µ

[
ρ0∂

µψ1 +
ρ0

c2
vµ0 (∂0ψ1 + vν0∂νψ1)

]
= 0. (16)

Ýòî âîëíîâîå óðàâíåíèå äëÿ ψ1(x) ïîëíîñòüþ îïðåäåëÿåò ðàñïðîñòðàíåíèå àêóñòè÷åñêèõ
êîëåáàíèé â äâèæóùåéñÿ æèäêîñòè, îïèñûâàåìîé ïëîòíîñòüþ ρ0(x) è ïîëåì ñêîðîñòåé
vµ0 (x), ñ çàäàííûì óðàâíåíèåì ñîñòîÿíèÿ c = c(ρ). Åñëè ðåøåíèå äëÿ ψ1(x) èçâåñòíî, òî
ïîïðàâêà ê ïëîòíîñòè ρ1 îäíîçíà÷íî îïðåäåëÿåòñÿ ôîðìóëîé (13).

Óðàâíåíèå (16), êàê ëåãêî ïðîâåðèòü, ìîæíî çàïèñàòü â ìàòðè÷íûõ îáîçíà÷åíèÿõ

∂α(fαβ∂βψ1) = 0,

ãäå

fαβ =
ρ0

c2

(
1 vν0
vµ0 c2ηµν + vµ0 v

ν
0 .

)

Ââåäåì ìåòðèêó gαβ è åå îáðàòíóþ gαβ

gαβ =
ρ0

c

(
c2 + vµ0 v0µ −v0ν
−v0µ ηµν

)
, gαβ =

1
ρ0c

(
1 vν0
vµ0 c2ηµν + vµ0 v

ν
0

)
. (17)
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Ýòà ìåòðèêà èìååò ëîðåíöåâó ñèãíàòóðó (+−−−), è åå îïðåäåëèòåëü ðàâåí

g = det gαβ = −ρ
4
0

c2
.

Îáðàòíàÿ ìåòðèêà gαβ îòëè÷àåòñÿ îò ìàòðèöû fαβ ïðîñòûì ìíîæèòåëåì

gαβ =
c

ρ2
0

fαβ .

Òåïåðü óðàâíåíèå äëÿ àêóñòè÷åñêèõ ôîíîíîâ ìîæíî ïåðåïèñàòü â èíâàðèàíòíîì (îòíî-
ñèòåëüíî îáùèõ ïðåîáðàçîâàíèé êîîðäèíàò) âèäå

1√
|g|∂α(

√
|g|gαβ∂βψ) = 0, (18)

ãäå ìû, äëÿ ïðîñòîòû îáîçíà÷åíèé, îòáðîñèëè èíäåêñ ó ïîïðàâêè ê ïîòåíöèàëó ñêîðîñòè.
Òàêèì îáðàçîì ðàñïðîñòðàíåíèå ôîíîíîâ â äâèæóùåéñÿ æèäêîñòè îïèñûâàåòñÿ èí-

âàðèàíòíûì âîëíîâûì óðàâíåíèåì â ÷åòûðåõìåðíîì ïðîñòðàíñòâå-âðåìåíè ñ íåòðèâè-
àëüíîé ìåòðèêîé ëîðåíöåâîé ñèãíàòóðû (17). Ýòà ìåòðèêà îïðåäåëÿåòñÿ ïëîòíîñòüþ ρ0,
ñêîðîñòüþ çâóêà c è ïîëåì ñêîðîñòåé vµ0 , êîòîðûå óäîâëåòâîðÿþò èñõîäíûì óðàâíåíèÿì
(11), (15). Ïîä÷åðêíåì, ÷òî äâèæåíèå ñàìîé æèäêîñòè ïðîèñõîäèò â ïëîñêîì ãàëèëåå-
âîì ïðîñòðàíñòâå-âðåìåíè, à ðàñïðîñòðàíåíèå àêóñòè÷åñêèõ âîçáóæäåíèé â ýòîé äâèæó-
ùåéñÿ æèäêîñòè îïèñûâàåòñÿ âîëíîâûì óðàâíåíèåì íà ïñåâäîðèìàíîâîì ïðîñòðàíñòâå-
âðåìåíè ñ íåòðèâèàëüíîé �ýôôåêòèâíîé� ìåòðèêîé.

Ýôôåêòèâíàÿ ìåòðèêà îïðåäåëÿåòñÿ ÷åòûðüìÿ ôóíêöèÿìè ρ0(x) è v0(x), êîòîðûå
óäîâëåòâîðÿþò óðàâíåíèÿì ãèäðîäèíàìèêè. Ïðè ïîñòàíîâêå çàäà÷è Êîøè äëÿ îäíîçíà÷-
íîãî îïðåäåëåíèÿ ýòèõ ôóíêöèé íåîáõîäèìî çàäàòü ÷åòûðå ïðîèçâîëüíûå ôóíêöèè â
êà÷åñòâå íà÷àëüíûõ óñëîâèé. Â îáùåé òåîðèè îòíîñèòåëüíîñòè ìåòðèêà óäîâëåòâîðÿåò
óðàâíåíèÿì Ýéíøòåéíà è èìååò äâå ðàñïðîñòðàíÿþùèõñÿ ñòåïåíè ñâîáîäû. Ïðè ïîñòà-
íîâêå çàäà÷è Êîøè äëÿ óðàâíåíèé Ýéíøòåéíà òàêæå íåîáõîäèìî çàäàòü ÷åòûðå ïðî-
èçâîëüíûå ôóíêöèè íà ïðîñòðàíñòâåííîïîäîáíîì ñå÷åíèè: ïî äâå íà êàæäóþ ñòåïåíü
ñâîáîäû, òàê êàê óðàâíåíèÿ äâèæåíèÿ âòîðîãî ïîðÿäêà.

Íóëåâàÿ êîìïîíåíòà ìåòðèêè g00 â (17) ìåíÿåò çíàê â òåõ òî÷êàõ ïðîñòðàíñòâà-
âðåìåíè, ãäå òå÷åíèå æèäêîñòè ñòàíîâèòñÿ ñâåðõçâóêîâûì: c2 = ~v2 = −vµvµ. Ýòè ïîâåðõ-
íîñòè â ïðîñòðàíñòâå ñîîòâåòñòâóþò ãîðèçîíòàì ÷åðíûõ äûð. Äåéñòâèòåëüíî, ïîñêîëüêó
ñêîðîñòü ôîíîíîâ îãðàíè÷åíà ñêîðîñòüþ çâóêà â æèäêîñòè, òî îíè íå ìîãóò ïîêèíóòü îá-
ëàñòü ñâåðõçâóêîâîãî òå÷åíèÿ. Ñëåäîâàòåëüíî, â áûñòðî òåêóùåé æèäêîñòè äëÿ ôîíîíîâ
ìîãóò îáðàçîâûâàòüñÿ àíàëîãè ÷åðíûõ äûð â îáùåé òåîðèè îòíîñèòåëüíîñòè.

Èíòåðâàë, ñîîòâåòñòâóþùèé ìåòðèêå (17), èìååò âèä

ds2 =
ρ0

c

[
c2dt2 + ηµν(dxµ − vµ0 dt)(dxν − vν0dt)

]
(19)

Â ñëåäóþùåì ðàçäåëå ìû ïîêàæåì, ÷òî ìåòðèêó Øâàðöøèëüäà ìîæíî çàïèñàòü â âèäå,
êîíôîðìíî ýêâèâàëåíòíîì (19).

3 Ýâðèñòè÷åñêèé �âûâîä� ðåøåíèÿ Øâàðöøèëüäà
Ýâðèñòè÷åñêèé ïîäõîä ê ìåòðèêå Øâàðöøèëüäà îïèñàí â [3]. Ðàññìîòðèì ïëîñêîå

ïðîñòðàíñòâî-âðåìÿ Ìèíêîâñêîãî R1,3 ñî ñëåäóþùåé äåêàðòîâîé ñèñòåìîé êîîðäèíàò
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{x0 = t, x1, x2, x3} = {x0, xµ}, µ = 1, 2, 3. Ñîãëàñíî çàêîíó âñåìèðíîãî òÿãîòåíèÿ òåëî
ìàññû M , íàõîäÿùååñÿ â íà÷àëå êîîðäèíàò, ñîçäàåò â òî÷êå x ∈ R1,3 ãðàâèòàöèîííûé
ïîòåíöèàë

ϕ(x) = −GM
r
, (20)

ãäå G � ãðàâèòàöèîííàÿ ïîñòîÿííàÿ, a r =
√

(x1)2 + (x2)2 + (x3)2 � ðàññòîÿíèå îò íà÷àëà
êîîðäèíàò. Ðàññìîòðèì ñèñòåìó êîîðäèíàò, êîòîðàÿ ñâÿçàíà ñ íàáëþäàòåëÿìè, ñâîáîäíî
ïàäàþùèìè íà öåíòð âäîëü ðàäèóñîâ èç áåñêîíå÷íî óäàëåííîé òî÷êè, ãäå îíè èìåëè
íóëåâóþ ñêîðîñòü. Òîãäà èç çàêîíà ñîõðàíåíèÿ ýíåðãèè ñëåäóåò, ÷òî íà ðàññòîÿíèè r îò
íà÷àëà êîîðäèíàò ó íèõ áóäåò ñêîðîñòü

vµ = −
√

2GM
r

xµ

r
, (21)

ãäå xµ/r � êîìïîíåíòû åäèíè÷íîãî ðàäèàëüíîãî âåêòîðà. Ïîñêîëüêó ñâîáîäíî ïàäàþùèå
íàáëþäàòåëè íå ÷óâñòâóþò ãðàâèòàöèîííîãî ïîëÿ, òî â ñâÿçàííîé ñ íèìè ñèñòåìå îòñ÷åòà
ìåòðèêà áóäåò ñîâïàäàòü ñ ìåòðèêîé Ëîðåíöà:

ds2 = c2(dtf)2 − (dx1
f)− (dx2

f)
2 − (dx3

f)
2, (22)

ãäå c � ñêîðîñòü ñâåòà, è èíäåêñ f îáîçíà÷àåò, ÷òî ñèñòåìà êîîðäèíàò ñâÿçàíà ñî ñâîáîäíî
ïàäàþùèìè íàáëþäàòåëÿìè.

Ïðåäïîëîæèì, ÷òî ñâîáîäíî ïàäàþùàÿ ñèñòåìà êîîðäèíàò ñâÿçàíà ñ äåêàðòîâîé ñè-
ñòåìîé êîîðäèíàò â ïðîñòðàíñòâå-âðåìåíè, êîòîðóþ ìîæíî èíòåðïðåòèðîâàòü, êàê ñè-
ñòåìó êîîðäèíàò áåñêîíå÷íî óäàëåííîãî íàáëþäàòåëÿ, ïðåîáðàçîâàíèåì Ãàëèëåÿ:

dtf = dt, dxµf = dxµ + vµdt. (23)

Òîãäà ïðîñòûå âû÷èñëåíèÿ ïðèâîäÿò ê ñëåäóþùåé ìåòðèêå â ñèñòåìå êîîðäèíàò áåñêî-
íå÷íî óäàëåííîãî íàáëþäàòåëÿ:

ds2 =
(
c2 − 2GM

r

)
dt2 + 2

√
2GM
r

1
r
xµdxµdt+ dxµdxµ =

=
(
c2 − 2GM

r

)
dt2 − 2

√
2GM
r

dtdr − dr2 − r2(dθ2 + sin 2θdϕ2) =

= c2dt2 −
(
dr +

√
2GM
r

dt

)2

− r2(dθ2 + sin 2θdϕ2),

(24)

ãäå ìû ïåðåøëè â ñôåðè÷åñêóþ ñèñòåìó êîîðäèíàò t, r, θ, ϕ. Íàïîìíèì, ÷òî â íàøèõ
îáîçíà÷åíèÿõ xµxµ = −(x1)2 − (x2)2 − (x3)2 = −r2.

Ìåòðèêà (24) åñòü ìåòðèêà Øâàðöøèëüäà â êîîðäèíàòàõ Ïåíëåâå�Ãóëñòðàíäà [4, 5,
6], êîòîðûå èñïîëüçóþòñÿ íå ñòîëü ÷àñòî, êàê êîîðäèíàòû Øâàðöøèëüäà. Îòëè÷èòåëü-
íîé îñîáåííîñòüþ êîîðäèíàò Ïåíëåâå�Ãóëñòðàíäà ÿâëÿåòñÿ òî, ÷òî â êàæäûé ìîìåíò
âðåìåíè t = const ìåòðèêà ÿâëÿåòñÿ ëîêàëüíî åâêëèäîâîé. Çà ýòó íàãëÿäíîñòü ïðèøëîñü
çàïëàòèòü íàëè÷èåì â ìåòðèêå íåäèàãîíàëüíîãî ñëàãàåìîãî dtdr.

Ïðè �âûâîäå� ìåòðèêè Øâàðöøèëüäà (24) áûëî èñïîëüçîâàíî ÷åòûðå ïðåäïîëîæå-
íèÿ: çàêîí âñåìèðíîãî òÿãîòåíèÿ (20); çàêîí ñîõðàíåíèÿ ýíåðãèè (21); ïðåäïîëîæåíèå
î òîì, ÷òî â èíåðöèàëüíîé ñèñòåìå êîîðäèíàò ìåòðèêà ïëîñêàÿ (22), è �ïðåîáðàçîâàíèå
Ãàëèëåÿ� (23). Âñå ÷åòûðå ïîñòóëàòà íàñòîëüêî ïðèâû÷íû â íåðåëÿòèâèñòñêîé ìåõàíèêå,
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÷òî �âûâîä� ðåøåíèÿ Øâàðöøèëüäà êàæåòñÿ áåçóêîðèçíåííûì. Îäíàêî, ýòî íå òàê. Ìû
íå ñëó÷àéíî ïîñòàâèëè êàâû÷êè ó ñëîâà �âûâîä�, ïîñêîëüêó ïðèâåäåííûå ðàññóæäåíèÿ
íåêîððåêòíû ïî ñëåäóþùåé ïðè÷èíå. �Ïðåîáðàçîâàíèå Ãàëèëåÿ� (23) çàïèñàíî äëÿ äèô-
ôåðåíöèàëîâ, à íå äëÿ ñàìèõ êîîðäèíàò è ÿâëÿåòñÿ íåèíòåãðèðóåìûì. À èìåííî, âòîðîå
óðàâíåíèå â (23) ýêâèâàëåíòíî ñèñòåìå óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ

dxµf
dxν

= δµν ,

dxµf
dt

= −
√

2GM
r

xµ

r
.

Ýòà ñèñòåìà óðàâíåíèé íåòðèâèàëüíà, ò.ê. ñêîðîñòü vµ íåòðèâèàëüíî çàâèñèò îò òî÷êè
ïðîñòðàíñòâà Ìèíêîâñêîãî. Ëåãêî ïðîâåðèòü, ÷òî óñëîâèÿ èíòåãðèðóåìîñòè äëÿ ýòîé ñè-
ñòåìû óðàâíåíèé íå âûïîëíåíû, è, ñëåäîâàòåëüíî, íå ñóùåñòâóåò òàêèõ ôóíêöèé xµf (x, t),
÷òî äëÿ äèôôåðåíöèàëîâ âûïîëíåíû ðàâåíñòâà (23) äàæå ëîêàëüíî. Â îñòàëüíîì �âûâîä�
ðåøåíèÿ Øâàðöøèëüäà áåçóïðå÷åí. Îòñóòñòâèå ïðåîáðàçîâàíèÿ êîîðäèíàò òàêîãî, êîòî-
ðîå ïåðåâîäèò ìåòðèêó Ëîðåíöà (22) â ìåòðèêó Øâàðöøèëüäà, ñëåäóåò òàêæå èç îáùèõ
ñîîáðàæåíèé. Ìåòðèêà Ëîðåíöà ÿâëÿåòñÿ ïëîñêîé è ñîîòâåòñòâóþùèé åé òåíçîð êðè-
âèçíû ðàâåí íóëþ. Äëÿ ìåòðèêè Øâàðöøèëüäà òåíçîð Ðè÷÷è, êàê ñëåäñòâèå óðàâíåíèé
Ýéíøòåéíà, ðàâåí íóëþ âñþäó, çà èñêëþ÷åíèåì íà÷àëà êîîðäèíàò, ãäå îí íåîïðåäåëåí.
Ïîëíûé æå òåíçîð êðèâèçíû, êàê õîðîøî èçâåñòíî, îòëè÷åí îò íóëÿ. Ñëåäîâàòåëüíî,
ìåòðèêà Ëîðåíöà íå ìîæåò áûòü ñâÿçàíà ñ ìåòðèêîé Øâàðöøèëüäà íèêàêèì ïðåîáðàçî-
âàíèåì êîîðäèíàò. Ñ ôèçè÷åñêîé òî÷êè çðåíèÿ, â �îïðàâäàíèå� ýâðèñòè÷åñêîãî �âûâîäà�
ìîæíî ïðèâåñòè ñëåäóþùèé àðãóìåíò. Âäàëè îò ïðèòÿãèâàþùåãî òåëà ñêîðîñòè ìàëû, è
ñâîáîäíî ïàäàþùèé íàáëþäàòåëü â íåáîëüøîé îêðåñòíîñòè è â òå÷åíèè íåáîëüøîãî ïðî-
ìåæóòêà âðåìåíè ìîæåò ïðèáëèæåííî ñ÷èòàòü, ÷òî íàõîäèòñÿ â èíåðöèàëüíîé ñèñòåìå
êîîðäèíàò, êîòîðàÿ äâèæåòñÿ ðàâíîìåðíî è ïðÿìîëèíåéíî. Òîãäà ðàâåíñòâà (23) ìîæíî
ñ÷èòàòü âûïîëíåííûìè ïðèáëèæåííî. Ýòî ïîêàçûâàåò, ÷òî â äàííîì ñëó÷àå ïðàâäîïî-
äîáíûå ðàññóæäåíèÿ ïðèâîäÿò ê íåïðàâèëüíîìó îòâåòó.

Çàïèøåì ìåòðèêó (24) â êîîðäèíàòàõ Øâàðöøèëüäà. Äëÿ ýòîãî äîñòàòî÷íî ââåñòè
íîâóþ âðåìåíí�óþ êîîðäèíàòó:

T = t+
2
√

2GM
c2

[√
2GM
c

arcth

√
2GM
rc2

−√r
]
.

Îòñþäà ñëåäóåò ñâÿçü äèôôåðåíöèàëîâ:

dT = dt− 1
c

√
2GM
rc2

dr

1− 2GM
rc2

.

Òåïåðü íåòðóäíî ïðîâåðèòü, ÷òî â íîâûõ êîîðäèíàòàõ ìåòðèêà (24) ñîâïàäàåò ñ îáû÷íîé
ìåòðèêîé Øâàðöøèëüäà:

ds2 = c2
(

1− 2GM
rc2

)
dT 2 − dr2

1− 2GM
rc2

− r2(dθ2 + sin 2θdϕ2).

Òàêèì îáðàçîì, äîêàçàíî, ÷òî ìåòðèêà (24) ÿâëÿåòñÿ ìåòðèêîé Øâàðöøèëüäà.
Ìåòðèêó Øâàðöøèëüäà â êîîðäèíàòàõ Ïåíëåâå�Ãóëñòðàíäà (24) ìîæíî ïåðåïèñàòü

â ýêâèâàëåíòíîì âèäå

ds2 = c2dt2 + ηµν(dxµ + vµdt)(xν + vνdt), (25)
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ãäå êîìïîíåíòû ñêîðîñòè vµ áûëè îïðåäåëåíû ðàíåå (21). Â òàêîì âèäå ìåòðèêà Øâàðö-
øèëüäà êîíôîðìíî ýêâèâàëåíòíà ýôôåêòèâíîé ìåòðèêå äëÿ ðàñïðîñòðàíåíèÿ ôîíîíîâ
â æèäêîñòè (19), êîòîðàÿ áûëà ïîëó÷åíà â ïðåäûäóùåì ðàçäåëå. Ðàçíèöà çàêëþ÷àåòñÿ
â òîì, ÷òî äëÿ ýôôåêòèâíîé ìåòðèêè, ñêîðîñòü v0 ÿâëÿåòñÿ ðåøåíèåì óðàâíåíèé ãèäðî-
äèíàìèêè (1)�(3), â òî âðåìÿ êàê â ðåøåíèè Øâàðöøèëüäà âûðàæåíèå äëÿ ñêîðîñòè v
ñëåäóåò èç óðàâíåíèé Ýéíøòåéíà.

4 Çàêëþ÷åíèå
Â íàñòîÿùåé ñòàòüå ïîêàçàíî, ÷òî óðàâíåíèå, îïèñûâàþùåå ðàñïðîñòðàíåíèå àêóñòè-

÷åñêèõ âîçáóæäåíèé (ôîíîíîâ) â èäåàëüíîé áàðîòðîïíîé áåçâèõðåâîé æèäêîñòè, ìîæåò
áûòü çàïèñàíî â èíâàðèàíòíîì îòíîñèòåëüíî îáùèõ ïðåîáðàçîâàíèé êîîðäèíàò âèäå.
Ýòî � âîëíîâîå óðàâíåíèå äëÿ ñêàëÿðíîãî ïîëÿ íà ìíîãîîáðàçèè ñ ìåòðèêîé ëîðåíöå-
âîé ñèãíàòóðû. Êîìïîíåíòû ñîîòâåòñòâóþùåé ìåòðèêè îïðåäåëÿþòñÿ ïîëåì ñêîðîñòåé è
ñêîðîñòüþ çâóêà â æèäêîñòè, êîòîðûå ÿâëÿþòñÿ ðåøåíèåì êëàññè÷åñêèõ íåðåëÿòèâèñò-
ñêèõ óðàâíåíèé ãèäðîäèíàìèêè. Êîìïîíåíòû ìåòðèêè èìåþò îñîáåííîñòè â òåõ òî÷êàõ,
ãäå ñêîðîñòü çâóêà ðàâíà ñêîðîñòè òå÷åíèÿ æèäêîñòè. Ýòè îñîáåííîñòè ñîîòâåòñòâóþò
ãîðèçîíòàì è, ñëåäîâàòåëüíî, â æèäêîñòè âîçìîæíî îáðàçîâàíèå àíàëîãîâ ÷åðíûõ äûð.
Ïðåäñòàâëÿåò áîëüøîé èíòåðåñ èññëåäîâàíèå ãåîìåòðè÷åñêèõ õàðàêòåðèñòèê è ãëîáàëü-
íîé ñòðóêòóðû ïðîñòðàíñòâà-âðåìåíè äëÿ ýôôåêòèâíîé ìåòðèêè, âîçíèêàþùåé â ãèä-
ðîäèíàìèêå.

Ðàáîòà âûïîëíåíà ïðè ïîääåðæêå ÐÔÔÈ (ãðàíò 08-01-00727) è ïðîãðàììû ïîääåðæ-
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Abstract

We consider the four-dimensional gravity with the most general fourth-order (in the
spacetime curvature) terms originating from superstrings/M-theory in the leading order
with respect to the Regge slope parameter, and study their impact on the evolution
of the Hubble scale in the context of the FRW cosmology. We propose the generalized
Friedmann equations, find the conditions on the quartic terms that allow the existence of
exact solutions describing an inflationary (de Sitter) universe, and solve the constraints
imposed by the scale factor duality. In particular, we rule out the on-shell-superstrings-
induced gravitational effective action given by square of the Bel-Robinson tensor alone.

1 Introduction

I know Professor Joseph L’vovich Buchbinder for about 30 years since I was a student
at the Physics Department of Tomsk State University in Russia. He was teaching us a
course of General Relativity in 1981, and I was very impressed by both the subject and the
way of his presentation. Professor I. Buchbinder was not yet a professor at that time, and
we, the students, were rather afraid of Einstein theory. I remember the joke, invented by a
student at that time: ‘the genius is a student who was able to understand General Relativity’.
Nevertheless, I do remember that all students in my group did their best to understand the
lectures, also in part because it were very unusual lectures. First, they were about Physics of
course, but like a course in Mathematics, with iron logics and a lot of calculations. Second,
Dr. Buchbinder had his lecture notes, but he never used them during his lectures, he always
started with the last equation of the previous lecture that he always remembered, and then
continued his calculations in front of us, by explaining every step. It was the best lesson I had,
as regards doing calculations in theoretical physics. Now I am teaching General Relativity to

1Supported in part by the Japanese Society for Promotion of Science (JSPS)
2Email address: ketov@phys.metro-u.ac.jp
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2. Beyond Einstein theory 217

Japanese students in Tokyo, like I did it earlier in Germany, by following the same style of
presentation I learned from Professor I.L. Buchbinder.

It is my pleasure to contribute a research paper to the Volume in Honor of Professor
I.L. Buchbinder. I chose the title closely related to Cosmology, String Theory and General
Relativity. It is fair to say that this paper grew out of the first course in General Relativity
I got from Professor I.L. Buchbinder in 1981 in Tomsk.

2 Beyond Einstein theory

The General Relativity is a classical field theory of gravitation. Being a classical theory,
it has its limits, and is valid only at energy scales much less than the Planck scale where
quantum gravity effects become strong. Quantum gravity is needed, for example, in order to
understand physics of black holes (especially near the end-point of their evaporation), and
the cosmological (big bang) singularity.

At present, there is only one serious candidate for a quantum gravity theory, namely, the
theory of strings and branes (M-theory) [1]. It is worthy to mention that M-theory is the
theory under construction, its non-perturbative definition is lacking. Nevertheless, M-theory
pretends to describe both gravity and all other gauge interactions altogether, at all energy
scales, while it requires extra dimensions and supersymmetry for consistency. The predictive
power of String Theory is low at present, since any testable predictions (by near future
accelerator experiments) can only be based on the low-energy effective action of superstrings,
which can only be derived perturbatively, while its precise form is unknown. However, this
discouraging conclusion may be avoided, in principle, if the effective string (energy) scale is
well below the Planck scale.

In this paper, I would like to briefly discuss an early Universe, an inflation and a cosmologi-
cal singularity, by using the toy (pure) gravity model, induced by the leading quantum gravity
corrections coming from M-theory, in the context of the four-dimensional FRW cosmology
with a metric

ds2FRW = −dt2 + a2(t)(dxi)2 (2.1)

where a(t) is the (FRW) scale factor, and i = 1, 2, 3.
To begin with, I would like to recall some well known problems in cosmology with the

usual (standard) Einstein equations.
First, let me recall the famous Hawking-Penrose theorem about the impossibility of in-

definite continuation of geodesics [2]. Their statement is usually interpreted as the proof of
existence of a singularity in any exact solution to the Einstein equations. For instance, the
standard (FRW) cosmology has an initial cosmological singularity (a big bang), which also
implies that the (classical) Einstein theory is incomplete towards the initial singularity.

Second, there is a problem in describing inflation, when using the standard Einstein equa-
tions. The homogeneity and isotropy of the Universe, as well as the observed spectrum of
density perturbations, are well explained by the inflationary cosmology [3], which means

••
a (t) > 0 . (2.2)

However, the Einstein equations (in Raychaudhuri form),

••
a

a
= −4πG

3
(ρ+ 3P ) , (2.3)



218 Sergey V. Ketov. Quartic curvature terms in inflationary cosmology

with the (perfect fluid matter) energy density ρ(t) and the pressure P (t), then imply

ρ+ 3P =
1

4πG
R00 < 0 , (2.4)

i.e. the obvious violation of the Strong Energy Condition, R00 > 0, as well as a negative
pressure, P < −1

3ρ < 0. Those conditions are not necessarily fatal, because one may imagine
the existence of such exotic matter in our Universe, but one would have to assume its existence
and adjust all the exotic matter parameters by hand.

Inflation is usually arranged by introducing a scalar field (inflaton) and choosing its (every-
where non-negative) scalar potential [3]. Despite of the simplicity of many those inflationary
scenarios, the origin of their key ingredients, such as (unobserved) inflaton and its scalar
potential, remain obscure. As is well known, the Standard Model of elementary particles has
no inflaton.

In recent years, many brane inflation scenarios were proposed (see e.g. ref. [4] for a
review), including their embeddings into the (warped) compactified superstring models, in a
good package with the phenomenological constraints coming from particle physics (see e.g.
ref. [5]). However, it also did not contribute to revealing the orgin of the key ingredients
of inflation. At the same time, it greatly increased the number of possibilities up to 10100

(known as the String Landscape) too.
The inflation driven by a scalar potential, and its engineering by strings and branes, are

by no means required in string theory. There are other scenarios, such as the pre-big bang
superstring cosmology [6] based on the scale factor duality (see Sec. 4). In that scenario
the cosmological singularity can be avoided, while the big bang is no longer regarded as
the beginning of Everything, but only as a smooth ‘phase transition’ between two different
cosmological regimes.

Yet another possibility could be a modification of the gravitational part of Einstein equa-
tions by terms of the higher order in the spacetime curvature [7]. It does not need an inflaton
or an exotic matter, while the higher-curvature terms already appear in the effective action of
superstrings [1]. We would like to consider the last opportunity in this paper, in the contxet
of pure gravity with quartic curvature terms.

3 Setup

The perturbative strings are merely defined on-shell (in the form of quantum amplitudes),
while they give rise to the infinitely many higher-curvature corrections to the Einstein equa-
tions, to all orders in the Regge slope parameter α′ and the string coupling gs, whose finite
form is unknown and is beyond our control. However, it still makes sense to consider the
leading corrections to the Einstein equations, coming from strings and branes. Being valid
for limited energy scales, the results to be obtained from them cannot be conclusive, but
they may offer both qualitative and technical insights into cosmology, within the well defined
and very restrictive framework. Our approach to inflation is based on the Einstein equations
modified by the leading superstring-generated gravitational terms to be considered on equal
footing with the Einstein terms, i.e. non-perturbatively, in four space-time dimensions. We
assume that the quantum gs-corrections can be suppressed against the leading α′-corrections,
whereas all the moduli, including a dilaton and an axion, are somehow stabilized by fluxes, in
a warped compactification to four dimensions (after spontaneous supersymmetry breaking).

There are five perturbatively consistent superstring models in ten spacetime dimensions
(see e.g. the book [1]). All those models are related by duality transformations, while in our
discussion in this paper we will only consider the gravitational sector of type-II strings. In



3. Setup 219

addition, there exists a parent theory behind all those superstring models, it is called M-theory
and is eleven-dimensional [1]. Though not so much is known about the non-perturbative M-
theory, there are nevertheless the well-established facts that (i) the M-theory low-energy
effective action is given by the 11-dimensional supergravity, and (ii) the leading quantum
corrections to the 11-dimensional supergravity from M-theory in the bosonic sector are also
known [1].

To match the constraints imposed by particle physics, M-theory is supposed to be com-
pactified to one of the superstring models in ten dimensions, and then down to four spacetime
dimensions e.g., on a Calabi-Yau complex three-fold [1]. Alternatively, M-theory may be di-
rectly compactified down to four real dimensions on a 7-dimensional special (G2) holonomy
manifold [8].

As regards the gravitational sector of the compactified four-dimensional type-II super-
strings, it suffices to perform a warped compactification from eleven to four dimensions, with
a metric

ds211 = e2A(y)ds2FRW + e−2A(y)(dya)2 , (3.0)

where ds2FRW is the FRW metric (2.1) in 4-dimensional spacetime, whereas ya, with a =
4, 5, 6, 7, 8, 9, 10, are the coordinates of the compactified 7-manifold, and A(y) is the warp
factor.

We put all the four-dimensional scalars (like a dilaton, an axion and moduli) into the
matter stress-energy tensor (in Einstein frame), and assume that they are somehow stabilized
to certain fixed values. Also, we do not consider any M-theory/superstrings solitons such as
M- or D-branes. After dimensional reduction from eleven dimesnions, the only gravitational
terms coming from type-II superstrings in four dimensions, are given by (see e.g. ref. [9] for
details)

S4 = − 1
2κ2

∫
d4x
√−g (R+ βJR) (1)

where we have introduced two dimensional coupling constants, κ and β, and the quartic
curvature scalar JR in four spacetime dimensions,

JR = RmijnRpijqRm
rspRqrsn +

1
2
RmnijRpqijRm

rspRqrsn +O(Rmn) (2)

with all vector indices now belonging to four-dimensions, i, j = 0, 1, 2, 3. The full curvature
terms are given by the square of the Bel-Robinson tensor (see Appendix), whereas any quar-
tic terms with at least one Ricci tensor can be added to eq. (2), just because the on-shell
superstring theory does not fix those terms at all. There are about a hundred of the Ricci-
dependent terms in the most general off-shell gravitational effective action quartic in the
curvature. It implies a hundred of new coefficients, which makes fixing the off-shell quartic
superstring effective action to be very difficult.

The gravitational action is to be added to a matter action, which lead to the modified
Einstein equations of motion,

Rij − 1
2gijR+ β

1√−g
δ

δgij
(√−gJR

)
= κ2Tij (3)

where Tij stands for the energy-momentum tensor of all the matter fields (including dilaton
and axion).
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When all the Ricci tensor-dependent terms in eq. (2) are ignored, the modified gravita-
tional equations of motion are given by

κ2Tij = Rij − 1
2
gijR+ β

[
−1

2
gijJR −Rmhk(iRj)rtm

(
RkqsrRtqs

h +RksqtRhrqs
)

−Rkqs(iRj)rmt
(
RhsqtRkrmk −RthsqRhrmk

)
+

(
RitrjR

ksqtRhsq
r
)
(;k;h)

(4)

+
(
RisqtR

rktmRj
sq
k

)
(;r;m)

− (
Rhrs(iRj)mnrRh

mnk +Rsht(iRj)mnlR
kmn

h

)
(;k;s)

]

4 Exact solutions, and scale factor duality

Our motivation is based on the observation that the Standard Model (SM) of elementary
particles does not have an inflaton. M-theory/superstrings have plenty of inflaton candidates
but any inflationary mechanism based on a scalar field is highly model-dependent. When one
wants the universal geometrical mechanism of inflation based on gravity only, it should occur
due to some Planck scale physics to be described by the higher curvature terms (cf. ref. [7]).

On the experimental side, it is known that the vacuum energy density ρinf during inflation
is bounded from above by a (non)observation of tensor fluctuations of the Cosmic Microwave
Background (CMB) radiation [10],

ρinf ≤
(
10−3MPl

)4
(5)

It severly constrains but does not exclude the possibility of the geometrical inflation origi-
nating from the purely gravitational sector of string theory, because the factor of 10−3 above
may be just due to some numerical coefficients.

Due to a single arbitrary function a(t) in the FRW metric, it is enough to take only one
gravitational equation of motion in eq. (3) without matter, namely, its mixed 00-component.
As is well known [3], the spatial (3-dimensional) curvature can be ignored in a very early
universe, so we choose the manifestly conformally-flat FRW metric (2.1). It leads to a purely
gravitational equation of motion having the form

3H2 ≡ 3

( •
a

a

)2

= βP8

( •
a

a
,

••
a

a
,

•••
a

a
,

••••
a

a

)
, (6)

where P8 is a polynomial with respect to its arguments,

P8 =
∑

n1+2n2+3n3+4n4=8,
n1,n2,n3,n4≥0

cn1n2n3n4

( •
a

a

)n1
( ••
a

a

)n2
( •••
a

a

)n3
( ••••

a

a

)n4

(7)

Here the sum goes over the integer partitions (n1, 2n2, 3n3, 4n4) of 8, the dots stand for
the derivatives with respect to time t, and cn1n2n3n4 are some real coefficients. The highest
derivative can enter only linearly, n4 = 0, 1.

Equation (6) is our generalized Friedmann equation that we are going to apply for de-
scribing a very early universe.

The FRW Ansatz yields the non-vanishing curvatures [11]

R0
i0j = δij

••
a a, Rijkl =

(
δikδjl − δilδjk

)
(
•
a)2, Rij = −δij



••
a

a
+ 2

( •
a

a

)2

 (8)
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where i, j = 1, 2, 3. For example, in the case of the (BR)2 gravity (3.4), after a straightforward
(though quite tedious) calculation of the mixed 00-equation with the curvatures (8) and no
matter, we find

3H2 + β


9

( ••
a

a

)4

− 36H2

( ••
a

a

)3

+ 84H4

( ••
a

a

)2

− 36H

( ••
a

a

)2 ( •••
a

a

)

+63H8 − 72H3

( ••
a

a

)( •••
a

a

)
+ 48H6

( ••
a

a

)
− 24H5

( •••
a

a

)]
= 0 (9)

It is remarkable that the 4th order time derivatives (present in various terms of eq. (4)) cancel,
whereas the square of the 3rd order time derivative of the scale factor,

•••
a 2, does not appear

at all in this equation. 3

Our generalized Friedmann equation (6) applies to any combination of the quartic curva-
ture terms in the action, including the Ricci-dependent terms. The coefficients cn1n2n3n4 in
eq. (7) can be thought of as linear combinations of the coefficients in the most general quartic
curvature action. The polynomial (7) has just about ten undetermined coefficients, which is
much less than a hundred coefficients in the most general quartic curvature action.

Moreover, eqs. (6) and (7) have the particular structure that allows the existence of generic
exact inflationary solutions without a spacetime singularity. Indeed, when using the most
naive (de Sitter) Ansatz for the scale factor,

a(t) = a0e
ht , (10)

with some real positive constants a0 and h, and substituting eq. (10) into eq. (6) we get
3h2 = (#)βh8, whose coefficient (#) is just a sum of all c-coefficients in eq. (7). Assuming
the (#) to be positive, we find a solution for the effective Hubble constant h,

h =
(

3
#β

)1/6

(11)

This solution in non-perturbative in β, i.e. it is impossible to get it when considering the
quartic curvature terms as a perturbation. Of course, the assumption that we are dealing
with the leading correction, implies ht¿ 1. It leads to the natural hierarchy

κMKK ¿ 1 or lPl ¿ lKK (12)

where we have introduced the four-dimensional Planck scale lPl = κ and the compactification
scale lKK = M−1

KK.
The exact solution (10) is non-singular, while (when h > 0) it describes an inflationary

isotropic and homogeneous early universe. 4 Once the universe expands, the curvatures
decrease, so that the higher curvature terms cease to be the dominant contributions against
the matter terms we ignored in the equations of motion. The matter terms may provide a
mechanism for ending the geometrical inflation and reheating (i.e. a Graceful Exit to the
standard cosmology).

It remains to be investigated how string theory affects the coefficients in our generalized
Friedmann equation. Here we apply the scale factor duality argument [13] by requiring our

3Taking Weyl tensors instead of Riemann curvatures leads to all vanishing coefficients.
4Similar exact de Sitter solutions were also found in ref. [12].
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equation (6) to be invariant under the duality transformation

a(t)↔ 1
a(t)

≡ b(t) (13)

It is straightforward to calculate how the right-hand-side of eq. (6) transforms under the
duality by differentiating eq. (13) first. We find

•
a

a
= −

•
b

b
,

••
a

a
= −

••
b

b
+ 2




•
b

b




2

,

•••
a

a
= −

•••
b

b
+ 6




•
b

b







••
b

b


− 6




•
b

b




3

, (14)

••••
a

a
= −

••••
b

b
+ 6




••
b

b




2

+ 8




•
b

b







•••
b

b


− 36




•
b

b




2 


••
b

b


 + 24




•
b

b




4

In order to see how the scale factor duality affects the polynomial P8, we consider the case
with the 3rd order time derivatives, motivated by eq. (9). We introduce the notation

•
a

a
= x ,

••
a

a
= y ,

•••
a

a
= z (15)

so that the duality invariance condition reads

P8(−x, 2x2 − y, 6xy − 6x3 − z) = P8(x, y, z) (16)

The structure of the polynomial P8 in eq. (7), as the sum over partitions of 8, restricts a
solution to eq. (16) to be most quadratic in z,

P8(x, y, z) = a2(x, y)z2 + b5(x, y)z + c8(x, y) (17)

whose coefficients are polynomials in (x, y), of the order being given by their subscripts, i.e.

a2(x, y) = a0x
2 + a1y ,

b5(x, y) = b0x
5 + b1x

3y + b2xy
2 , (18)

c8(x, y) = c4y
4 + c3y

3x2 + c2y
2x4 + c1yx

6 + c0x
8

After a substitution of eqs. (17) and (6.14) into eq. (16), we get an overdetermined system
of linear equations on the coefficients. Nevertheless, we find that there is a consistent general
solution,

P8(x, y, z) = a0x
2z2 + (b0x5 − 3a0xy

2)z

+ c4y
4 + (9a0 − 4c4)y3x2 + c2y

23x4 (19)

+ (8c4 − 18a0 − 3b0 − 2c2)yx6 + c0x
8

parameterized by merely five real coefficients (a0, b0, c4, c2, c0). Requiring the existence of the
exact solution (10), i.e. the positivity of (#) in eq. (11), yields

5c4 + c0 > 11a0 + 2b0 + c2 (20)
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Further constraints are needed in order to restrict the values of the undetermined coeffi-
cients. As regards the ‘minimal’ (BR)2, we found that neither the duality condition nor the
inequality (20) are satisfied by the coefficients present in eq. (9). We interpret it as the clear
indications that some additional Ricci-dependent terms have to be added to the (BR)2 terms
or, equivalently, the (BR)2 gravity is ruled out as the off-shell effective action for superstrings.

To the end of this section, we would like to mention about some possible simplifications
and generalizations.

The last equation (8) apparently implies that the Ricci-dependent terms in P8 should have
the factor of (y + 2x2). Hence, it may be possible to completely eliminate both the 4th and
3rd order time derivatives in our generalized Friedmann equations, though we are not sure
that this choice is fully consistent. However, if so, instead of eq. (16) we would get another
duality condition,

P8(−x, 2x2 − y) = P8(x, y) (21)

whose most general solution is simpler,

P8(x, y) = c0x
8 + c5y(y − 2x2)

[
y(y − 2x2)− 4x6

]
+ c6x

4y(y − 2x2) (22)

with merely three, yet to be determined coefficients (c0, c5, c6).
We would like to emphasize that our results above can be generalized to any finite order

with respect to the spacetime curvatures in the off-shell superstring effective action, because
it amounts to increasing the order of the polynomial P . We may even speculate about the
form of the generalized Friedmann equation to all orders in the curvature. It depends upon
whether (i) there will be some finite maximal order of the time derivatives there, or (ii) the
time derivatives of arbitrarily high order appear (we do not know about it). Given the case
(i), we just drop the requirement that the right-hand-side of our cosmological equation (6)
is a polynomial, and take a duality-invariant function P instead. In the case (ii), we should
replace the function by a functional, thus getting a non-local equation having the form

H2 =
•
a 2

a2
= βP [a(t)] (23)

whose functional P is subject to the non-trivial duality constraint

P [a(t)] = P [1/a(t)] . (24)

5 Conclusion

The higher curvature terms in the gravitational action defy the Hawking-Penrose theorem
about the existence of a spacetime singularity in any exact solution to the Einstein equations.
As we demonstrated in this paper, the initial cosmological singularity can be easily avoided
by condsidering the superstring-motivated higher curvature terms on equal footing (i.e. non-
perturbatively) with the Einstein-Hilbert term.

As regards inflation, though we showed the natural existence of inflationary (de Sitter)
exact solutions without a spacetime singularity under rather generic conditions on the coef-
ficients in the higher-derivative terms, it is by no means sufficient, because our geometrical
inflation has no end. In fact, we assumed the dominance of the higher curvature gravitational
terms over all matter contributions in a very early universe at the Planck scale. However,
given the expansion of the universe under the geometrical inflation, the spacetime curvatures
would decrease, so that the matter terms could no longer be ignored. The latter may ef-
fectively replace the geometrical inflation by another matter-dominated mechanism, allowing
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the inflation to continue substantially below the Planck scale. Needless to say, more research
is needed to submit a specific mechanism for that.

The higher curvature terms are also relevant for the alternative (to inflation) Brandenber-
ger-Vafa scenario of string gas cosmology [14] — see e.g. ref. [15] for a recent investigation of
the higher curvature corrections there. 5

Appendix: Bel-Robinson tensor

The detailed structure and physical meaning of the full curvature terms in eq. (2) are
easily revealed via their connection to the four-dimensional Bel-Robinson (BR) tensor [16].
The latter is well known in general relativity [17]. We review here the main on-shell properties
of the BR tensor. The BR tensor is defined by

T iklmR = RipqlRkpq
m + ∗Ripql∗Rkpqm (25)

whose structure is quite similar to that of the Maxwell stress-energy tensor,

TMaxwell
ij = FikFj

k + ∗Fik∗Fjk , Fij = ∂iAj − ∂jAi (26)

First, we quote some identities [9] valid on-shell, i.e modulo Ricci tensor dependent terms,

T 2
ijkl = 8JR = 1

4 (R2
ijkl)

2 + 1
4 (∗RijklRijkl)2 (27)

in a slightly abused notation (all contractions of indices are covariant). We also find

T 2
ijkl = 8JR =− 1

4 (∗R2
ijkl)

2 + 1
4 (∗RijklRijkl)2

= 1
4 (P 2

4 − E2
4) = 1

4 (P4 + E4)(P4 − E4) (28)

where we have introduced the Euler and Pontryagin topological densities in four dimensions.
In addition [16, 17], the on-shell BR tensor is fully symmetric with respect to its vector

indices, and is traceless,
Tijkl = T(ijkl) , T iikl = 0 , (29)

(ii) it is covariantly conserved (though the BR tensor is not a physical current!),

∇iTijkl = 0 , (30)

and it has positive ‘energy’ density,
T0000 > 0 . (31)

The BR tensor is related to the gravitational energy-momentum pseudo-tensors [17]. It can
be most clearly seen in Riemann Normal Coordinates (RNC) at any given point in spacetime.
The RNC are defined by the relations

gij = ηij , gij,k = 0 , gij,mn = − 1
3 (Rimjn +Rinjm) (32)

so that the derivatives of Christoffel symbols read as follows:

Γijk,l = − 1
3 (Rijkl +Rikjl) (33)

5The higher curvature terms were considered only perturbatively in ref. [15].
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Raising and lowering of vector indices in RNC are performed with Minkowski metric ηij and
its inverse ηij , whereas all traces in the last two eqs. (32) and (33) vanish,

ηijgij,mn = ηijΓkij,l = Γiij,k = Γijk,i = 0 (34)

Moreover, there exists the remarkable non-covariant relation (valid only in RNC) [17]

Tijkl = ∂k∂l
(
tLLij + 1

2 t
E
ij

)
(35)

where the symmetric Landau-Lifshitz (LL) gravitational pseudo-tensor [18]

(tLL)ij =− ηipηjqΓkpmΓmqk + ΓimnΓ
j
pqη

mpηnq − (
ΓmnpΓ

j
mqη

inηpq + ΓmnpΓ
i
mqη

jnηpq
)

+ hijΓmnpΓ
n
mqη

pq (36)

and the non-symmetric Einstein (E) (or canonical) gravitational pseudo-tensor [19]

(tE)ij =
(−2ΓimpΓ

m
jq + δijΓ

n
pmΓmqn

)
ηpq (37)

have been introduced in RNC, in terms of the Christoffel symbols.
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Abstract

The basic concepts and mathematical constructions of the Maxwell–Lorentz electrody-
namics in flat spacetime of an arbitrary even dimension d = 2n are briefly reviewed.
We show that the retarded field strength F (2n)

µν due to a point charge living in a 2n-
dimensional world can be algebraically expressed in terms of the retarded vector po-
tentials A(2m)

µ generated by this charge as if it were accommodated in 2m-dimensional
worlds nearby, 2 ≤ m ≤ n+1. With this finding, the rate of radiated energy-momentum
of the electromagnetic field takes a compact form.

1 Introduction

This paper is dedicated to Professor Iosif Buchbinder in celebration of his sixtieth birthday.
A marvellous feature of my friend Iosif is his ability to grasp the essence of a challenging
problem in theoretical physics and interpret it quite plainly. He makes a major effort to
attain the greatest possible clarity in a complex subject. The analysis of the Maxwell–Lorentz
electrodynamics in even-dimensional spacetimes presented in this paper will hopefully be
found to be made in the same vein.

The physics in higher spacetime dimensions is of basic current interest. String-inspired
large extra-dimensional models [1], [2], [3] and braneworld scenarios [4] [5], [6], [7], [8] (for a
review see [9], [10]) offer promise for a better understanding of a rich variety of high-energy
phenomena which is expected to be discovered at the Large Hadron Collider at CERN, and
other coming into service colliders. Our main concern in this paper is with the concept of
radiation in higher-dimensional classical electrodynamics. A further refinement of this concept
is needed if we are to gain a more penetrating insight into the self-interaction problem [11],
[12], [13]. Recently, this problem was addressed in Refs. [14], [15], [16], [17] [18], [19]. It should
be stressed that spacetime manifolds in these papers were assumed to be flat. (Conceivably

227
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it might be prematurely to embark on a study of the radiation in curved manifolds until
the energy-momentum problem in general relativity is completely solved.) We also note that
the idea of radiation in odd-dimensional worlds falls far short of being clear-cut because
Huygens’s principle fails in odd spacetime dimensions [20], and the same is true for massive
vector fields. Consequently, we will restrict our consideration to classical electrodynamics in
Minkowski spacetime of even dimension d = 2n.

The paper is organized as follows. Section 2 outlines the state of the art of the 2n-
dimensional Maxwell–Lorentz theory, notably the methods for solving Maxwell’s equations
with the source composed of a single point charge. A central result of this section is given by
equations (40)–(44) suggesting that the retarded field strength F (2n)

µν due to a point charge
living in a 2n-dimensional world can be algebraically expressed in terms of the retarded vector
potentials A(2m)

µ generated by this charge as if it were accommodated in 2m-dimensional
worlds nearby, with m being within the limits 2 ≤ m ≤ n + 1. It is then shown in Sec. 3
that the rate of radiated energy-momentum of the electromagnetic field in 2n-dimensional
spacetime takes a compact form, Eqs. (72) and (73). Some implications of these results are
discussed in Sec. 4.

We adopt the metric of the form ηµν = diag (1,−1, . . . ,−1), and follow the conventions of
Ref. [12] throughout.

2 Vector potentials, prepotentials, and field strengths

Consider a single charged point particle moving along a timelike world line in flat spacetime
of an arbitrary even dimension d = 2n, n = 1, 2, . . . With reference to the aforementioned
string-inspired models and braneworld scenarios, our prime interest is with d in the range
from d = 2 to d = 10. The world line zµ(s) is regarded as a smooth function of the proper
time s. Suppose that the Maxwell–Lorentz electrodynamics is still valid. This is tantamount
to stating that the field sector is given by

L = − 1
4Ωd−2

FµνF
µν −Aµjµ, (1)

jµ(x) = e

∫ ∞
−∞

ds vµ(s) δd [x− z(s)] , (2)

and the retarded boundary condition is imposed on the vector potential Aµ. Here, Ωd−2 is
the area of the unit (d − 2)-sphere, vµ = żµ = dzµ/ds is the d-velocity, and δd(R) is the
d-dimensional Dirac delta-function. In what follows the value of the charge will be taken to
be unit, e = 1.

The field equation resulting from (1) reads

Eµ = ∂νF
µν + Ωd−2j

µ = 0. (3)

This is accompanied by the Bianchi identity

Eλµν = ∂λFµν + ∂νFλµ + ∂µF νλ = 0. (4)

We take the general solution to (4), Fµν = ∂µAν − ∂νAµ, and choose the Lorenz gauge
condition ∂µAµ = 0 to put (3) into the form

2Aµ = Ωd−2 j
µ. (5)
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There are two alternative procedures for integrating the wave equation (5). The Green’s
function approach holds much favor (for a review see [20], [12]). The retarded Green’s function
satisfying

2Gret(x) = δd(x) (6)

is given by
Gret(x) = 1

2πn θ(x0) δ(n−1)(x2), d = 2n. (7)

Here, δ(n−1)(x2) is the delta-function differentiated n− 1 times with respect to its argument.
With the Green’s function (7) at our disposal it becomes possible to obtain the retarded
vector potential

Aµ(x) = Ωd−2

∫ ∞
−∞

dsGret (R) vµ(s), (8)

where
Rµ = xµ − zµ(s) (9)

is the null four-vector drawn from the retarded point zµ(s) on the world line, where the signal
is emitted, to the point xµ, where the signal is received.

The other procedure consists of using the ansatz of a particular form [14], [12]. To illus-
trate, the pertinent ansätze for d = 2, 4, 6 are given, respectively, by

A(2)
µ = α(ρ)Rµ, (10)

A(4)
µ = f(ρ)Rµ + g(ρ) vµ, (11)

A(4)
µ = Ω(ρ, λ)Rµ + Φ(ρ, λ) vµ + Ψ(ρ, λ) aµ. (12)

Here, aµ = v̇µ is the d-acceleration, and α, f , g, Ω, Φ, Ψ are unknown scalar functions. The
functions α, f , g are assumed to depend on the retarded invariant distance

ρ = R · v, (13)

while Ω, Φ, Ψ are taken to depend on ρ and the retarded invariant variable

λ = R · a− 1. (14)

Let us introduce a further null vector cµ aligned with Rµ,

Rµ = ρ cµ. (15)

We insert any one of the ansätze (10), (11), (12) in (3), perform differentiations of the retarded
variables using the rules

∂µs = cµ, (16)

∂µρ = vµ + λcµ, (17)

∂µR
λ = δλµ − vλ cµ, (18)

and solve the resulting ordinary differential equations (for detail see [14], [12]) to obtain

A(2)
µ = −Rµ, (19)

F (2)
µν = cµvν − cνvµ, (20)

A(4)
µ = vµ

ρ , (21)
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F (4)
µν = cµU

(4)
ν − cνU (4)

µ , U (4)
µ = −λ vµ

ρ2 + aµ

ρ , (22)

A(6)
µ = 1

3

(−λ vµ

ρ3 + aµ

ρ2
)
, (23)

F (6)
µν = 1

3

(
cµU

(6)
ν − cνU (6)

µ + aµvν−aνvµ

ρ3

)
, U (6)

µ =
[
3λ2 − ρ2 (ȧ · c)] vµ

ρ4 − 3λ aµ

ρ3 + ȧµ

ρ2 . (24)

Note the overall factor 1
3 in (23). The origin of this numerical factor is most easily

understood if we apply Gauss’ law to the case that aµ = 0 and ȧµ = 0. To simplify our
notations as much as possible, we introduce the net vector potentials and field strengths, Aµ
and Fµν (as opposed to the ordinary vector potentials and field strengths, Aµ and Fµν , whose
normalization is consistent with Gauss’ law):

A(2p)
µ = N−1

p A(2p)
µ , F (2p)

µν = N−1
p F (2p)

µν , (25)

where
Np = (p− 1)!! . (26)

It is an easy matter to extend the sequence of the ansätze shown in (10), (11), (12) to
any d = 2n with integer n ≥ 1. Based on the anzatz for d = 2n, we come to the anzatz for
d = 2n + 2 by appending a term proportional to the (n − 1)th derivative of vµ with respect
to s, and assuming that the unknown functions depend on ρ, together with scalar products
of Rµ and derivatives of vµ up to the (n− 1)th derivative inclusive.

Proceeding in these lines, we get

A(2)
µ = −Rµ, (27)

A(4)
µ = vµ

ρ , (28)

A(6)
µ = −λ vµ

ρ3 + aµ

ρ2 , (29)

A(8)
µ =

[
3λ2 − ρ2 (ȧ · c)] vµ

ρ5 − 3λ aµ

ρ4 + ȧµ

ρ3 , (30)

A(10)
µ =

[−15λ3 + 10λρ2 (ȧ · c)− ρ2a2 − ρ3 (ä · c)] vµ

ρ7 +
[
15λ2 − 4ρ2 (ȧ · c)] aµ

ρ6

− 6λ ȧµ

ρ5 + äµ

ρ4 , (31)

A(12)
µ =

{
105λ2

[
λ2 − ρ2(ȧ · c)] + 15λρ2[ρ(ä · c) + a2]− 5

2 ρ
3(a2). − ρ4(

...
a ·c)

+ 10ρ4(ȧ · c)2} vµ

ρ9 + 5
{
3λ

[−7λ2 + 4ρ2(ȧ · c)]− ρ2[ρ(ä · c) + a2]
} aµ

ρ8

+ 5
[
9λ2 − 2ρ2(ȧ · c)] ȧµ

ρ7 − 10λ äµ

ρ6 +
...
aµ

ρ5 . (32)

Another way of looking at A(2p)
µ is to invoke the notion of prepotential. The prepotential Hµ

of the vector potential Aµ is defined as

Aµ = 2Hµ. (33)

One can check that
Np+1 2A(2p)

µ = (d− 2p)NpA(2p+2)
µ , p ≥ 1. (34)

In other words, any 2n-dimensional retarded vector potential A(2n)
µ (up to a normalization

factor) is the prepotential of the (2n + 2)-dimensional retarded vector potential A(2n+2)
µ .

Furthermore, A(2p)
µ can be produced by acting on A(2)

µ p− 1 times with the wave operator:

A(2p)
µ = Z−1

d,p 2p−1Rµ = −Z−1
d,p 2p−1A(2)

µ , (35)
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where
Zd,p = (d− 2) (d− 4) · · · (d− 2p)Np = 2p(n−1)!

(n−p−1)! Np. (36)

All the resulting vector potentials A(2p)
µ , beginning with p = 2, obey the Lorenz gauge condi-

tion. To see this, we note that ∂µRµ = d− 1, and so 2 ∂µA(2)
µ = 0.

This technique provides a further significant advantage if we observe that the action of
the wave operator amounts to the action of the first-order differential operator

1
ρ
d
ds . (37)

We thus have
A(2p)
µ = − (

1
ρ
d
ds

)p−1A(2)
µ . (38)

Indeed, (38) derives from (7) and (8) by noting that dR2/ds = −2ρ, dRµ/ds = −vµ, and so

− 1
ρ
d
ds A(2)

µ = 1
ρ
d
ds Rµ = vµ

ρ = A(4)
µ . (39)

We now take a closer look at the field strengths F (2)
µν , F (4)

µν , and F (6)
µν shown, respectively,

in (20), (22), and (24). When their structure is compared with that of the vector potentials
A(2)
µ , A(4)

µ , A(6)
µ , A(8)

µ displayed in (27)–(30), it is apparent that

F (2) = −A(2) ∧ A(4), (40)

F (4) = −A(2) ∧ A(6), (41)

F (6) = −A(2) ∧ A(8) −A(4) ∧ A(6). (42)

In addition, one can verify that

F (8) = −A(2) ∧ A(10) − 2A(4) ∧ A(8), (43)

F (10) = −A(2) ∧ A(12) − 3A(4) ∧ A(10) − 2A(6) ∧ A(8). (44)

We come to recognize that the retarded field strength F (2p)
µν can be expressed in a very compact

and elegant form in terms of retarded vector potentials A(2m)
µ , 2 ≤ m ≤ p + 1. Recall, the

canonical representation of a general 2-form ω(2n) in spacetime of dimension d = 2n is the
sum of n exterior products of 1-forms:

ω(2n) = f1 ∧ f2 + · · ·+ f2n−1 ∧ f2n. (45)

In particular, by (45), ω(10) is decomposed into the sum involving five terms. However, (44)
shows that the retarded field strength contains only three exterior products, two less than
the canonical representation.

The validity of relations (40)–(44) can be seen by inspection. To derive them in a regular
way, we take (40) as the starting point. If we apply Z−1

d,p 2p−1 to the left-hand side of
this equation, then, in view of (35), we obtain F (2p). Applying p − 1 times the first-order
differential operator (37) to the right-hand side of (40) and taking into account Leibnitz’s
rule for differentiation of the product of two functions, in view of (38), we come to the desired
result.

This explains the puzzling fact that the gauge-independent quantity F (2p) is an algebraic
function of gauge-dependent quantities A(2m). By the construction, the vector potentials
A(2m)
µ , m ≥ 1, are subject to the Lorenz gauge condition. Therefore, such A(2m)

µ leave room
for gauge modes ∂µχ with χ being solutions to the wave equation, 2χ = 0. In our derivation of
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(41)–(44), we are entitled to apply the wave operator 2, rather than the first-order differential
operator (37), to the right-hand side of (40). All feasible gauge modes are then killed by the
action of 2.

We close this section with a remark about the behavior of the retarded electromagnetic
field at spatial infinity. In general, F (2n) can be represented as the sum of exterior products
of retarded vector potentials A(2p) ∧ A(2n−2p+4). It is easy to understand that the infrared
properties of F (2n) are controlled by the term A(2) ∧ A(2n+2). (In fact, a comparison of the
long-distance behavior of A(2)∧A(2n+2) and A(4)∧A(2n) will suffice for the present purposes.
Since the least falling terms of A(2n+2) and A(2n) scale, respectively, as ρ−n and ρ1−n, the
leading long-distance asymptotics of A(2)∧A(2n+2) is given by ρ1−n while that of A(4)∧A(2n)

is given by ρ−n.) We segregate in A(2n+2) the term scaling as ρ−n by introducing the vectors

b(2n+2)
µ = lim

ρ→∞
ρnA(2n+2)

µ (46)

and
Ā(2n+2)
µ = 1

ρn b(2n+2)
µ . (47)

All infrared irrelevant terms are erased by this limiting procedure, so that

A(2) ∧ Ā(2n+2) (48)

represents the infrared part of F (2n).
We write explicitly b

(2n+2)
µ for n = 1, 2, 3, 4, 5:

b(4)
µ = vµ, (49)

b(6)
µ = − (a · c) vµ + aµ, (50)

b(8)
µ =

[
3 (a · c)2 − (ȧ · c)

]
vµ − 3 (a · c) aµ + ȧµ, (51)

b(10)
µ = −

[
15 (a · c)3 − 10 (a · c) (ȧ · c) + (ä · c)

]
vµ

+
[
15 (a · c)2 − 4 (ȧ · c)

]
aµ − 6 (a · c) ȧµ + äµ, (52)

b(12)
µ =

{
5

[
3 · 7 (a · c)2

(
(a · c)2 − (ȧ · c)

)
+ 2 (ȧ · c)2 + 3 (a · c) (ä · c)

]
− (

...
a ·c)

}
vµ

− 5
{

3 (a · c) [7 (a · c)2 − 4(ȧ · c)] + (ä · c)
}
aµ + 5

[
9 (a · c)2 − 2(ȧ · c)

]
ȧµ

− 10 (a · c) äµ +
...
aµ. (53)

It follows from (50)–(53) that b(6), . . . , b(12) are subject to the constraint

R · b(2n+2) = 0, (54)

while b(4) is not. To derive (54), we note that, far apart from the the world line, the field
appears (locally) as a plane wave moving along a null ray that points toward the propagation
vector kµ,

Aµ ∼ εµφ(k · x), (55)

Fµν ∼ (kµεν − kνεµ)φ′. (56)
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Here, εµ is the polarization vector, φ is an arbitrary smooth function of the phase k · x, and
the prime stands for the derivative with respect to the phase. Recall that ∂µA(2n)

µ = 0 for
n ≥ 2. In view of (55), this equation becomes

(k · ε)φ′ = 0, (57)

which implies that the polarization vector is orthogonal to the propagation vector. On the
other hand, A(2n+2)

µ approaches Ā(2n+2)
µ as ρ → ∞. Now the null vector Rµ acts as the

propagation vector kµ. A comparison between (48) and (56) shows that εµ should be identified
with b

(2n+2)
µ .

Since ∂µRµ = d− 1, the vector potential A(2)
µ does not obey the Lorenz gauge condition,

and hence (54) is not the case for b
(4)
µ .

To sum up, the polarization of the retarded electromagnetic field is an imprint of the next
even dimension d+ 2, excluding d = 2 which is immune from the effect of d = 4.

3 Radiation

Apart from the overall numerical factor, the metric stress-energy tensor of the electro-
magnetic field takes the same form in any dimension,

Θµν = 1
Ωd−2

(
F α
µ Fαν + ηµν

4 FαβFαβ
)
. (58)

Let us substitute (8) into (58). Since the result is to be integrated over (d−1)-dimensional
spacelike surfaces, Θµν is conveniently split into two parts, nonintegrable and integrable,

Θµν = Θµν
I + Θµν

II . (59)

Here, our concern is only with the integrable part Θµν
II . To identify this part of the stress-

energy tensor as the radiation, we check the fulfilment of the following conditions [21], [12]:
(i) Θµν

I and Θµν
II are dynamically independent off the world line, that is,

∂µΘ
µν
I = 0, ∂µΘ

µν
II = 0, (60)

(ii) Θµν
II propagates along the future light cone C+ drawn from the emission point, and

(iii) the energy-momentum flux of Θµν
II goes as ρ2−d implying that the same amount of

energy-momentum flows through spheres of different radii.
It has been found in the previous section that the infrared behavior1 of F (2n) is controlled

by
A(2) ∧ A(2n+2). (61)

More precisely, the leading long-distance term

A(2) ∧ Ā(2n+2), (62)

where Ā(2n+2)
µ is defined in (47), is responsible for the infrared properties of F (2n).

With (58), it is apparent that Θµν
II is built up solely from the term shown in (62),

Θµν
II =

−1
N2
nΩ2n−2

RµRν
(
Ā(2n+2)

)2

=
−1

N2
nΩ2n−2ρ2n−2

cµcν
(
b(2n+2)

)2

. (63)

1The term ‘infrared’ is used here in reference to what can be described by means of quantities which are
either regular or having integrable singularities at the world line.
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Let us check that Θµν
II given by (63) meets every condition (i)–(iii), and hence this quantity

is reasonable to call the radiation2. In view of (47), the scaling properties of this Θµν
II are in

agreement with (iii). Furthermore, since the surface element of the future light cone C+ is

dσµ = cµρ2n−2dρ dΩ2n−2, (64)

where cµ is a null vector on C+, the flux of Θµν
II through C+ vanishes, dσµΘ

µν
II = 0. Therefore,

Θµν
II propagates along C+ to suit (ii).
To verify that condition (i) holds, let us note that, for Θµν and jµ written, respectively,

as (58) and (2),
∂νΘµν = −Fµνjν . (65)

Off the world line, (65) becomes
∂µΘµν = 0, (66)

and hence either of two local conservation laws (60) implies the other one. It is sufficient to
verify the conservation law for the Θµν

II . We have

∂µΘ
µν
II ∝ ∂µ

[
RµRν

(
Ā(2n+2)

)2
]

= Rν
[
2n

(
Ā(2n+2)

)2

+ (R · ∂)
(
Ā(2n+2)

)2
]
. (67)

Here the second equation is obtained using the differentiation rule (18) and the fact that
δµµ = 2n. Let us take into account that b

(2n+2)
µ depends on vα, aα, ... and their scalar

products with cα. Since

(R · ∂) {cν , vν , aν , ȧν , . . .} = 0, (R · ∂) ρ = ρ, (68)

we apply (R · ∂) to Ā(2n+2)
µ defined in (47) to conclude from (67) that ∂µΘ

µν
II = 0. This is

just the required result.
By (54), b

(2n+2)
µ is orthogonal to a null vector Rµ. This suggests that b

(2n+2)
µ is a linear

combination of a spacelike vector and the null vector Rµ itself. Referring to (48), Ā(2n+2)
µ is

defined up to adding k Rµ, where k is an arbitrary constant. If we impose the Lorenz gauge
condition to this additional term, then k (n− 1) = 0, that is, k = 0 for n 6= 1. When it is
considered that b

(2n+2)
µ is spacelike, (63) shows that Θ00

II ≥ 0. We thus see that Θ00
II represents

positive field energy flowing outward from the source.
Let us calculate the radiation rate. The radiation flux through a (d − 2)-dimensional

sphere enclosing the source is constant for any radius of the sphere. Therefore, the terms of
Θµν responsible for this flux scale as ρ2−d. The radiated energy-momentum is defined by

Pµ =
∫

Σ

dσν Θµν
II , (69)

where Σ is a (d − 1)-dimensional spacelike hypersurface. Since Θµν
II involves only integrable

singularities, and ∂νΘ
µν
II = 0, the surface of integration Σ in (69) may be chosen arbitrarily.

It is convenient to deform Σ to a tubular surface Tε of small invariant radius ρ = ε enclosing
the world line. The surface element on this tube is

dσµ = ∂µρ ρd−2 dΩd−2 ds = (vµ + λcµ) εd−2 dΩd−2 ds. (70)

2Strictly speaking, the radiation is represented by (63) only when n ≥ 2. In a world with one temporal
and one spatial dimension, the radiation is absent [14], [12].
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Equation (69) becomes

P(2n)
µ = − 1

N2
nΩ2n−2

∫ s

−∞
ds

∫
dΩ2n−2 cµ

(
b(2n+2)

)2

, (71)

so that the radiation rate is given by

Ṗ(2n)
µ = − 1

N2
nΩ2n−2

∫
dΩ2n−2 cµ

(
b(2n+2)

)2

. (72)

This can be recast as

Ṗ(2n)
µ = − 1

Z2
d,nΩ2n−2

∫
dΩ2n−2 cµ

(
lim
ρ→∞

ρn2nRα

)2

. (73)

Conceivably this form of the radiation rate might find use in a wider context of gauge theories.
The solid angle integration is greatly simplified if we introduce the spacelike normalized

vector uµ orthogonal to vµ,
cµ = vµ + uµ , (74)

and observe that the integrands are expressions homogeneous of some degree in uµ. Consider

Iµ1···µp =
1

Ωd−2

∫
dΩd−2 uµ1 · · ·uµp

. (75)

In the case of odd number of multiplying vectors uµ, the integrals vanish. If the number of
multiplying vectors uµ is even, then the integration are made through the use of the following
formulas

Iµν = − (
1
d−1

) v

⊥µν , (76)

Iαβµν = 1
(d−1)(d+1)

( v

⊥µν

v

⊥αβ +
v

⊥αµ

v

⊥ βν +
v

⊥αν

v

⊥ βµ

)
, (77)

Iαβγλµν = − 1
(d−1)(d+1)(d+3)

(
v

⊥αβ

v

⊥ γλ

v

⊥µν +
v

⊥αβ

v

⊥ γµ

v

⊥λν +
v

⊥αβ

v

⊥ γν

v

⊥λµ

+
v

⊥αγ

v

⊥ βλ

v

⊥µν +
v

⊥αγ

v

⊥ βµ

v

⊥ λν +
v

⊥αγ

v

⊥ βν

v

⊥ λµ +
v

⊥αλ

v

⊥ βγ

v

⊥µν

+
v

⊥αλ

v

⊥ βµ

v

⊥ γν +
v

⊥αλ

v

⊥ βν

v

⊥ γµ +
v

⊥αµ

v

⊥ βν

v

⊥ γλ +
v

⊥αµ

v

⊥ βγ

v

⊥λν

+
v

⊥αµ

v

⊥ βλ

v

⊥ γν +
v

⊥αν

v

⊥ βµ

v

⊥ γλ +
v

⊥αν

v

⊥ βλ

v

⊥ γµ +
v

⊥αν

v

⊥ βγ

v

⊥ λµ

)
, (78)

which are readily derived (see, e. g., [12]). Here,

v

⊥µν= ηµν − vµvν (79)

is the operator that projects vectors onto a hyperplane with normal vµ, The number of terms
in such decompositions of Iµ1···µk

proliferates with k: Iµ1···µ4 contains 3 monomials
v

⊥
v

⊥,

Iµ1···µ6 involves 3 · 5 monomials
v

⊥
v

⊥
v

⊥, Iµ1···µ8 comprises 3 · 5 · 7 monomials
v

⊥
v

⊥
v

⊥
v

⊥, etc. If
k ≥ 6, then calculations with Iµ1···µk

are rather tedious, so that we restrict our discussion to
the dimensions d = 4 and d = 6. In these cases we need only handling Iµν and Iαβµν .

Using the identities
v2 = 1, (v · a) = 0, (v · ȧ) = −a2, (80)
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we find from (50) and (51) that
(
b(6)

)2

= (a · u)2 + a2, (81)

(
b(8)

)2

=
[
(
v

⊥ ȧ)2 + 9 (a · u)2a2 + 9 (a · u)4 + (ȧ · u)2
]
− 3

[
(a2). (a · u) + 2 (a · u)2(ȧ · u)] .

(82)
Thus, in four and six dimensions, the radiation rate is given, respectively, by

Ṗ(4)
µ = − 2

3 a
2vµ (83)

and
Ṗ(6)
µ = 1

9
1

5·7
{

4
[
16 (a2)2 − 7 ȧ

2
]
vµ − 3 · 5 (

a2
).
aµ + 6 a2(

v

⊥ ȧ)µ
}
. (84)

4 Discussion and outlook

Let us summarize our discussion of the methods for obtaining retarded field configurations
due to a single point charge in 2n-dimensional Minkowski spacetime. The retarded Green’s
function technique is presently accepted as the standard approach. Iwanenko and Sokolow
[20] pioneered the use of this technique. The approach based on the ansätze of a particular
form, such as those defined in (10), (11), and (12), was developed in Ref. [14]. This proce-
dure for solving Maxwell’s equations (without resort to Green’s functions) is found to be of
particular assistance in solving the Yang–Mills equations [12]. It seems likely that the tool
of greatest practical utility involves the notion of prepotential, in particular the simplest way
for calculating the retarded vector potential A(2n)

µ is given by Eq. (38).
Close inspection of exact solutions to d-dimensional Maxwell’s equations shows that the re-

tarded field strength F (2n)
µν generated by a point charge living in a 2n-dimensional world is ex-

pressed in terms of the retarded vector potentials A(2m)
µ due to this charge in 2m-dimensional

worlds nearby, Eqs. (40)–(44). The fact that the state of the retarded electromagnetic field
in a given even-dimensional manifold is entangled with those of contiguous even-dimensional
manifolds may be the subject of far-reaching philosophical speculations. To illustrate, it fol-
lows from (41) that, while living in d = 4, a charge feels a specific impact from d = 2 and
d = 6. The responsibility for this entanglement may rest with either coexistence on an equal
footing of different 2p-branes in some braneworld scenario or manifestation of contiguous
‘parallel’ realms.

A notable feature of Eqs. (40)–(44) is that the world line zµ(s) of the charge generating
these field configurations is described by different numbers of the principal curvatures κj
for different spacetime dimensions. To be specific, we refer to Eq. (41). The world line
appearing in A(2)

µ is a planar curve, specified solely by κ1, while that appearing in A(6)
µ is

a curve characterized (locally) by five essential parameters κ1, κ2, κ3, κ4, κ5. If we regard
the world line zµ(s) in M1,2n−1 as the basic object, then both projections of this curve onto
lower-dimensional spacetimes and its extensions to higher-dimensional spacetimes are rather
arbitrary. Nevertheless, Eqs. (40)–(44) are invariant under variations of these mappings of
the world line zµ(s).

The advanced fields Fadv can be also represented as the sums of exterior products of
1-forms Aadv similar to (40)–(44), whereas combinations αFret + β Fadv, αβ 6= 0, are not.
Therefore, Eqs. (40)–(44) do not hold for field configurations satisfying the Stückelberg–
Feynman boundary condition. We thus see that the remarkably simple structures displayed
in Eqs. (40)–(44) are inherently classical.
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Based on Eqs. (40)–(44), we put the rate of radiated energy-momentum of electromagnetic
field in a compact form, Eqs. (72) and (73). Let us recall that there are two alternative
concepts of radiation, proposed by Dirac and Teitelboim (for a review see [11]); the latter
was entertained in Sec. 3. Although these concepts have some points in common, they are
not equivalent. Accordingly, the fact [afforded by (63) and (72)] that the radiation in 2n-
dimensional spacetime is an infrared phenomenon stemming from the next even dimension
d = 2n+2 cannot be clearly recognized until the Teitelboim’s definition of radiation is invoked.

Why is it essential to draw the stress-energy tensor for introducing the concept of ra-
diation? It is still common to see the assertion that the degrees of freedom related to the
radiation may be identified directly in F (2n) if one takes the piece of F (2n) shown in (62) as the
‘radiation field’. However, this assertion is erroneous. First, the construction A(2) ∧ Ā(2n+2)

which allegedly plays the role of radiation field is in no sense dynamically independent of
the rest of F (2n). Second, the bivector $ = A(2) ∧ A(2n+2) is deprived of information about
the vector Ā(2n+2)

µ . A pictorial view of $ is the parallelogram of the vectors A(2)
µ and

A(2n+2)
µ . The bivector $ is independent of concrete directions and magnitudes of the con-

stituent vectors A(2)
µ and A(2n+2)

µ ; $ depends only on the parallelogram’s orientation and area
S = |A(2) ·A(2n+2)|. By virtue of (54), Ā(2n+2)

µ makes no contribution to S. It can be shown
(much as was done in [12], p. 181) that the term scaling as ρ1−n can be eliminated by a local
SL(2,R) transformation of the plane spanned by the vectors A(2) and A(2n+2) which leaves
the bivector $ invariant. In other words, there is a reference frame in which the ‘radiation
field’ (62) vanishes over all spacetime (except for the future null infinity).

The implication of this argument is that the radiation is determined not only by the re-
tarded field F (2n) as such but also by the frame of reference in which F (2n) is measured. On
the other hand, the stress-energy tensor Θµν is not invariant under such SL(2,R) transfor-
mations. Θµν carries information about both the field F (2n) and the frame which is used to
describe F (2n).
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Fields

Dedicated to the 60 year Jubilee of Professor I. L. Buchbinder

V.A. Krykhtin1
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634041 Tomsk, Russia

Abstract

We review the recently developed general gauge invariant approach to Lagrangian
construction for massive higher spin fields in Minkowski and AdS spaces of arbitrary
dimension. Higher spin Lagrangian, describing the dynamics of the fields with any spin,
is formulated with help of BRST-BFV operator in auxiliary Fock space. No off-shell
constraints on the fields and gauge parameters are imposed. The construction is also
applied to tensor higher spin fields with index symmetry corresponding to a multirow
Young tableau.

1 Introduction

It gives me great pleasure to contribute a paper to the volume devoted to the 60 year
Jubilee of Professor I.L. Buchbinder. I defended my Ph.D. thesis under his supervision and
after this all my scientific activity is connected with him. I would like to congratulate him
heartily on his birthday and to express sincere gratitude for his invaluable help in my scientific
researches. One of the topics of our researches is the Lagrangian construction for massive
higher spin fields and the present paper is a review of our joint progress in this direction.

Higher spin field problem attracts much attention during a long time. At present, there
exist the various approaches to this problem although the many aspects are still far to be
completely clarified (see e.g. [1] for recent reviews of massless higher spin field theory). This
paper is a brief survey of recent state of gauge invariant approach to massive higher spin field
theory.

1krykhtin@mph.phtd.tpu.edu.ru
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The standard BFV or BRST-BFV construction (see the reviews [2]) arose at operator
quantization of dynamical systems with first class constraints. The systems under consider-
ation are characterized by first class constraints in phase space Ta, [Ta, Tb] = f cabTc. Then
BRST-BFV charge is introduced according to the rule

Q = ηaTa + 1
2η
bηaf cabPc, Q2 = 0, (1)

where ηa and Pa are canonically conjugate ghost variables (we consider here the case gh(T ) =
0, then gh(ηa) = 1, gh(Pa) = −1) satisfying the relations {ηa,Pb} = δab . After quantization
the BRST-BFV charge becomes an Hermitian operator acting in extended space of states
including ghost operators, the physical states in the extended space are defined by the equation
Q|Ψ〉 = 0. Due to the nilpotency of the BRST-BFV operator, Q2 = 0, the physical states are
defined up to transformation |Ψ′〉 = |Ψ〉+Q|Λ〉 which is treated as a gauge transformation.

Application of BRST-BFV construction in the higher spin field theory [3] is inverse to
above quantization problem. The initial point are equations, defining the irreducible repre-
sentations of Poincare or AdS groups with definite spin and mass, the BRST-BFV operator
is constructed on the base of these constraints and finally the higher spin Lagrangian is found
on the base of BRST-BFV operator. Generic procedure looks as follows. The equations
defining the representations are treated as the operators of first class constraints in some
auxiliary Fock space. However, in the higher spin field theory a part of these constraints
are non-Hermitian operators and in order to construct a Hermitian BRST-BFV operator we
have to involve the operators which are Hermitian conjugate to the initial constraints and
which are not the constraints. Then for closing the algebra to the complete set of operators
we must add some more operators which are not constraints as well. Because of presence of
such operators the standard BRST-BFV construction can not be applied it its literal form.
However, as we will see, this problem can be solved.

2 Massive bosonic field

We illustrate the method used for Lagrangian construction on the base of massive bosonic
field in Minkowski d-dimensional space. It is well known that the totally symmetric tensor
field Φµ1···µs , describing the irreducible spin-s massive representation of the Poincare group
must satisfy the following constraints

(∂2 +m2)Φµ1···µs = 0, ∂µ1Φµ1µ2···µs = 0, ηµ1µ2Φµ1···µs = 0. (2)

In order to describe all higher integer spin fields simultaneously it is convenient to intro-
duce Fock space generated by creation and annihilation operators a+

µ , aµ with vector Lorentz
index µ = 0, 1, 2, . . . , d− 1 satisfying the commutation relations

[
aµ, a

+
ν

]
= −ηµν , ηµν = (+,−, . . . ,−). (3)

Then we define the operators

l0 = −p2 +m2, l1 = aµpµ, l2 = 1
2a
µaµ, (4)

where pµ = −i ∂
∂xµ . These operators act on states in the Fock space

|Φ〉 =
∞∑
s=0

Φµ1···µs(x)a
µ1+ · · · aµs+|0〉 (5)
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which describe all integer spin fields simultaneously if the following constraints on the states
take place

l0|Φ〉 = 0, l1|Φ〉 = 0, l2|Φ〉 = 0. (6)

If constraints (6) are fulfilled for the general state (5) then constraints (2) are fulfilled for
each component Φµ1···µs(x) in (5) and hence the relations (6) describe all free massive higher
spin bosonic fields simultaneously. Our purpose is to describe the Lagrangian construction
for the massive higher spin fields on the base of BRST-BFV approach, therefore first what
we should find is the Hermitian BRST-BFV operator. It means, we should have a system of
Hermitian constraints. In the case under consideration the constraint l0 is Hermitian, l+0 = l0,
however the constraints l1, l2 are not Hermitian. We extend the set of the constraints l0, l1,
l2 adding two new operators l+1 = aµ+pµ, l+2 = 1

2a
µ+a+

µ . As a result, the set of operators l0,
l1, l2, l

+
1 , l

+
2 is invariant under Hermitian conjugation. We want to point out that operators

l+1 , l+2 are not constraints on the space of bra-vectors (5) since they may not annihilate the
physical states. Taking Hermitian conjugation of (6) we see that l+1 , l+2 together with l0 are
constraints on the space of bra-vectors

〈Φ|l0 = 0, 〈Φ|l1 = 0, 〈Φ|l2 = 0. (7)

Algebra of the operators l0, l1, l+1 , l2, l+2 is open in terms of commutators of these operators.
We will suggest the following procedure of consideration. We want to use the BRST-BFV
construction in the simplest (minimal) form corresponding to closed algebras. To get such an
algebra we add to the above set of operators, all operators generated by the commutators of
l0, l1, l+1 , l2, l+2 . Doing such a way we obtain two new operators

m2 and g0 = −a+
µ a

µ + d
2 . (8)

The resulting algebra are written in Table 1. In this table the first arguments of the
commutators and explicit expressions for all the operators are listed in the left column and
the second argument of commutators are listed in the upper row.

Let us emphasize once again that operators l+1 , l+2 are not constraints on the space of
ket-vectors. The constraints in space of ket-vectors are l0, l1, l2 (6) and they are the first
class constraints in this space. Analogously, the constraints in space of bra-vectors are l0,
l+1 , l+2 (7) and they also are the first class constraints but only in this space, not in space of
ket-vectors. Since the operator m2 is obtained from the commutator

[l1, l+1 ] = l0 −m2, (9)

where l1 is a constraint in the space of ket-vectors (6) and l+1 is a constraint in the space of
bra-vectors (7), then it can not be regarded as a constraint neither in the ket-vector space
nor in the bra-vector space. Analogously the operator g0 is obtained from the commutator

[l2, l+2 ] = g0, (10)

where l2 is a constraint in the space of ket-vectors (6) and l+2 is a constraint in the space of
bra-vectors (7). Therefore g0 can not also be regarded as a constraint neither in the ket-vector
space nor in the bra-vector space.

One can show that a straightforward use of BRST-BFV construction as if all the operators
l0, l1, l2, l

+
1 , l

+
2 , g0, m2 are the first class constraints doesn’t lead to the proper equations (6)

for any spin. This happens because among the above hermitian operators there are operators
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l0 l1 l+1 l2 l+2 g0 m2

l0 0 0 0 0 0 0 0

l1 0 0 l0 −m2 0 −l+1 l1 0

l+1 0 −l0 +m2 0 l1 0 −l+1 0

l2 0 0 −l1 0 g0 2l2 0

l+2 0 l+1 0 −g0 0 −2l+2 0

g0 0 −l1 l+1 −2l2 2l+2 0 0

m2 0 0 0 0 0 0 0

Table 1: Operator algebra generated by the constraints

which are not constraints (g0 and m2 in the case under consideration) and they bring two
more equations (in addition to (6)) onto the physical field (5). Thus we must somehow get
rid of these supplementary equations.

The method of avoiding the supplementary equations consists in constructing the new
enlarged expressions for the operators of the algebra, so that the Hermitian operators which
are not constraints will be zero.

Let us act as follows. We enlarge the representation space of the operator algebra by
introducing the additional (new) creation and annihilation operators and enlarge expressions
for the operators (see [4] for more details)

li −→ Li = li + l′i, li = {l0, l1, l+1 , l2, l+2 , g0,m2}
The enlarged operators must satisfy two conditions:
1) They must form an algebra [Li, Lj ] ∼ Lk;
2) The operators which can’t be regarded as constraints must be zero or contain arbitrary
parameters whose values will be defined later from the condition of reproducing the correct
equations of motion.

In the case of higher spin fields in Minkowski space the algebra of the operators is a Lie
algebra

[li, lj ] = fkij lk. (11)

In this case we can construct the additional parts of the operators l′i which satisfy the same
algebra (11) [l′i, l

′
j ] = fkij l

′
k using the method described in [10] and since the initial operators

li commute with the additional parts l′j we get that the enlarged operators satisfy the same
algebra [Li, Lj ] = fkij Lk (11). After this the BRST-BFV operators Q′ can be constructed in
the usual way (1).

Now one need to define the arbitrary parameters. As explained in [4] we should assume
that the state vectors |Ψ〉 and the gauge parameters |Λ〉 in the extended Fock space, including
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the ghost fields, must be independent of the ghosts corresponding to the Hermitian operators
which are not constraints. Let us denote these ghost as ηG and ηM corresponding to the
extended operators G0 = g0 + g′0 and M2 = m2 +m′2 respectively.

Let us extract the dependence of the BRST-BFV operator on the ghosts ηG, PG, ηM , PM
Q′ = Q+ ηG(σ + h) + ηM (m2 +m′2)− η+

2 η2PG + η+
1 η1PM , (12)

where σ + h = g0 + g′0 + ghost fields, with h and m′2 being the arbitrary parameters to be
defined. After this the equation on the physical states in the BRST-BFV approach Q′|Ψ〉 = 0
yields three equations

Q|Ψ〉 = 0, gh(|Ψ〉) = 0, (13)

(σ + h)|Ψ〉 = 0, (m2 +m′2)|Ψ〉 = 0. (14)

From the two equations in (14) we find the possible values of h and m′2 whereas equation
(13) is equation on the physical state. This equation on the physical state can be obtained
from the Lagrangian

−L =
∫
dη0 〈Ψ|KQ|Ψ〉. (15)

In eq. (15) above the standard scalar product in the Fock space is used and K is a specific
invertible operator providing the reality of the Lagrangian (see [4] for more details). The
latter acts as the unit operator in the entire Fock space, but for the sector controlled by the
auxiliary creation and annihilation operators used at constructing the additional parts.

Because of nilpotensy of the BRST-BFV operator Q′ (12) equation on the physical state
(13) is invariant under the reducible gauge transformations

δ|Ψ〉 = Q|Λ〉, gh(|Λ〉) = −1, (16)
δ|Λ〉 = Q|Ω〉, gh(|Ω〉) = −2. (17)

We assume that the arbitrary parameters in eqs. (16), (17) have been fixed by conditions (14).
Since all the ghost are fermionic we can not write a gauge parameter with ghost number −3
and therefore the chain of the gauge transformations is finite.

3 Lagrangian construction for the fermionic fields

The Lagrangian construction for the fermionic higher spin theories have two specific dif-
ferences compared to the bosonic ones and demands some comments.

One of the specific features consists in that we have the fermionic operators in the algebra
of constraints and corresponding them the bosonic ghosts. We can write these ghosts in any
power in the Fock space states and therefore the gauge parameters can have an arbitrary
negative number. As a result the chain of gauge transformations (16), (17) can be continued.
But due to the first eq. of (14) the chain of the gauge transformations will be finite for each
spin and the order of reducibility grows with the spin of the field (see [5] for further details).

Another specific features is that unlike the bosonic case, in the fermionic theory we must
obtain Lagrangian which is linear in derivatives. But if we try to construct Lagrangian similar
to the bosonic case (15) we obtain Lagrangian which will be the second order in derivatives.
To overcome this problem one first partially fixes the gauge and partially solves some field
equations. Then the obtained equations are still Lagrangian and thus we can derive the
correct Lagrangian (see [5] for further details).

Using this method, the Lagrangians for the massive fermionic higher spin fields have been
obtained [5].
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4 Lagrangian construction for the fields in AdS

The main difference of the Lagrangian construction in AdS space is that the algebra
generated by the constraints is nonlinear, but it has a special structure. The structure of the
algebra looks like [6]

[ li, lj ] = fkij lk + fkmij lklm, (18)

where fkij , f
km
ij are constants. The constants fkmij are proportional to the scalar curvature

and disappear in the flat limit.
We describe the method of finding the enlarged expressions for the operators of the algebra

(18) [6], (see also [7]). First, we enlarge the representation space by introducing the additional
creation and annihilation operators and construct new operators of the algebra li → Li =
li+ l′i, where l′i is the part of the operator which depends on the new creation and annihilation
operators only (and constants of the theory like the mass m and the curvature).

Then we demand that the new operators Li are in involution relations

[Li, Lj ] ∼ Lk. (19)

Since [ li, l′j ] = 0 we have

[Li, Lj ] = [ li, lj ] + [ l′i, l
′
j ] = fkijLk − (fkmij + fmkij )l′mLk + fkmij LkLm

− fkij l′k + fkmij l′ml
′
k + [ l′i, l

′
j ].

Then in order to provide (19) the last three terms must be canceled. Thus we find the algebra
of the additional parts

[ l′i, l
′
j ] = fkij l

′
k − fkmij l′ml

′
k (20)

and also we find the deformed algebra for the enlarged operators

[Li, Lj ] = fkijLk − (fkmij + fmkij )l′mLk + fkmij LkLm. (21)

We see that the algebra (21) of the enlarged operators Li is changed in comparison with the
algebra (18) of the initial operators li.

There exists the method [10] which allows us to construct explicit expressions for the
additional parts on the base of their algebra (20). Thus the problem of constructing of
the additional parts for the nonlinear algebra (18) can be solved. Let us remind that the
additional parts corresponding to operators which are not constraints must linearly contain
arbitrary parameters (whose values will be defined later from the condition of reproducing
the correct equations of motion) and therefore the trivial solution is not allowed.

Next we discuss the aspects of constructing the BRST-BFV operator caused by the non-
linearity of the operator algebra using the massive bosonic higher spin fields in AdS space
[6], [7] as an example. The construction of BRST-BFV operator is based on following general
principles:
1. The BRST-BFV operator Q′ is Hermitian, Q′+ = Q′, and nilpotent, Q′2 = 0.
2. The BRST-BFV operator Q′ is built using a set of first class constraints. In the case under
consideration the operators L̃0, L1, L+

1 , L2, L+
2 , G0 are used as a set of such constraints.

3. The BRST-BFV operator Q′ satisfies the special initial condition

Q′
∣∣∣
P=0

= η0L̃0 + η+
1 L1 + η1L

+
1 + η+

2 L2 + η2L
+
2 + ηGG0.
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Straightforward calculation of the commutators allows us to find the algebra of the en-
larged operators. In particular for the bosonic fields in AdS space we get the following
commutation relations [6]

[L1, L̃0] = (γ − β)rL1 + 4βrL+
1 L2 − 4βrl′+1 L2 − 4βrl′2L

+
1

+ 2βrG0L1 − 2βrl′1G0 − 2βrg′0L1, (22)
[L̃0, L

+
1 ] = (γ − β)rL+

1 + 4βrL+
2 L1 − 4βrl′+2 L1 − 4βrl′1L

+
2

+ 2βrL+
1 G0 − 2βrl′+1 G0 − 2βrg′0L

+
1 , (23)

[L1, L
+
1 ] = L̃0 − γrG0 + 4(2− β)r(l′+2 L2 + l′2L

+
2 )

− 2(2− β)rg′0G0 + (2− β)r(G2
0 − 2G0 − 4L+

2 L2). (24)

All possible ways to order the operators in the right hand sides of (22)–(24) can be described
in terms of arbitrary real parameters ξ1, ξ2, ξ3, ξ4, ξ5. The arbitrariness in the BRST-BFV
operator caused by the parameter ξi is resulted in arbitrariness of introducing the auxiliary
fields in the Lagrangians and hence does not affect the dynamics of the basic field (see [6] for
the details). After that, the construction of the Lagrangians for the fields in AdS space goes
the practically the same way as for fields in Minkowsky space.

Using this method, the Lagrangians for the bosonic [6] and for fermionic [8] massive higher
spin fields in AdS space have been constructed.

5 Fields corresponding to an arbitrary Young tableau

Now we consider the Lagrangian construction for the fields corresponding to non sqaure
Young tableau using a Young tableau with 2 rows (s1 ≥ s2)

Φµ1···µs1 , ν1···νs2
(x) ←→ µ1 µ2 · · · · · · · · · µs1

ν1 ν2 · · · νs2
. (25)

The tensor field is symmetric with respect to permutation of each type of the indices2

Φµ1···µs1 , ν1···νs2
(x) = Φ(µ1···µs1 ), (ν1···νs2 )(x) and in addition must satisfy the following equa-

tions

(∂2 +m2)Φµ1···µs1 , ν1···νs2
(x) = 0, (26)

∂µ1Φµ1···µs1 , ν1···νs2
(x) = ∂ν1Φµ1···µs1 , ν1···νs2

(x) = 0, (27)
ηµ1µ2Φµ1µ2···µs1 , ν1···νs2

= ην1ν2Φµ1···µs1 , ν1ν2···νs2
= ηµ1ν2Φµ1···µs1 , ν1···νs2

= 0, (28)
Φ(µ1···µs1 , ν1)···νs2

(x) = 0. (29)

Then we define Fock space generated by creation and annihilation operators

[aµi , a
+ν
j ] = −ηµνδij , ηµν = diag(+,−,−, · · · ,−) i, j = 1, 2. (30)

The number of pairs of creation and annihilation operators one should introduce is determined
by the number of rows in the Young tableau corresponding to the symmetry of the tensor
field. Thus we introduce two pairs of such operators. An arbitrary state vector in this Fock
space has the form

|Φ〉 =
∞∑
s1=0

∞∑
s2=0

Φµ1···µs1 , ν1···νs2
(x) a+µ1

1 · · · a+µs1
1 a+ν1

2 · · · a+νs2
2 |0〉. (31)

2The indices inside round brackets are to be symmetrized.
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To get equations (26)–(29) on the coefficient functions we introduce the following operators

l0 = −pµpµ +m2, li = aµi pµ, lij = 1
2a
µ
i ajµ g12 = −a+µ

1 a2µ (32)

where pµ = −i∂µ. One can check that restrictions (26)–(29) are equivalent to

l0|Φ〉 = 0 , li|Φ〉 = 0 , lij |Φ〉 = 0 , g12|Φ〉 = 0 (33)

respectively.
Now we can generalize this construction to the fields corresponding to k-row Young

tableau. For this purpose one should introduce Fock space generated by k pairs of cre-
ation and annihilation operators (30), where i, j = 1, 2, . . . , k, and then introduce operators3

(32), but now with i, j = 1, 2, . . . , k. After this the Lagrangian construction can be carried
out as usual [9]. Using this method Lagrangians for the massive bosonic field corresponding
to 2-rows Young tableau was constructed in [9].

6 Summary

In this paper we have briefly considered the basic principles of gauge invariant Lagrangian
construction for massive higher spin fields4. This method can be applied to any free higher
spin field model in Minkowski and AdS spaces. It is interesting to point out that the La-
grangians obtained possess a reducible gauge invariance and for the fermionic fields the order
of reducibility grows with value of the spin. Recent applications of BRST-BFV approach to
interaction higher spin theories are discussed in [12].
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Abstract

This is a brief review of the superspace formulation for five-dimensional N = 1
matter-coupled supergravity recently developed by the authors.

1 Introduction

Historically, the first attempt to formulate five-dimensional N = 1 (often called N = 2)
supergravity in an off-shell superspace setting was made in [1] shortly before its on-shell
component formulation was given [2, 3]. Inspired by [2], Howe [4] (see also [5]) proposed
a superspace formulation for the minimal multiplet of 5D N = 1 supergravity (“minimal”
in the sense of superconformal tensor calculus). After Howe’s work [4], 5D N = 1 curved
superspace has been abandoned for 25 years. General matter couplings in 5D N = 1 super-
gravity have been constructed within on-shell components approaches [6, 7, 8] and within the
superconformal tensor calculus [9, 10].

In 2007, we began the program of developing a superspace formulation for 5D N = 1
matter-coupled supergravity. We first elaborated supersymmetric field theory in 5D N = 1
anti-de Sitter superspace which is a maximally symmetric curved background [11]. This was
followed by a fully-fledged supergravity formalism developed in a series of papers [12, 13,
14]. In these publications, we not only reproduced the main results of the superconformal
tensor approach [9, 10], but also proposed new off-shell supermultiplets and more general
supergravity-matter systems. The present note is a brief review of our construction.

1kuzenko@cyllene.uwa.edu.au
2gtm@cyllene.uwa.edu.au
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Looking back at the 25 year history of 5D N = 1 curved superspace, one can notice a
striking historical curiosity. In 1982, Howe had the right superspace setting for pure super-
gravity – the minimal multiplet [4], which was the starting point of our approach [12, 13]. The
same multiplet also occurs within the superconformal tensor calculus [9, 10] by coupling the
Weyl multiplet to an Abelian vector multiplet and then gauge fixing some local symmetries
(the vector multiplet is one of two compensators required to describe Poincaré supergrav-
ity). So why didn’t Howe make use of his formulation to construct Poincaré supergravity and
its matter couplings? A partial answer is quite simple. Even in rigid supersymmetry with
eight supercharges in diverse dimensions, adequate approaches to generate off-shell supermul-
tiplets and supersymmetric actions appeared only in 1984. They go by the names harmonic
superspace [15, 16] and projective superspace [17, 18].

This note is organized as follows. In section 2 we review, following [14], the superspace
formulation for the Weyl multiplet of conformal supergravity. Covariant projective supermul-
tiplets and the supersymmetric action principle are introduced in section 3. The same section
also contains a few examples of interesting dynamical systems.

2 5D conformal supergravity in superspace

We start by describing the superspace formulation for 5D conformal supergravity [14].
Let zM̂ = (xm̂, θµ̂i ) be local bosonic (x) and fermionic (θ) coordinates parametrizing a curved
five-dimensional N = 1 superspace M5|8 (m̂ = 0, 1, · · · , 4, µ̂ = 1, · · · , 4, and i = 1, 2). The
Grassmann variables θµ̂i obey the 5D pseudo-Majorana reality condition θµ̂i = θiµ̂ = εµ̂ν̂ε

ijθν̂j .
The tangent-space group is chosen to be SO(4, 1) × SU(2), and the superspace covariant
derivatives DÂ = (Dâ,Diα̂) have the form

DÂ = EÂ + 1
2ΩÂ

b̂ĉ(z)Mb̂ĉ + ΦÂ
kl(z)Jkl . (1)

Here EÂ = EÂ
M̂ (z)∂M̂ is the supervielbein, with ∂M̂ = ∂/∂zM̂ ; Mb̂ĉ and ΩÂ

b̂ĉ are the
Lorentz generators and connection respectively (both antisymmetric in b̂, ĉ); Jkl and ΦÂ

kl

are respectively the SU(2) generator and connection (symmetric in k, l). The generators of
SO(4, 1)× SU(2) act on the covariant derivatives as follows:1

[Mα̂β̂ ,Dkγ̂ ] = εγ̂(α̂Dkβ̂)
, [Mâb̂,Dĉ] = 2ηĉ[âDb̂] , [Jkl,Diα̂] = εi(kDl)α̂ , (2)

where Jkl = εkiεljJij and Mα̂β̂ = Mβ̂α̂ = (Σâb̂)α̂β̂Mâb̂ and (Σâb̂)α̂β̂ are the spinor Lorentz

generators, Σâb̂ = − 1
4 [Γâ,Γb̂], with Γâ the 5D Dirac matrices (see the appendix in [13] for our

notation and conventions).
The supergravity gauge group is generated by local transformations of the form

δKDÂ = [K,DÂ] , δKU = K U , K = KĈ(z)DĈ + 1
2K

ĉd̂(z)Mĉd̂ +Kkl(z)Jkl , (3)

with all the gauge parameters obeying natural reality and symmetry conditions, and otherwise
arbitrary. In (3) we have also included the transformation rule for a tensor superfield U(z),
with its indices suppressed.

The covariant derivatives obey (anti)commutation relations of the general form

[DÂ,DB̂} = TÂB̂
ĈDĈ + 1

2RÂB̂
ĉd̂Mĉd̂ +RÂB̂

klJkl , (4)

1The operation of (anti)symmetrization of n indices is defined to involve a factor (n!)−1.
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where TÂB̂
Ĉ is the torsion, and RÂB̂

ĉd̂ and RÂB̂
kl are the SO(4,1) and SU(2) curvature

tensors, respectively.
To describe the Weyl multiplet of conformal supergravity [9, 10], the torsion has to be

constrained as [14]:

T iα̂
j

β̂

ĉ = −2iεij(Γĉ)α̂β̂ , T iα̂
j

β̂

γ̂
k = T iα̂b̂

ĉ = 0, Tâb̂
ĉ = Tâβ̂(j

β̂
k) = 0 . (5)

With these constraints, it can be shown that the torsion and curvature tensors are expressed
in terms of four dimension-1 tensor superfields Sij , Câij , Xâb̂, and Nâb̂, and their covariant
derivatives. The superfields Sij , Câij are symmetric in i, j, while Xâb̂, Nâb̂ are antisymmetric
in â , b̂. All these tensors are real Sij = Sij , Câij = Câij , Xâb̂ = Xâb̂ , Nâb̂ = Nâb̂.

The covariant derivatives obey the (anti)commutation relations [14]:

{Diα̂,Djβ̂
}

= −2i εijDα̂β̂ − i εα̂β̂ε
ijX ĉd̂Mĉd̂ +

i
4
εijεâb̂ĉd̂ê(Γâ)α̂β̂Nb̂ĉMd̂ê

− i
2
εâb̂ĉd̂ê(Σâb̂)α̂β̂Cĉ

ijMd̂ê + 4iSijMα̂β̂ + 3i εα̂β̂ε
ijSklJkl

−i εijCα̂β̂
klJkl − 4i

(
Xα̂β̂ +Nα̂β̂

)
J ij , (6a)

[Dâ,Djβ̂ ] =
1
2

(
(Γâ)β̂

γ̂Sjk −Xâb̂(Γ
b̂)β̂

γ̂δjk −
1
4
εâb̂ĉd̂êN

d̂ê(Σb̂ĉ)β̂
γ̂δjk + (Σâb̂)β̂

γ̂Cb̂
j
k

)
Dkγ̂

+ curvature terms . (6b)

The dimension-1 components of the torsion, Sij , Xâb̂, Nâb̂ and Câ
ij , obey some differential

constraints implied by the Bianchi identities [14].
The fact that the supergeometry introduced corresponds to 5D conformal supergravity,

manifests itself in the invariance of the constraints (5) under infinitesimal super-Weyl trans-
formations of the form2

δσDiα̂ = σDiα̂ + 4(Dγ̂iσ)Mγ̂α̂ − 6(Dα̂kσ)Jki , (7a)

δσDâ = 2σDâ + i(Γâ)γ̂δ̂(Dkγ̂σ)Dδ̂k − 2(Db̂σ)Mâb̂ +
i
4
(Γâ)γ̂δ̂(D(k

γ̂ Dl)δ̂ σ)Jkl , (7b)

where the scalar superfield σ is real and unconstrained. The components of the dimension-1
torsion can be seen to transform as follows:

δσS
ij = 2σSij +

i
2
Dα̂(iDj)α̂ σ , δσCâ

ij = 2σCâij + i (Γâ)γ̂δ̂D(i
γ̂ Dj)δ̂ σ , (8a)

δσXâb̂ = 2σXâb̂ −
i
2

(Σâb̂)
α̂β̂Dkα̂Dβ̂kσ , δσNâb̂ = 2σNâb̂ − i (Σâb̂)

α̂β̂Dkα̂Dβ̂kσ . (8b)

It follows from here that Wâb̂ := Xâb̂ − 1
2Nâb̂ transforms homogeneously,

δσWâb̂ = 2σWâb̂ . (9)

Therefore, Wâb̂ is a superspace generalization of the Weyl tensor.
It turns out that the super-Weyl transformations can be used to gauge away the superfield

Câ
ij . Imposing the super-Weyl gauge condition

Câ
ij = 0 , (10)

2The finite form for the super-Weyl transformations has been given in [19].
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is equivalent to extending the set of constraints (5) by an additional dimension-1 constraint
which is Tâ

(j

(β̂

k)
γ̂) = 0 [14]. The resulting superspace geometry provides an alternative de-

scription of the Weyl multiplet. Because of (10), the full set of constraints is now invariant
under the super-Weyl transformations (7a)–(7b) generated by a constrained parameter σ.
The corresponding constraint is

D(i
α̂Dj)β̂ σ −

1
4
εα̂β̂Dγ̂(iDj)γ̂ σ = 0 . (11)

Another consequence of (10) in conjunction with the Bianchi identities is that Sij satisfies
the equation

D(i
γ̂ S

jk) = 0 . (12)

If not specifically mentioned, eq. (10) will be assumed in what follows.
The Weyl multiplet can naturally be coupled to a non-Abelian vector multiplet. This

is achieved by introducing gauge-covariant derivatives DÂ = DÂ + VÂ(z), with VÂ a gauge
connection taking its values in the Lie algebra of the gauge group. Then the algebra (4) turns
into

[DÂ,DB̂} = TÂB̂
ĈDĈ + 1

2RÂB̂
ĉd̂Mĉd̂ +RÂB̂

klJkl + FÂB̂ . (13)

An irreducible off-shell vector multiplet emerges if FÂB̂ is constrained as F iα̂jβ̂ ∝ εijεα̂β̂W
(compare with [5]). The field strength W possesses the super-Weyl transformation δσW =
2σW and obeys the following Bianchi identity:

D(i
α̂Dj)

β̂
W − 1

4
εα̂β̂Dγ̂(iDj)

γ̂ W = 0 . (14)

Associated with the vector multiplet is the composite superfield [14]

Gij := tr
{

iDα̂(iWDj)
α̂W +

i
2
WDijW − 2SijW2

}
, Dij := Dα̂(iDj)

α̂ . (15)

It is characterized by the following fundamental properties:

D(i
α̂Gjk) = 0 , δσGij = 6σGij . (16)

LetW = W Z, with Z the generator, be the field strength of an Abelian vector multiplet.
Then, eq. (14) coincides in form with the constraint (11) obeyed by the super-Weyl parameter.
If the vector multiplet is characterized by W (z) 6= 0 everywhere in superspace, super-Weyl
transformations can be used to impose the gauge W = 1. The resulting geometry (13)
describes the minimal multiplet of 5D supergravity [4].

3 Kinematics and dynamics in curved projective super-
space

We have reviewed the geometric description of 5D conformal supergravity in superspace.
Let us now turn to a brief discussion of a large family of off-shell supermultiplets coupled to
conformal supergravity, which can be used to describe supersymmetric matter. They were
introduced in [14] under the name covariant projective supermultiplets. These supermultiplets
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are a curved-superspace extension of the 5D superconfomal projective multiplets [20]. The
latter are ordinary projective supermultiplets [18] with respect to the super-Poincaré subgroup
of the 5D superconformal group.

It is useful to introduce auxiliary isotwistor coordinates u+
i ∈ C2 \ {0} in addition to the

superspace coordinates zM̂ = (xm̂, θµ̂i ). All the coordinates u+
i and zM̂ are defined to be

inert under the tangent-space group. In particular, the variables u+
i do not transform under

the local SU(2) group, and hence they are covariantly constant, DÂu+
j = 0. It follows from

(6a) that the operators D+
α̂ := u+

i Diα̂ obey the following algebra (the constraint (10) is not
assumed from here until eq. (21) including):

{D+
α̂ ,D+

β̂
} = −4i

(
Xα̂β̂ +Nα̂β̂

)
J++ + 4iS++Mα̂β̂ −

i
2
εâb̂ĉd̂ê(Σâb̂)α̂β̂Cĉ

++Md̂ê , (17)

where J++ := u+
i u

+
j J

ij and S++ := u+
i u

+
j S

ij .
A covariant projective supermultiplet of weight n, Q(n)(z, u+), is defined to be a scalar

superfield that lives on M5|8, is holomorphic with respect to the isotwistor variables u+
i on

an open domain of C2 \ {0}, and is characterized by the following conditions:
(i) it obeys the covariant analyticity constraint

D+
α̂Q

(n) = 0 ; (18)

(ii) it is a homogeneous function of u+ of degree n, that is,

Q(n)(z, c u+) = cnQ(n)(z, u+) , c ∈ C \ {0} ; (19)

(iii) infinitesimal gauge transformations (3) act on Q(n) as follows:

δKQ
(n) =

(
KĈDĈ +KijJij

)
Q(n) ,

KijJijQ
(n) = − 1

(u+u−)

(
K++D−− − nK+−

)
Q(n) , K±± = Kij u±i u

±
j , (20)

where D−− = u−i∂/∂u+i. The right-hand side in (20) involves an additional isotwistor,
u−i which is subject to the condition (u+u−) = u+iu−i 6= 0, and is otherwise arbitrary. By
construction, Q(n) is independent of u−, i.e. ∂Q(n)/∂u−i = 0. One can see that δQ(n) is
also independent of the isotwistor u−, that is ∂(δQ(n))/∂u−i = 0, due to (19). It follows
from (20) that J++Q(n) ≡ 0 which is the integrability condition for the constraint (18). It
is important to note that, because of (ii), the isotwistor u+

i plays the role of homogeneous
global coordinates for CP 1 and the covariant projective multiplets live in curved projective
superspace M5|8 × CP 1.

In the case of conformal supergravity, we have to address the issue of how covariant pro-
jective multiplets may consistently vary under the super-Weyl transformations. If a weight-n
projective superfield Q(n) is chosen to transforms homogeneously, δσQ(n) ∝ σQ(n), then its
transformation law turns out to be uniquely fixed by the constraint (18) to be

δσQ
(n) = 3nσQ(n) . (21)

Without the assumption of homogeneity, it is easy to construct examples of covariant pro-
jective multiplets which do not respect (21). The superfield S++ is a particularly important
example. Due to eq. (12) (from here on we only consider the geometry with Câij = 0), S++

is a projective superfield of weight two, D+
α̂S

++ = 0. In accordance with (8a), its super-Weyl
transformation is inhomogeneous

δσS
++ = 2σS++ +

i
2

(D+)2σ , (D+)2 := D+α̂D+
α̂ . (22)
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Another important example of weight-two projective multiplet is given by G++ := Giju+
i u

+
j

with Gij the descendant associated with the Yang-Mills field strength W defined in (15).
It satisfies the constraint D+

α̂G++ = 0, and possesses the super-Weyl transformation law
δσG++ = 6σG++ [14].

If Q(n)(u+) is a covariant projective multiplet, its complex conjugate Q̄(n)(u+) is no longer
of the same type. However, one can introduce a generalized smile-conjugation, Q(n) → Q̃(n),

Q̃(n)(u+) ≡ Q̄(n)
(
u+ → ũ+

)
, ũ+ = iσ2 u

+ , (23)

which acts on the space of covariant projective weight-n multiplets, because of relation

D̃+
α̂Q

(n) = (−1)ε(Q
(n))D+α̂Q̃(n). One can see that ˜̃

Q(n) = (−1)nQ(n), and therefore real
supermultiplets can be defined for n even.

To define a locally supersymmetric and super-Weyl invariant action, one needs two pre-
requisites [14]: (i) a Lagrangian L++(z, u+) which is a real projective multiplet of weight two
and which possesses the super-Weyl transformation δσL++ = 6σL++; (ii) an Abelian vector
multiplet with its field strength W (z) non-vanishing everywhere. The action is:

S(L++) = 2
3π

∮
(u+du+)

∫
d5x d8θ E L

++W 4

(G++)2 , E−1 = Ber (EÂ
M̂ ) . (24)

Here G++ := Giju+
i u

+
j , where Gij is the descendant (15) associated with W . Note that

S(L++) is invariant under arbitrary re-scalings u+
i (t) → c(t)u+

i (t), ∀c(t) ∈ C \ {0}, where
t denotes the evolution parameter along the integration contour. The action can be shown
to be invariant under supergravity gauge transformations (3) and (20), see [14, 13]. To
see that S(L++) is invariant under super-Weyl transformations, one has only to note that
δσE = −2σE and make use of the transformation rules δσL++ = 6σL++, δσW = 2σW and
δσG

++ = 6σG++.
The crucial property of S(L++) is that it is independent of the concrete choice of W ,

provided L++ is independent of such a vector multiplet. Another important feature of the
action introduced is that (24) provides a natural extension of the action principle in flat
projective superspace [17, 20].

Since the action (24) is super-Weyl invariant, one can choose the super-Weyl gauge W = 1.
Then, the action functional (24) takes the form given in [13] in the case of the 5D minimal
multiplet.

Now we are in a position to give some interesting examples of supergravity-matters sys-
tems. Let V(z, u+) denote the tropical prepotential3 for the Abelian vector multiplet W
appearing in the action (24). The prepotential is a real weight-zero projective multiplet
possessing the gauge invariance

δV = λ+ λ̃ , (25)

with λ a weight-zero arctic multiplet. A hypermultiplet can be described by an arctic weight-
one multiplet Υ+(z, u+) and its smile-conjugate Υ̃+. Consider a gauge invariant Lagrangian
of the form (with the gauge transformation of Υ+ being δΥ+ = −ξλΥ+)

L++ = 1
k2VG++ − Υ̃+eξVΥ+ , (26)

with κ the gravitational coupling constant, and ξ a cosmological constant. It describes
Poincaré supergravity if ξ = 0, and pure gauge supergravity with ξ 6= 0.

3See [12] for the definition of covariant arctic and tropical multiplets.



254 S.M. Kuzenko, G. Tartaglino-Mazzucchelli. Wandering in curved superspace

The dynamics of the Yang-Mills supermultiplet can be described by the Lagrangian L++
YM =

g−2 VG++, with g the coupling constant (compare with the rigid supersymmetric case [21]).
A system of arctic weight-one multiplets Υ+(z, u+) and their smile-conjugates Υ̃+ can be

described by the Lagrangian

L++ = iK(Υ+, Υ̃+) , (27)

with K(ΦI , Φ̄J̄ ) a real analytic function of n complex variables ΦI , where I = 1, . . . , n. For
L++ to be a weight-two real projective superfield, it is sufficient to require

ΦI ∂
∂ΦI K(Φ, Φ̄) = K(Φ, Φ̄) . (28)

This is a curved superspace generalization of the general model for superconformal polar
multiplets [20] (see also [11]).

Given a system of interacting arctic weight-zero multiplets Υ and their smile-conjugates
Υ̃, their coupling to supergravity can be described by the Lagrangian

L++ = G++ K(Υ, Υ̃) , (29)

with K(ΦI , Φ̄J̄) a real function which is not required to obey any homogeneity condition.
The corresponding action is invariant under Kähler transformations of the form

K(Υ, Υ̃) → K(Υ, Υ̃) + Λ(Υ) + Λ̄(Υ̃) , (30)

with Λ(ΦI) a holomorphic function.

Happy Birthday, Ioseph L’vovich !!!
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Abstract

N=4 superconformal n-particle quantum mechanics on the real line is governed by two
prepotentials, U and F , which obey a system of partial nonlinear differential equations
generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation. For U=0 one
remains with the WDVV equation which suggests an ansatz for F in terms of a set of
covectors to be found. One approach constructs such covectors from suitable polytopes,
another method solves Veselov’s ∨-conditions in terms of deformed Coxeter root systems.
I relate the two schemes for the An example.

1 Introduction

The issue of constructing N=4 superconformal extensions of Calogero-type multi-particle quantum
mechanics in one dimension has been attacked in several works [1]–[4]. In [1, 2] it was discov-
ered that this task leads to the (generalized) Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation
known from two-dimensional topological field theory [5, 6]. A physicist’s classification of N=4 su-
perconformal mechanics models based on particular WDVV solutions has been advanced in [3, 4],
where new models (with a purely quantum potential based on orthocentric simplices) were found.
Independently, mathematicians’ efforts revealed WDVV solutions derived from Coxeter systems and
certain deformations thereof and lead to the notion of Veselov ∨-systems [7]–[13]. In the current
paper I relate the mathematics approach with the physicist’s picture for solving the (generalized)
WDVV equation. In particular, the deformed An solutions of [9] will be mapped to the orthocentric
simplices of [4].

In section 2 I recall the formulation N=4 superconformal n-particle mechanics in terms of
su(1, 1|2) generators. The closure of the superconformal algebra poses constraints on the inter-
action, which for an ansatz quartic in the fermionic coordinates lead to the WDVV equation plus a
homogeneity condition for a quantum prepotential F and to related differential equations for a classi-
cal prepotential U . Section 3 expresses these prepotentials in terms of a system of covectors, thereby

256
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turning the differential to nonlinear algebraic equations. Putting U to zero, a family of WDVV solu-
tions is constructed in section 4. Its covectors deform the An root system and are parametrized by
the shape moduli of orthocentric n-simplices. The different formulations of the WDVV equation are
related in section 5, where the geometry of the deformed An ∨-systems is made explicit.

2 WDVV equations from N=4 superconformal quan-
tum mechanics

Let me consider a quantum mechanical system of n identical particles with unit mass on the real
line, described by positions xi and momenta pi, and enhanced by fermionic degrees of freedom ψi

α

and ψ̄iα = (ψi
α)†, where i = 1, . . . , n and α = 1, 2. Spinor indices are raised and lowered with the

invariant tensor εαβ and its inverse εαβ , where ε12 = 1. Further, I impose the canonical quantization
rules1

[xi, pj ] = iδj
i and {ψi

α, ψ̄
jβ} = δα

βδij , (1)

with all other (anti)commutators vanishing. At this stage I have introduced a Euclidean metric (δij)
in the configuration space Rn|4n/Sn.

I want the dynamics to be invariant under N=4 superconformal transformations. Their gen-
erators {H,Qα, Q̄

α, D, Ja, Sα, S̄
α,K}, with a = 1, 2, 3 and (Qα)†=Q̄α as well as (Sα)†=S̄α, form

a (centrally extended) su(1, 1|2) algebra defined by the following non-vanishing (anti)commutation
relations,

[D,H] = −iH , [H,K] = 2iD ,

[D,K] = +iK , [Ja, Jb] = i εabcJc ,

{Qα, Q̄
β} = 2Hδα

β , {Qα, S̄
β} = +2i (σa)α

βJa − 2Dδα
β − iCδα

β ,

{Sα , S̄
β} = 2Kδα

β , {Q̄α, Sβ} = −2i (σa)β
αJa − 2Dδβ

α + iCδβ
α ,

[D,Qα] = −1

2
iQα , [D,Sα] = +

1

2
iSα ,

[K,Qα] = +iSα , [H,Sα] = −iQα ,

[Ja, Qα] = −1

2
(σa)α

βQβ , [Ja, Sα] = −1

2
(σa)α

βSβ ,

[D, Q̄α] = −1

2
i Q̄α , [D, S̄α] = +

1

2
i S̄α ,

[K, Q̄α] = +i S̄α , [H, S̄α] = −i Q̄α ,

[Ja, Q̄
α] =

1

2
Q̄β(σa)β

α , [Ja, S̄
α] =

1

2
S̄β(σa)β

α . (2)

Here, ε123 = 1, C stands for the central charge, and {σ1, σ2, σ3} denote the Pauli matrices.

1I suppress ~ except for illustrative purposes.
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For a realization of the generators I try (repeated indices are summed over) [1]–[4]

K =
1

2
xixi , Sα = xiψi

α , S̄α = xiψ̄iα ,

D = −1

4
(xipi + pix

i) , Ja =
1

2
ψ̄iα(σa)α

βψi
β ,

Qα =
`
pj − ixi Uij(x)

´
ψj

α − i

2
xi Fijkl(x) 〈ψj

β ψ
kβψ̄l

α〉 ,

Q̄α =
`
pj + ixi Uij(x)

´
ψ̄jα − i

2
xi Fijkl(x) 〈ψjαψ̄kβψ̄l

β〉 ,

H =
1

2
pipi + VB(x) − Uij(x)〈ψi

αψ̄
jα〉 +

1

4
Fijkl(x)〈ψi

αψ
jαψ̄kβψ̄l

β〉 ,

(3)

with completely symmetric unknown functions VB , Uij and Fijkl homogeneous of degree −2 in
x ≡ {x1, . . . , xn}. Here, the symbol 〈. . . 〉 stands for symmetric (or Weyl) ordering. The ordering
ambiguity present in the fermionic sector affects the bosonic potential VB . In contrast to the N=2
superconformal extensions [14, 15], the closure of the algebra demands the quartic term, and a
nonzero central charge requires the quadratic term. Hence, there does not exist a free mechanical
representation of the algebra (2). A prototypical model is of the Calogero type,

VB =
X
i<j

g2

(xi − xj)2
, Uij = ? , Fijkl = ? . (4)

Inserting the representation (3) into the algebra (2), one produces a fairly long list of constraints
on VB , Uij and Fijkl. One of the consequences is that [1, 2, 3]

Uij = ∂i∂jU and Fijkl = ∂i∂j∂k∂lF ,

VB =
1

2
(∂iU)(∂iU) +

~2

8
(∂i∂j∂kF )(∂i∂j∂kF ) ,

(5)

which introduces two scalar prepotentials. Note that a quadratic polynomial in F or a constant in
U are irrelevant. The constraints then turn into the following system of nonlinear partial differential
equations [2, 3] (see also [1]),

(∂i∂k∂pF )(∂j∂l∂pF ) = (∂j∂k∂pF )(∂i∂l∂pF ) , xi∂i∂j∂kF = −δjk , (6)

∂i∂jU − (∂i∂j∂kF ) ∂kU = 0 , xi∂iU = −C , (7)

which I refer to as the “structure equations”. Notice that these equations are quadratic in F but only
linear in U . The first of (6) is a kind of zero-curvature condition for a connection ∂3F . It coincides
with the (generalized) WDVV equation known from topological field theory [5, 6]. The first of (7)
is a kind of covariant constancy for ∂U in the ∂3F background. Since its integrability implies the
WDVV equation projected onto ∂U , I call it the “flatness condition”.

The right equations in (6) and (7) represent homogeneity conditions for U and F . They are are
inhomogeneous with constants δjk and C (the central charge) on the right-hand side and display an
explicit coordinate dependence. Furthermore, the second equation in (6) can be integrated twice,
arriving at

(xi∂i − 2)F = −1

2
xixi and xi∂iU = −C . (8)

where I used the freedom in the definition of F to put the integration constants – a linear function
on the right-hand side – to zero.

There are some dependencies among the equations (6) and (7). The contraction of two left
equations with xi is a consequence of the two right equations, and therefore only the components
orthogonal to x are independent, effectively reducing the dimension to n−1. This means that only
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1

12
n(n−1)2(n−2) WDVV equations need to be solved and only

1

2
n(n−1) flatness conditions have to

be checked. For n=2 in particular, the single WDVV equation follow from the homogeneity condition
in (6), and the three flatness conditions are all equivalent. Hence, the nonlinearity of the structure
equations becomes only relevant for n≥3.

3 Covector ansatz for the prepotentials

For a particular solution to (8), I make the ansatz [1, 3, 4]

F = −1

2

X
α

fα α(x)2 ln |α(x)| and U = −
X

α

gα ln |α(x)| (9)

with real coefficients fα and gα, where α runs over a finite set of (unlabelled) noncollinear covectors
in Rn, i.e.

α(x) = αi x
i for each covector α . (10)

The center-of-mass degree of freedom corresponds to α(x) = ρ(x) ≡Pi x
i, and the relative particle

motion is translation invariant only if αiρi = 0 ∀α 6=ρ, meaning that the other covectors span only
the hyperplane perpendicular to ρ and {α} decomposes orthogonally. Identical particles require the
set {α} to be invariant (up to sign) under permutations of the components αi and enforce equality
of the fα (and gα) coefficients for permutation-related covectors. Relative translation invariance
and permutation symmetry are coordinate-dependent properties; they are not preserved by a generic
SO(n) coordinate transformation. Therefore, demanding either will severely restrict the coordinate
choice. Finally, a rescaling of α may be absorbed into a renormalization of fα. Therefore, only the
rays R+α are invariant data. I cannot, however, change the sign of fα in this manner.

Compatibility of (9) with the conditions (8) directly yields

X
α

fα αiαj = δij and
X

α

gα = C . (11)

The second relation fixes the central charge, and the gα are independent free couplings if not forced to
zero. The first relation amounts to a decomposition of the identity (δij) into (usually non-orthogonal)

rank-one projectors and imposes
1

2
n(n+1) relations on the coefficients fα for a given set {α}.

From (9) one derives

∂i∂j∂kF = −
X

α

fα
αiαjαk

α(x) and ∂iU = −
X

α

gα
αi

α(x) , (12)

and so the bosonic part of the potential takes the form

VB =
1

2

X

α,β

α·β
α(x) β(x)

“
gαgβ +

~2

4
fαfβ (α·β)2

”
(13)

with the covector scalar product

α·β = αi δ
ijβj = αi βi . (14)

The remaining structure equations in (6) and (7) become

X

α,β

fαfβ
α·β

α(x) β(x) (α ∧ β)⊗2 = 0 and (15)

X

β

“
gβ

1
β(x) − fβ

X
α

gα
α·β
α(x)

”
1

β(x) β ⊗ β = 0 (16)
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with
(α ∧ β)⊗2

ijkl = (αiβj − αjβi)(αkβl − αlβk) and (β ⊗ β)ij = βi βj . (17)

The task is to first solve (15) and (11), i.e. find sets {α, fα}, and then to determine {gα} from (16),
subject to (11). Many F backgrounds do not admit a C 6=0 solution, but a homogeneous U can always
be found [4]. I close the section with a simplifying observation. If a set of covectors decomposes into
mutually orthogonal subsets, (15) and (16) hold for each subset individually, and their prepotentials
just add up to the total F or U . Therefore, one may restrict the analysis to indecomposable covector
sets.

4 WDVV solutions from orthocentric simplices

For the rest of the paper I put U to zero and investigate solutions to the WDVV equations (15),
subject to the homogeneity condition

X
α

fα α⊗ α = 1 . (18)

Let me look for indecomposable sets of covectors obeying the WDVV equation (15). In one dimension,
the equation is trivial. For n=2, it follows from the homogeneity condition (18), which can actually
be satisfied for any set {α} of coplanar covectors [4]. Nevertheless, it is instructive to outline the
simplest examples. For the case of two covectors {α, β} one is forced to α·β = 0. For three coplanar
covectors {α, β, γ}, the homogeneity condition (18) uniquely fixes the f coefficients to

fα = − β·γ
α∧β γ∧α and cyclic , (19)

due to the identity
β∧γ β·γ αiαj + cyclic = −α∧β β∧γ γ∧α δij . (20)

The traceless part of the homogeneity condition should imply the single WDVV equation (15) in two
dimensions. Indeed, the choice (19) turns the latter into

α∧β γ(x) + β∧γ α(x) + γ∧α β(x) = 0 (21)

which is identically true. Without loss of generality I may assume that α+ β + γ = 0, i.e. the three
covectors form a triangle. In this case I have α∧β = β∧γ = γ∧α = 2A, where the area A of the

triangle may still be scaled to
1

2
, and (19) simplifies to

fα = − β·γ
4 A2 and cyclic . (22)

In dimension n=3, the minimal set of three covectors must form an orthogonal basis, with f−1
α =

α·α. Let me skip the cases of four and five covectors and go to the situation of six covectors because
the homogeneity condition (18) then precisely determines all f coefficients. However, it is not true
that six generic covectors can be scaled to form the edges of a polytope. The space of six rays
in R3 modulo rigid SO(3) is nine dimensional, while the space of tetrahedral shapes (modulo size)
has only five dimensions. In order to generalize the n=2 solution above, let me assume that my six
covectors can be scaled to form a tetrahedron, with volume V and edges {α, β, γ, α′, β′, γ′} where
α′ is skew to α and so on. Any such tetrahedron is determined by giving three nonplanar covectors,
say {α, β, γ′}, which up to rigid rotation are fixed by six parameters, corresponding to the shape and
size of the tetrahedron.

The triangle result (22) can be employed to patch together the unique solution to the homogeneity
condition (18) for the tetrahedron, but only if the geometric constraints

α · α′ = 0 , β · β′ = 0 , γ · γ′ = 0 (23)
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Figure 1: Triangular configuration of covectors
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γ

 β

Figure 2: Tetrahedral configuration of covectors

are obeyed for the pairs of skew edges. In this situation, the identity

β·γ β′·γ′ αiαj + β·γ′ β′·γ α′iα′j + cyclic = −36V 2 δij , (24)

guarantees the homogeneity condition (18) for

fα = −β·γ β′·γ′
36 V 2 and fα′ = −β·γ′ β′·γ

36 V 2 (25)

plus their cyclic images. Tetrahedra subject to (23) are called “orthocentric” [16]. They are charac-
terized by the fact that all four altitudes are concurrent (in the orthocenter) and their feet are the
orthocenters of the faces. The space of orthocentric tetrahedra is of codimension two inside the space
of all tetrahedra and represents a three-parameter deformation of the A3 root system (ignoring the
overall scale).

What about the WDVV equation in this case? The 15 pairs of edges in the double sum of (15)
group into four triples corresponding to the tetrahedron’s faces plus the three skew pairs. It is not
hard to see that for each face the contributions add to zero, and so the concurrent edge pairs do
not contribute to the double sum in (15). This leaves the three skew pairs, but their contribution is
killed by the orthocentricity constraint (23), and the WDVV equation is indeed obeyed.
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Although I do not know the f coefficients for a general tetrahedron, I can offer the following
proof that the WDVV equation already enforces the orthocentricity. Consider the limit n̂(x) → ∞
for some fixed covector n̂ of unit length. Decomposing

α = α·n̂ n̂+ α⊥ −→ α(x) = α·n̂ n̂(x) + α⊥(x) (26)

we see that any factor 1
α(x) vanishes in this limit unless α·n̂ = 0. Thus, only covectors perpendicular

to n̂ survive in (15) and (16), reducing the system to the hyperplane orthogonal to n̂. On the other
hand, any solution to these equations, being an identity in x, must carry over to a solution of the
limiting equations, which correspond to the dimensionally reduced system. In a general tetrahedron,
take n̂ ∝ α∧α′. Then, the limit n̂(x) → ∞ in (15) retains only the covectors α and α′, and the
WDVV equation reduces to a single term, which vanishes only for α·α′ = 0. Equivalently, the plane
spanned by α and α′ contains no further covector, and two covectors in two dimensions must be
orthogonal. The same argument applies to β·β′ and γ·γ′, completing the proof.

 β
(n−2)

 β’

γ(n−2)

γ’

α

 β
γ

...

...

. . .

Figure 3: Faces sharing an edge of an n-simplex

This scheme may be taken to any dimension n. A simplicial configuration of
1

2
n(n+1) covectors

is already determined by n independent covectors, which modulo SO(n) are given by
1

2
n(n+1)

parameters. The homogeneity condition (18) uniquely fixes the f coefficients. Employing an iterated
dimensional reduction to any plane spanned by a skew pair of edges and realizing that no other edge
lies in such a plane, one sees that the WDVV equation always demands such an edge pair to be
orthogonal. This condition renders the n-simplex orthocentric and reduces the number of degrees of
freedom to n+1 (now including the overall scale given by the n-volume V ). In this situation I can
write down the unique solution to both the homogeneity condition and the WDVV equation,

fα = β·γ β′·γ′ β′′·γ′′ ··· β(n−2)·γ(n−2)

(n! V )2 , (27)

where the edge α is shared by the n−1 faces 〈αβγ〉, 〈αβ′γ′〉, . . ., 〈αβ(n−2)γ(n−2)〉, and I have oriented
all edges as pointing away from α. This formula works because any sub-simplex, in particular any
tetrahedral building block, is itself orthocentric. To summarize, the WDVV solutions for simplicial
covector configurations in any dimension are exhausted by an n-parameter deformation of the An root

system. The n moduli are relative angles and do not include the
1

2
n(n+1) trivial covector rescalings,

which, apart from the common scale, destroy the tetrahedron.
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These findings suggest that covector configurations corresponding to deformations of other roots
systems may solve the WDVV equations as well. For verification, I propose to consider the polytopes
associated with the weight systems of a given Lie algebra, since their edge sets are built from the root
covectors. The idea is then to relax the angles of such polytopes and analyze the constraints from the
homogeneity and WDVV equations. The above n-dimensional orthocentric hypertetrahedra emerge
simply from the fundamental representations of An. Extending this strategy to other representations
and Lie algebras could lead to many more solutions.

5 WDVV solutions from Veselov systems

In the mathematical literature, the (generalized) WDVV equation is usually formulated as

Wi W
−1
k Wj = Wj W

−1
k Wi for i, j, k = 1, . . . , n , (28)

where Wi is an n×n matrix with entries

(Wi)lm = ∂i∂l∂mW for W = W (y1, . . . , yn) , (29)

and ∂i ≡ ∂

∂yi
. It is easy to show [7] that (28) is equivalent to

Wi G
−1Wj = Wj G

−1Wi with G = −yk Wk , (30)

which in components reads

(∂i∂l∂pW )Gpq(∂q∂m∂jW ) = (∂j∂l∂pW )Gpq(∂q∂m∂iW ) , (31)

where the index position distinguishes between the metric G and its inverse G−1. For the covector
ansatz (9)

W = −1

2

X

β

fβ β(y)2 ln |β(y)| (32)

it follows that
Wi = −

X

β

fβ
βi

β(y) β ⊗ β −→ G =
X

β

fβ β ⊗ β . (33)

How is this related to the material of the previous sections? Comparing with (18), it seems that
one must impose the additional condition of G = −1. However, this is not so, because such a choice
may be achieved by a linear coordinate change

xi = yj M i
j −→ βi = M j

i αj (34)

so that for F (x) = W (y) one gets

Wi = M j
i Fj and Glm = −yk Wklm = −M i

l M
j

m xkFkij = M i
l δij M

>j
m , (35)

where the right equation in (6) was used in the last step. This converts the metric (Gij) of the y-frame
to the Euclidean metric (δij) in the x-frame,2 and changes the covector scalar product accordingly,

β·β′ = βi G
ijβ′j = αk M

>k
i G

ijM l
j α′l = αk δ

klα′l = α·α′ , (36)

in short:
G = M δM> and δ = M>G−1M . (37)

2Note that for the y-frame one must replace δij with Gij in the quantization rule (1).
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Thus, solutions to (31) of the form (32) can be translated to solutions to (6) of the form (9) by a
linear transformation.

For a prominent example, I turn to the n-parameter deformation of the An root system first
proposed in [9],

˘
β
¯

=
˘√

cicj (ei−ej) ,
√
ci e

i
˛̨

1 ≤ i < j ≤ n
¯

(no sums) , (38)

where ei(y) = yi and the ci are arbitrary (positive) parameters. It was shown that this covector
set satisfies the so-called ∨-conditions, which implies that (with fβ = 1) it provides an n-parameter
family of solutions (32) to the WDVV equation. For this case, the metric and its inverse are quickly
evaluated,

Gij =
`
1 +

P
kck

´
ci δij − cicj and Gij =

`
1 +

P
kck

´−1`
c−1

i δij + 1
´
, (39)

but in order to compute the corresponding transformation matrix M (or its inverse M−1) via (37)
one has to diagonalize G (or G−1), which is not an easy task.

However, in order to interpret the solution (38) in the x-frame, it suffices to study its geometric
(frame-independent) properties. First, I rescale each β by shifting the square roots into fβ coefficients,

˘
γ
¯

=
˘
ei−ej , ei¯ and

˘
fγ

¯
=
˘
cicj , ci

¯
for 1 ≤ i < j ≤ n , (40)

and observe that the new covectors fulfil the incidence relations of an n-simplex. Second, I must
figure out the angles formed by its edges,

cos ∠(γ, γ′) = γ·γ′√
γ·γ γ′·γ′ with γ·γ′ = γi G

ij γ′j . (41)

These angles depend on the deformation parameters ci, except for

ei · (ej−ek) = 0 for i, j, k mutually distinct , (42)

which means that non-concurrent edges are orthogonal to one another! This is a frame-independent
statement and qualifies the polytope based on (38) as an orthocentric one.

Clearly, I have rediscovered the solution family of section 4. As a side result, one obtains an
explicit parametrization of orthocentric n-simplices,

˘
α
¯
(c) =

˘
M−1(ei−ej) , M−1ei¯ , (43)

where the ci-dependence enters via the matrix M−1. The (physical) geometries corresponding to the
other known ∨-systems remain to be worked out.
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Dark energy, inflation and dark matter
from modified F (R) gravity
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Abstract

We review modified F (R) gravity as realistic candidate to describe the observable
universe expansion history. We show that recent cosmic acceleration, radiation/matter-
dominated epoch and inflation could be realized in the framework of F (R)-gravity in the
unified way. For some viable classes of F (R)-gravity, the Newton law is respected and
there is no so-called matter instability (the very heavy positive mass for additional scalar
degree of freedom is generated). The reconstruction program in modified gravity is also
reviewed and it is demonstrated that any time-evolution of the universe expansion could
be realized in F (R)-gravity. These models remain to be realistic also in the presence
of non-minimal gravitational coupling with usual matter. It is shown that same model
which passes local tests and predicts the unification of inflation with cosmic acceleration
also describes dark matter thanks to presence of additional scalar degree of freedom and
chameleon mechanism.

1 Introduction

Modified gravity suggests very natural answers to resolution of several fundamental cosmological
problems. For instance, the observable universe expansion history may be described by modified
gravity. Indeed, it gives very beautiful unification of the early-time inflation and late-time acceleration
thanks to different role of gravitational terms relevant at small and at large curvature. Moreover, the
coincidence problem may be solved in such theory simply by the universe expansion. Some models
of modified gravity are predicted by string/M-theory considerations.

From another side, dark matter may be described totally in terms of modified gravity. Moreover,
modified gravity may be useful in high energy physics, for instance, to solve the hierarchy or gravity-
GUTs unification problems. Finally, modified gravity may pass the local tests and cosmological
bounds.

1E-mail:nojiri@phys.nagoya-u.ac.jp
2E-mail:odintsov@ieec.uab.es, also at Lab. Fundam. Study, Tomsk State Pedagogical University, Tomsk

266



1. Introduction 267

Usually the evolution of the universe can be described by the FRW equation:

3
κ2H2 = ρ . (1)

Here the spatial part of the universe is assumed to be flat. We denote the Hubble rate by H, which
is defined in terms of the scale factor a by

H ≡ ȧ
a . (2)

In (1), ρ expresses the energy density of the usual matter, dark matter, and dark energy. The dark
energy could be cosmological constant and/or a matter with ‘equation of state (EoS)’ parameter w,
which is less than −1/3 and is defined by

w ≡ p
ρ . (3)

Instead of including unknown exotic matter or energy, one may consider the modification of gravity,
which corresponds to the change of the l.h.s. in (1).

An example of such modified gravity pretending to describe dark energy could be the scalar-
Einstein-Gauss-Bonnet gravity [1], whose action is given by

S =

Z
d4x

√−g ˘ 1
2κ2R− 1

2∂µφ∂
µφ− V (φ) + f(φ)G¯ . (4)

Here G is Gauss-Bonnet invariant:

G ≡ R2 − 4RµνR
µν +RµνρσR

µνρσ . (5)

Another example is so-called F (R)-gravity (for a review, see [2]). In F (R)-gravity models[2], the
scalar curvature R in the Einstein-Hilbert action

SEH =

Z
d4x

√−gR , (6)

is replaced by a proper function of the scalar curvature:

SF (R) =

Z
d4x

√−gF (R) . (7)

Recently, an interesting realistic theory has been proposed in [3], where F (R) is given by

F (R) = 1
2κ2 (R+ fHS(R)) , fHS(R) = −m2c1(R/m2)n

c2(R/m2)n
+1 . (8)

In this model, R is large even in the present universe, and fHS(R) could be expanded by the inverse
power series of R:

fHS(R) ∼ −m2c1
c2

+ m2c1
c22

`
R

m2
´−n

+ · · · , (9)

Then there appears an effective cosmological constant Λeff as Λeff = m2c1/c2, which generates the
accelerating expansion in the present universe

In the HS-model (8), there occurs a flat spacetime solution, where R = 0, since the following
condition is satisfied:

lim
R→0

fHS(R) = 0 . (10)

An interesting point in the HS model is that several cosmological conditions could be satisfied.
In the next section, we review on the general properties of F (R)-gravity. After some versions

of F (R)-gravity were proposed as a model of the dark energy, there were indicated several prob-
lems/viability criteria, which we review in Section 3. It is shown how the critique of modified gravity
may be removed for realistic models. In Section 4, we propose models [4] and [5], which unify the
early-time inflation and the recent cosmic acceleration and pass several cosmological constraints. Re-
construction program for F (R)-gravity is reviewed in Section 5. The partial reconstruction scenario
is proposed. Section six is devoted to the description of dark matter in terms of viable modified grav-
ity where composite scalar particle from F (R) gravity plays the role of dark particle. Non-minimal
modified gravity is discussed in section seven. Some summary and outlook is given in the last section.
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2 General properties of F (R)-gravity

In this section, the general properties of the F (R)-gravity are reviewed. For general F (R)-gravity,
one can define an effective equation of state (EoS) parameter. The FRW equations in Einstein gravity
coupled with perfect fluid are:

ρ = 3
κ2H2 , p = − 1

κ2

“
3H2 + 2Ḣ

”
. (11)

For modified gravities, one may define an effective EoS parameter as follows:

weff = −1− 2Ḣ
3H2 . (12)

The equation of motion for modified gravity is given by

1
2gµνF (R)−RµνF

′(R)− gµν2F ′(R) +∇µ∇νF
′(R) = −κ2

2 T(m)µν . (13)

By assuming spatially flat FRW universe,

ds2 = −dt2 + a(t)2
X

i=1,2,3

“
dxi
”2

, (14)

the FRW-like equation follows:

0 = −F (R)
2 + 3

“
H2 + Ḣ

”
F ′(R)− 18

“
4H2Ḣ +HḦ

”
F ′′(R) + κ2ρ(m) (15)

There may be several (often exact) solutions of (15). Without any matter, assuming that the
Ricci tensor could be covariantly constant, that is, Rµν ∝ gµν , Eq.(13) reduces to the algebraic
equation:

0 = F (R)− 2RF (R) . (16)

If Eq.(16) has a solution, the Schwarzschild (or Kerr) - (anti-)de Sitter space is an exact vacuum
solution (see[6] and refs. therein).

When F (R) behaves as F (R) ∝ Rm and there is no matter, there appears the following solution:

H ∼ − (m−1)(2m−1)
m−2
t , (17)

which gives the following effective EoS parameter:

weff = − 6m2−7m−1
3(m−1)(2m−1) . (18)

When F (R) ∝ Rm again but if the matter with a constant EoS parameter w is included, one
may get the following solution:

H ∼
2m

3(w+1)
t , (19)

and the effective EoS parameter is given by

weff = −1 + w+1
m . (20)

This shows that modified gravity may describe early/late-time universe acceleration.
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3 Problems with F (R)-gravity

Immediately, after the F (R)-models were proposed as models of the dark energy, there appeared
several works [7, 8] (and more recently in [9, 10]) criticizing such theories.

First of all, we comment on the claim in [7]. Note that one can rewrite F (R)-gravity in the scalar-
tensor form. By introducing the auxiliary field A, we rewrite the action (7) of the F (R)-gravity in
the following form:

S = 1
κ2

Z
d4x

√−g ˘F ′(A) (R−A) + F (A)
¯
. (21)

By the variation over A, one obtains A = R. Substituting A = R into the action (21), one can
reproduce the action in (7). Furthermore, we rescale the metric in the following way (conformal
transformation):

gµν → eσgµν , σ = − lnF ′(A) . (22)

Hence, the Einstein frame action is obtained:

SE = 1
κ2

Z
d4x

√−g `R− 3
2g

ρσ∂ρσ∂σσ − V (σ)
´
,

V (σ) = eσg
`
e−σ´− e2σf

`
g
`
e−σ´´ = A

F ′(A) − F (A)
F ′(A)2 (23)

Here g
`
e−σ

´
is given by solving the equation σ = − ln (1 + f ′(A)) = lnF ′(A) as A = g

`
e−σ

´
. Due

to the scale transformation (22), there appears a coupling of the scalar field σ with usual matter.
The mass of σ is given by

m2
σ ≡ 1

2
d2V (σ)

dσ2 = 1
2

n
A

F ′(A) − 4F (A)
(F ′(A))2 + 1

F ′′(A)

o
. (24)

Unless mσ is very large, there appears the large correction to the Newton law. Naively, one expects
the order of the mass mσ could be that of the Hubble rate, that is, mσ ∼ H ∼ 10−33 eV, which is
very light and the correction could be very large, which is the claim in [7].

We should note, however, that the mass mσ depends on the detailed form of F (R) in general
[11]. Moreover, the mass mσ depends on the curvature. The curvature on the earth Rearth is much
larger than the average curvature Rsolar in the solar system and Rsolar is also much larger than the
average curvature in the unverse, whose order is given by the square of the Hubble rate H2, that is,
Rearth À Rsolar À H2. Then if the mass becomes large when the curvature is large, the correction to
the Newton law could be small. Such a mechanism is called the Chameleon mechanism and proposed
for the scalar-tensor theory in [12]. In fact, the HS model [3] has this property and the correction to
the Newton law can be very small on the earth or in the solar system. In the HS model, the mass
mσ is given by (see also [13])

m2
σ ∼ m2c22

2n(n+1)c1

`
R

m2
´n+2

. (25)

Here the order of the mass-dimensional parameterm2 could bem2 ∼ 10−64 eV2. Then in solar system,
where R ∼ 10−61 eV2, the mass is given by m2

σ ∼ 10−58+3n eV2 and in the air on the earth, where
R ∼ 10−50 eV2, m2

σ ∼ 10−36+14n eV2. The order of the radius of the earth is 107 m ∼ `10−14 eV
´−1

.
Therefore the scalar field σ could be heavy enough if nÀ 1 and the correction to the Newton law is
not observed being extremely small. On the other hand, in the air on the earth, if we choose n = 10,
for example, one gets the mass is extremely large:

mσ ∼ 1043 GeV ∼ 1029 ×MPlanck . (26)

Here MPlanck is the Planck mass. Hence, the Newton law correction should be extremely small.
Let us discuss the matter instability proposed in [8], which may appear when the energy density

or the curvature is large compared with the average one in the universe, as is the case inside of the
planet. Multiplying gµν with Eq.(13), one obtains

2R+ F (3)(R)
F (2)(R)∇ρR∇ρR+ F ′(R)R

3F (2)(R) − 2F (R)
3F (2)(R) = κ2

6F (2)(R)T . (27)
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Here T is the trace of the matter energy-momentum tensor: T ≡ T ρ
(m)ρ. We also denote dnF (R)/dRn

by F (n)(R). Let us now consider the perturbation from the solution of the Einstein gravity. We denote
the scalar curvature solution given by the matter density in the Einstein gravity by Rb ∼ (κ2/2)ρ > 0
and separate the scalar curvature R into the sum of Rb and the perturbed part Rp as R = Rb +Rp

(|Rp| ¿ |Rb|). Then Eq.(27) leads to the perturbed equation:

0 = 2Rb + F (3)(Rb)
F (2)(Rb)∇ρRb∇ρRb + F ′(Rb)Rb

3F (2)(Rb)

− 2F (Rb)
3F (2)(Rb) − Rb

3F (2)(Rb) + 2Rp + 2F (3)(Rb)
F (2)(Rb)∇ρRb∇ρRp + U(Rb)Rp . (28)

Here U(Rb) is given by

U(Rb) ≡
“

F (4)(Rb)
F (2)(Rb) − F (3)(Rb)2

F (2)(Rb)2

”
∇ρRb∇ρRb + Rb

3

−F (1)(Rb)F (3)(Rb)Rb
3F (2)(Rb)2 − F (1)(Rb)

3F (2)(Rb) + 2F (Rb)F (3)(Rb)
3F (2)(Rb)2 − F (3)(Rb)Rb

3F (2)(Rb)2 (29)

It is convenient to consider the case that Rb and Rp are uniform, that is, they do not depend on
the spatial coordinate. Hence, the d’Alembertian can be replaced with the second derivative with
respect to the time coordinate: 2Rp → −∂2

tRp and Eq.(29) has the following structure:

0 = −∂2
tRp + U(Rb)Rp + const. . (30)

Then if U(Rb) > 0, Rp becomes exponentially large with time t: Rp ∼ e
√

U(Rb)t and the system
becomes unstable. In the 1/R-model [14], since the order of mass parameter mµ is

µ−1 ∼ 1018sec ∼ `10−33eV
´−1

, (31)

one finds

U(Rb) = −Rb +
R3

b
6µ4 ∼ R3

0
µ4 ∼ `10−26sec

´−2 ` ρm
g cm−3

´3
,

Rb ∼
`
103sec

´−2 ` ρm
g cm−3

´
(32)

Hence, the model is unstable and it would decay in 10−26 sec (for planet size). On the other hand,
in 1/R+R2-model [11], we find

U(R0) ∼ R0
3 > 0 . (33)

Then the system could be unstable again but the decay time is ∼ 1, 000 sec, that is, macroscopic. In
HS model [3], U(Rb) is negative[13]:

U(R0) ∼ − (n+2)m2c22
c1n(n+1) < 0 . (34)

Therefore, there is no matter instability[13].
Let us discuss the critical claim against modified gravity in [9, 10]. As shown in (16), as an exact

solution, there appears de Sitter-Schwarzschild spacetime in F (R)-gravity. The claim in [9, 10] is
that the solution does not match onto the stellar interior solution. Since it is difficult to construct
explicit solution describing the stellar configuration even in the Einstein gravity, we now proceed in
the following way: First, we separate F (R) into the sum of the Einstein-Hilbert part and other part
as F (R) = R+ f(R). Then Eq.(13) has the following form:

1
2gµνR−Rµν − 1

2gµνΛ + κ2

2 T(m)µν

= − 1
2gµν (f(R) + Λ) +Rµνf

′(R) + gµν2f ′(R)−∇µ∇νf
′(R) . (35)

Here −Λ is the value of f(R) in the present universe, that is, Λ is the effective cosmological constant:
Λ = −f(R0). We now treat the r.h.s. in (35) as a perturbation. Then the last two derivative terms
in (35) could be dangerous since there could be jump in the value of the scalar curvature R on the
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Figure 1: Typical behavior of R and ρ near the surface of the stellar configuration.

surface of stellar configuration. Of course, the density on the surface could change in a finite width
∆ as in Figure 1 and the derivatives should be finite and the magnitude could be given by

∂µ ∼ 1
∆ . (36)

One now assumes the order of the derivative could be the order of the Compton length of proton:

∂µ ∼ mp ∼ 1GeV ∼ 109 eV (37)

Here mp is the mass of proton. It is also assumed

R ∼ Re ∼ 10−47 eV2 , (38)

that is, the order of the scalar curvature R is given by the order of it inside the earth.
In case of the 1/R model [14], one gets

2f ′(R) ∼ ∇µ∇νf
′(R) ∼ m2

pµ4

R2 ∼ 10−20 eV2 À Re . (39)

Then the perturbative part could be much larger than unperturbative part in (35), say, R ∼ Re ∼
10−47 eV2. Therefore, the perturbative expansion could be inconsistent.

In case of the model [3], however, we find

2f ′(R) ∼ ∇µ∇νf
′(R) ∼ m2

pΛ

m2
`

R
m2
´−n−1 ∼ 10−3−17n eV2 . (40)

Then if n > 2, we find 2f ′(R), ∇µ∇νf
′(R) ¿ Re and therefore the perturbative expansion could

be consistent. This indicates that such modified gravity model may pass the above test. Thus, it is
demonstrated that some versions of modified gravity may easily pass above tests.

4 Unifying inflation and cosmic acceleration

In this section, we consider an extension of the HS model [3] to unify the early-time inflation and
late-time acceleration, following proposals [4, 5].

In order to construct such models, we impose the following conditions:

• Condition that inflation occurs:
lim

R→∞
f(R) = −Λi . (41)

Here Λi is an effective early-time cosmological constant.



272 S. Nojiri and S.D. Odintsov. Dark energy, inflation and dark matter ...

-6
f(R)

R

−2R̃0

−Λi

Figure 2: The typical behavior of f(R) which satisfies the conditions (41), (44), and (45).

Instead of (41) one may impose the following condition

lim
R→∞

f(R) = αRm . (42)

Here m and α are positive constants. Then as shown in (19), the scale factor a(t) evolves as

a(t) ∝ th0 , h0 ≡ 2m
3(w+1) , (43)

and weff = −1 + 2/3h0. Here w is the matter EoS parameter, which could correspond to dust
or radiation. We assume mÀ 1 so that Ḣ/H2 À 1.

• The condition that there is flat spacetime solution is given as

f(0) = 0 (44)

• The condition that late-time acceleration occurs should be

f(R0) = −2R̃0 , f ′(R0) ∼ 0 . (45)

Here R0 is the current curvature of the universe and we assume R0 > R̃0. Due to the condition
(45), f(R) becomes almost constant in the present universe and plays the role of the effective
small cosmological constant: Λl ∼ −f(R0) = 2R̃0.

The typical behavior of f(R) which satisfies the conditions (41), (44), and (45) is given in Figure
2 and the behavior of f(R) satisfying (42), (44), and (45) is given in Figure 3.

Some examples may be of interest. An example which satisfies the conditions (41), (44), and (45)
is given by the following action[4]:

f(R) = − (R−R0)2n+1+R2n+1
0

f0+f1{(R−R0)2n+1+R2n+1
0 } . (46)

Here n is a positive integer. The conditions (42) and (45) require

R2n+1
0

f0+f1R2n+1
0

= 2R̃0 ,
1
f1

= Λi . (47)

One can now investigate how the exit from the inflation could be realized in the model (46). It is
easier to consider this problem in the scalar-tensor form (Einstein frame) in (23). In the inflationary
epoch, when the curvature R = A is large, f(R) has the following form:

f(R) ∼ − 1
f1

+ f0
f2
1 R2n+1 . (48)
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Figure 3: The typical behavior of f(R) which satisfies the conditions (42), (44), and (45).

Hence, one gets

σ ∼ (2n+1)f0
f2
1 A2n+2 , (49)

and

V (σ) ∼ 1
f1
− 2(n+1)f0

f2
1

“
f2
1 σ

(2n+1)f0

” 2n+1
2n+2

. (50)

Note that the scalar field σ is dimensionless now. Let us check the condition for the slow roll,
|V ′/V | ¿ 1. Since

V ′(σ)
V (σ) ∼ −f1

“
f2
1 σ

(2n+1)f0

”− 1
2n+2

, (51)

if we start with σ ∼ 1, one finds

V ′(σ)
V (σ) ∼ − `R0

Λi

´ 2n
2n+1 , (52)

which is very small and the slow roll condition is satisfied. Thus, the value of the scalar field σ
increases very slowly and the scalar curvature R becomes smaller. When σ becomes large enough
and R becomes small enough, the inflation could stop. Another possibility to achieve the exit from
the inflation is to add small non-local term to gravitational action.

We now consider another example, where f(R) satisfies the conditions (42), (44), and (45) [5]:

f(R) = αR2n−βRn

1+γRn . (53)

Here α, β, and γ are positive constants and n is a positive integer. When the curvature is large
(R→∞), f(R) behaves as

f(R) → α
γR

n . (54)

To achieve the exit from the inflation, more terms could be added in the action. Since the derivative
of f(R) is given by

f ′(R) =
nRn−1(αγR2n−2αRn−β)

(1+γRn)2 , (55)

we find the curvature R0 in the present universe, which satisfies the condition f ′(R0) = 0, is given
by

R0 =


1
γ

„
1 +

q
1 + βγ

α

«ff1/n

, (56)

and

f(R0) ∼ −2R̃0 = α
γ2

„
1 +

(1−βγ/α)
√

1+βγ/α

2+
√

1+βγ/α

«
. (57)
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Let us check if we can choose parameters to reproduce realistic cosmological evolution. As a working
hypothesis, we assume βγ/αÀ 1, then

R0 ∼ (β/αγ)1/2n , f(R0) = −2R̃0 ∼ −β/γ (58)

We also assume f(RI) ∼ (α/γ)Rn
I ∼ RI . Here RI is the curvature in the inflationary epoch. As a

result, one obtains

α ∼ 2R̃0R
−2n
0 , β ∼ 4R̃2

0R
−2n
0 Rn−1

I , γ ∼ 2R̃0R
−2n
0 Rn−1

I . (59)

Hence, we can confirm the assumption βγ/αÀ 1 if n > 1 as

βγ
α ∼ 4R̃2

0R
−2n
0 R2n−2

I ∼ 10228(n−1) À 1 . (60)

Thus, we presented modified gravity models which unify early-time inflation and late-time acceler-
ation. One should stress that the above models (46) and (53) satisfy the cosmological constraints/local
tests in the same way as in the HS model [3].

5 Reconstruction of F (R)-gravity

In this section, it is shown how we can construct F (R) model realizing any given cosmology
(including inflation, matter-dominated epoch, etc) using technique of ref.[15]. The general F (R)-
gravity action with general matter is given as:

S =

Z
d4x

√−g {F (R) + Lmatter} . (61)

The action (61) can be rewritten by using proper functions P (φ) and Q(φ) of a scalar field φ:

S =

Z
d4x

√−g {P (φ)R+Q(φ) + Lmatter} . (62)

Since the scalar field φ has no kinetic term, one may regard φ as an auxiliary scalar field. By the
variation over φ, we obtain

0 = P ′(φ)R+Q′(φ) , (63)

which could be solved with respect to φ as φ = φ(R). By substituting φ = φ(R) into the action (62),
we obtain the action of F (R)-gravity where

F (R) = P (φ(R))R+Q(φ(R)) . (64)

By the variation of the action (62) with respect to gµν , the equation of motion follows:

0 = − 1
2gµν {P (φ)R+Q(φ)} −RµνP (φ) +∇µ∇νP (φ)− gµν∇2P (φ) + 1

2Tµν (65)

In FRW universe (14), Eq.(65) has the following form:

0 = −6H2P (φ)−Q(φ)− 6H dP (φ(t))
dt + ρ

0 =
“
4Ḣ + 6H2

”
P (φ) +Q(φ) + 2 d2P (φ(t))

dt + 4H dP (φ(t))
dt + p (66)

By combining the two equations in (66) and deleting Q(φ), we obtain

0 = 2 d2P (φ(t))
dt2 − 2H dP (φ(t))

dt + 4ḢP (φ) + p+ ρ . (67)

Since one can redefine φ properly as φ = φ(ϕ), we may choose φ to be a time coordinate: φ = t. Then
assuming ρ, p could be given by the corresponding sum of matter with a constant EoS parameters wi
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and writing the scale factor a(t) as a = a0e
g(t) (a0 : constant), we obtain the second rank differential

equation:

0 = 2 d2P (φ)
dφ2 − 2g′(φ) dP (φ))

dφ + 4g′′(φ)P (φ) +
X

i

(1 + wi) ρi0a
−3(1+wi)
0 e−3(1+wi)g(φ) . (68)

If one can solve Eq.(68), with respect to P (φ), one can also find the form of Q(φ) by using (66) as

Q(φ) = −6
`
g′(φ)

´2
P (φ)− 6g′(φ) dP (φ)

dφ +
X

i

ρi0a
−3(1+wi)
0 e−3(1+wi)g(φ) . (69)

Thus, it follows that any given cosmology can be realized by some specific F (R)-gravity.
We now consider the cases that (68) can be solved exactly. A first example is given by

g′(φ) = g0 + g1
φ . (70)

For simplicity, we neglect the contribution from matter. Then Eq.(68) gives

0 = d2P
dφ2 − `g0 + g1

φ

´
dP
dφ − 2g1

φ2 P . (71)

The solution of (71) is given in terms of the Kummer functions or confluent hypergeometric functions:

P = zαFK(α, γ; z) , z1−γFK(α− γ + 1, 2− γ; z) (72)

Here

z ≡ g0φ , α ≡ 1+g1±
√

g2
1+10g1+1

4 ,

γ ≡ 1±
√

g2
1+10g1+1

2 , FK(α, γ; z) =

∞X
n=0

α(α+1)···(α+n−1)
γ(γ+1)···(γ+n−1)

zn

n! . (73)

Eq.(70) gives the following Hubble rate:

H = g0 + g1
t . (74)

Then when t is small, H behaves as
H ∼ g1

t , (75)

which corresponds to the universe with matter whose EoS parameter is given by

w = −1 + 2
3g1

. (76)

On the other hand, when t is large, we find

H → g0 , (77)

that is, the universe is asymptotically deSitter space.
We now show how we could reconstruct a model unifying the early-time inflation with late-time

acceleration. In principle, one may consider g(φ) satisfying the following conditions:

• The condition for the inflation (t = φ→ 0):

g′′(0) = 0 , (78)

which shows that H(0) = g′(0) is almost constant, which corresponds to the asymptotically
deSitter space.

• The condition fot the late-time acceleration (at t = φ ∼ t0):

g′′(t0) = 0 , (79)

which corresponds to the asymptotically deSitter space again.
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An example could be

g′(φ) = g0 + g1
(t20−φ2)n−t2n

0
(t20−φ2)n

+c . (80)

Here g0, g1, and c are positive constants and n is positive integer greater than 1. Note that g′(φ) is
a monotonically decreasing function of φ if 0 < φ < t0 We also assume

0 < g0 − g1t2n
0

c ¿ g0 . (81)

One should note that g′(0) = g0 corresponds to the large Hubble rate in the inflationary epoch and

g′(t0) = g0 − g1t2n
0

c to the small Hubble rate in the present universe. It is very difficult to solve (68)
with (80), so we expand g(φ) for small φ. For simplicity, we consider the case that n = 2 and no
matter presents. Then

g(φ) = g0 − 2g1t20
t40+c φ

2 +O `φ4 or g2
1

´
. (82)

Hence, one gets

P (φ) = P0 + P1e
g0φ − 2g1t20

t40+c

h
P1

n
φ3

3 − 3φ2

g0
+ 6φ

g2
0
− 6

g4
0

o
eg0φ +

n
2φ2

g0
+ 4φ

g2
0

o
P0

−P2
g0

eg0φ − P3

i
+O `g2

1

´
. (83)

Here P0, P1, P2, and P3 are constants of integration. Using boundary conditions we can specify
different modified gravities which unify the early-time inflation with late-time acceleration.

We may consider another model:

g′(φ) = a+bφ2

1+cφ2 . (84)

Here a, b, and c are positive constants satisfying the condition:

b
c ¿ a . (85)

In the early time φ = t ∼ 0, we find

H(t) = g′(t) = a+ (b− ac)φ2 +O
“
t4
”
. (86)

Then we may identify a as a cosmological constant which generates the inflation. On the other hand,
in the late time φ = t→∞, the Hubble rate H is given by

H(t) = g′(t) = b
c + a−b/c

cφ2 +O `φ−4´ , (87)

which tells that the effective cosmological constant generating accelerating expansion of the universe
could be given by b/c.

When φ = t is small, by comparing (86) with (82), we may identify

a↔ g0 , ac− b↔ 2g1t20
t40+c . (88)

Then by using (83), we find that the corresponding P could be given by

P (φ) = P I
0 + P I

1 eaφ − (ac− b)
h
P I

1

n
φ3

3 − 3φ2

a + 6φ
a2 − 6

a4

o
eaφ +

n
2φ2

a + 4φ
a2

o
P I

0

−P I
2

g0
eaφ − P I

3

i
+O `(ac− b)2

´
. (89)

Here P I
0 , P I

1 , P I
2 , and P I

3 are constants of integration. On the other hand, when φ = t is large, we
find

P (φ) = PL
0 + PL

1 ebφ/c + a−b/c
c

"
4PL

0

Z φ

dφ′eBφ′
Z φ′

dφ′′
φ′′3 e−Bφ′′

−PL
1

Z φ

dφ′
`

b
cφ′ − 2

φ′2
´
ebφ′/c

ff–
+ PL

2 ebφ/c . (90)
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Here P I
0 , P I

1 , and P I
2 are constants of integration, again.

The important element of above reconstruction scheme is that it may be applied partially. For
instance, one can start from the known model which passes local tests and describes the late-time
acceleration. After that, the reconstruction method may be applied only at very small times (infla-
tionary universe) to modify such a theory partially. As a result, we get the modified gravity with
necessary early-time behavior and (or) vice-versa.

6 Dark Matter from F (R)-gravity

It is extremely interesting that dark matter could be explained in the framework of viable F (R)-
gravity which was discussed in previous sections.

The previous considerations of F (R)-gravity suggest that it may play the role of gravitational
alternative for dark energy. However, one can study F (R)-gravity as a model for dark matter. There
have been proposed several scenarios to explain dark matter in the framework of F (R)-gravity. In
most of such approaches[16], the MOND-like scenario or power-law gravity have been considered. In
such scenarios, the field equations have been solved and the large-scale correction to the Newton law
has been found and used as a source of dark matter.

There was, however, an observation [17] that the distribution of the matter is different from that
of dark matter in a galaxy cluster. From this it has been believed that the dark matter can not be
explained by the modification of the Newton law but dark matter should represent some (particles)
matter.

It is known that F (R)-gravity contains a particle mode called ‘scalaron’, which explicitly appears
when one rewrites F (R)-gravity in the the scalar-tensor form (23). In the Einstein gravity, when we
quantize the fluctuations over the background metric, we obtain graviton, which is massless tensor
particle. In case of F (R)-gravity, when one quantizes the fluctuations of the scalar field in the
background metric, one gets the massive scalar particles in the addition to the graviton. Since the
scalar particles in F (R)-gravity are massive, the pressure could be negligible and the strength of the
interaction between such the scalar particles and usual matter should be that of the gravitational
interaction order and therefore very small. Hence, such scalar particle could be a natural candidate
for dark matter.

In the model [3] or our models (46) and (53), the mass of the effective scalar field depends on the
curvature or energy density, in accord with so-called Chameleon mechanism. As our models (46) and
(53) describe the early-time inflation as well as late-time acceleration, the ‘scalaron’ particles, that
is, the scalar particles in F (R)-gravity, could be generated during the inflationary era. An interesting
point is that the mass could change after the inflation due to Chameleon mechanism. Especially in
the model (46), the mass decreases when the scalar curvature increases as shown in (49). Hence,
in the inflationary era, when the curvature is large, one may consider the model where mσ is large.
After the inflationary epoch, the scalar particles, generated by the inflation, could lose their mass.
Since the mass corresponds to the energy, the difference between the mass in the inflationary epoch
and that after the inflation could be radiated as energy and could be converted into the matter and
the radiation. This indicates that the reheating could be naturally realized in such model. Let the
mass of σ in the inflationary epoch be mI and that after inflation be mA. Then for N particles, the
radiated energy EN may be estimated as

E = (mI −mA)N , (91)

which could be converted into radiation, baryons and anti-baryons (and leptons). It is believed that
the number of early-time baryons and anti-baryons is 1010 times of the number of baryons in the
present universe. Since the density of the dark matter is almost five times of the density of the
baryonic matter, we find

mI > 1010mA . (92)

In the solar system, one gets A = R ∼ 10−61 eV2. Then if n À 10 ∼ 12 and Λi ∼ 1020∼38, the



278 S. Nojiri and S.D. Odintsov. Dark energy, inflation and dark matter ...

order of the mass mσ is given by

m2
σ ∼ 10239∼295−10n eV2 , (93)

which is large enough so that σ could be Cold (non-relativistic) Dark Matter. On the other hand, in
1/R-model, the corresponding mass is given by

m2
1/R ∼ µ4

R ∼ 10−51 eV2 . (94)

Here µ is the parameter with dimension of mass and µ ∼ 10−33 eV. The mass m1/R is very small and
cannot be a Cold Dark Matter. The corresponding composite particles can be a Hot (relativistic)
Dark Matter but Hot Dark Matter has been excluded due to difficulty to generate the universe
structure formation.

In the inflationary era, the spacetime is approximated by the de Sitter space:

ds2 = −dt2 + e2H0t
X

i=1,2,3

“
dxi
”2

. (95)

Then the scalar particle σ could be Fourier-transformed as

σ =

Z
d3kσ̃(k, t)e−ik·x . (96)

Hence, the number of the particles with k created during inflation is proportional to eνπ. Here

ν ≡
q

m2
σ

H2
0
− 9

4 . (97)

Then if
m2

σ
H2

0
> 9

4 , (98)

sufficient number of the particles could be created.

In the original f(R)-frame (7), the scalar field σ appears as composite state. The equation of
motion in f(R)-gravity contains fourth derivatives, which means the existence of the extra particle
mode or composite state. In fact, the trace part of the equation of motion (13) has the following
Klein-Gordon equation-like form:

3∇2f ′(R) = R+ 2f(R)−Rf ′(R)− κ2T . (99)

The above trace equation can be interpreted as an equation of motion for the non trivial ‘scalaron’
f ′(R). This means that the curvature itself propagates. In fact the scalar field σ in the scalar-tensor
form of the theory can be given by ‘scalaron’, which is the combination of the scalar curvature in the
original frame:

σ = − ln
`
1 + f ′(R)

´
. (100)

Note that the ‘scalaron’ is different mode from graviton, which is massless and tensor.

Eq.(49) shows that the mass, which depends on the value of the scalar field σ, is given by

m2
σ ∼ f0

f2
1

`
2n+1
2n+2

´ “ f2
1

(2n+1)f0

” 2n+1
2n+2

σ−
2n+3
2n+2 . (101)

If the curvature becomes small, σ becomes large and m2
σ decreases. Then the scalar particles lose

their masses after the inflation. The difference of the mass in the inflationary epoch and that after
the inflation could be radiated as energy and can be converted into the matter and the radiation.

By substituting the expression of σ (49) into (101), one obtains

m2
σ ∼ f2

1 A2n+3

2(2n+1)(n+1)f0
. (102)
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Note that A corresponds to the scalar curvature. Let denote the value of A in the inflationary epoch
by AI and that after the inflation by AA. Then the condition (92) shows

mI
mA

∼
“

AI
AA

”n+3/2

> 1010 . (103)

For the model with n = 2, the condition (92) or (103) could be satisfied if AI/AA > 103, which seems
to indicate that the reheating could be easily realized in such a model.

Now we check if the condition (98) could be satisfied. Note H2
0 ∼ Λi. Eq.(102) also indicates

that in the inflationary era, where A = R ∼ Λi, the magnitude of the mass is given by

m2
σ ∼ Λ2n+1

i
R2n

0
, (104)

which is large enough and the condition (98) is satisfied. Here Eq.(47) is used. Thus, sufficient
number of σ-particles could be created.

Let us consider the rotational curve of galaxy. As we will see the shift of the rotational curve
does not occur due to correction to the Newton law between visible matter (baryon or intersteller
gas) but due to invisible (dark) matter, and the Newton law itself is not modified.

Let the temperature of the dark matter be T = 1/kβ where k is the Boltzmann constant. First,
we assume the mass mσ of the scalar particle σ is constant. As the total mass of dark matter is much
larger than that of baryonic matter and radiation, we neglect the contributions from the baryonic
matter and radiation just for simplicity. We now work in Newtonian approximation and the system
is spherically symmetric. Let the gravitational potential, which can be formed by the sum of the
dark matter particles, be V (r). Then the gravitational force is given by F(r) = −mdV (r)/dr. If we
denote the number density of the dark matter particles by n(r), in the Newtonian approximation,
by putting κ2 = 8πG, one gets

F(r) = −Gm2
σ

r2

Z r

0

4πs2n(s)ds (105)

and therefore V (r) is given by

V (r) = 4πGmσ

Z r
ds
s2

Z s

0

u2n(u)du . (106)

If one assumes the number density n(r) of dark matter particles could obey the Boltzmann distribu-
tion, we find

n(r) = N0e
−βmσV (r) . (107)

Here N0 is a constant, which can be determined by the normalization. Using (106) and (107) and
deleting n(r), the differential equation follows:

`
r2V ′(r)

´′
= 4πGmσN0r

2e−βmσV (r) . (108)

An exact solution of the above equation is given by

V (r) = 2
βmσ

ln
`

r
r0

´
, r20 ≡ 1

2πGm2
σN0β . (109)

As the general solution for the non-linear differential equation (108) is not known, we assume V (r)
could be given by (109). Then the rotational speed v of the stars in the galaxy could be determined
by the balance of the gravitational force and the centrifugal force:

m?
v2

r = −F(r) = m?V
′(r) = 2m?

βmσr . (110)

Here m? is the mass of a star. Hence,
v2 = 2

mσβ , (111)

that is, v becomes a constant, which could be consistent with the observation.
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For the dark matter particles from f(R)-gravity, the mass mσ depends on the scalar curvature or
the value of the background σ as in (101). The scalar curvature is determined by the energy density
ρ (if pressure could be neglected as in usual baryonic matter and cold dark matter) and if we neglect
the contribution from the baryonic matter, the energy density ρ is given by

ρ(r) = mσn(r) . (112)

Therefore it follows
mσ = mσ (ρ(r)) = mσ (mσn(r)) , (113)

which could be solved with respect to mσ:

mσ = mσ (n(r)) . (114)

Furthermore by combining (107) and (114), one may solve mσ with respect to V (r) and N0 as

mσ = mσ (N0, V (r)) . (115)

Then (105) could be modified as

F(r) = −Gmσ(N0,V (r))
r2

Z r

0

4πs2mσ (N0, V (r))n(s)ds (116)

which gives, instead of (108),

`
r2V ′(r)

´′
= 4πGmσ (N0, V (r))N0r

2e−βmσ(N0,V (r))V (r) . (117)

Eq.(117) is rather complicated but at least numerically solvable.
For the model (46), if the curvature is large enough even around the galaxy, the mass mσ is given

by (102). The scalar curvature A = R is proportional to the energy density (since the pressure could
be neglected), A ∝ ρ, and the energy density ρ is given by (112). Then

n(r) ∼ 1
κ2

n
2(n+1)(2n+1)f0

f2
1

o 1
2n+3

(mσ(r))−
2n+1
2n+3 . (118)

Using (107), one also gets

V (r) = 2n+1
(2n+3)βmσ(r) ln mσ(r)

m0
, m0 ≡

`
κ2N0

´− 2n+3
2n+1

n
2(n+1)(2n+1)f0

f2
1

o 1
2n+1 .

(119)

Here m0 has mass dimension. By substituting (119) into (117), it follows

`
2n+1
2n+3

´
1
β


r2
“
1− ln mσ(r)

m0

”
m′′σ(r)
mσ(r)2 − r2

“
3− 2 ln mσ(r)

m0

”
(m′σ(r))2

mσ(r)3

+2r
“
1− ln mσ(r)

m0

”
m′σ(r)
mσ(r)2

o
= 1

2

n
2(n+1)(2n+1)f0

f2
1

o 1
2n+3

r2 (mσ(r))
2

2n+3 . (120)

It is very difficult to find the exact solution of (120), although one may solve (120) numerically. Then
we now consider the region where mσ ¿ m0 but ln (mσ/m0) is slow varying function of r, compared
with the power of r. In the region, we may treat ln (mσ/m0) as a large negative constant:

ln (mσ/m0) ∼ −C . (121)

Then the following solution is obtained:

mσ(r) = m0

`
r
r0

´− 2(2n+3)
2n+5 ,

r20 ≡ 4(2n+1)(2n+9)C
(2n+5)β

`
κ2N0

´ 2n+5
2n+1

n
2(n+1)(2n+1)f0

f2
1

o− 1
2n+1

. (122)
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Note that r0 can be real for any positive n. Eq.(119) shows that

V (r) = − 2(2n+1)
2n+5

1
βm0

`
r
r0

´ 2(2n+3)
2n+5 ln r

r0
. (123)

Note that the potential (123) is obtained by assuming the Newton law by summing up the Newton
potentials coming from the f(R)-dark matter particles (‘scalaron’) distributed around the galaxy.
Eq.(122) indicates that the condition mσ ¿ m0 requires r À r0. Then by using the equation for the
balance of the gravitational force and the centrifugal force, as in (110), we find

v ∝ ` r
r0

´ 2n+3)
2n+5 , (124)

which is monotonically increasing function of r and the behavior is different from that in (111). If
there is only usual baryonic matter without any dark matter, the velocity is the decreasing function of
r, if there is also usual dark matter, as shown in (111), the velocity is almost constant, if dark matter
originates from f(R)-gravity, as we consider here, there is a region where the velocity could be an
increasing function of r. Of course, one should be more careful as these are qualitative considerations.
The condition mσ ¿ m0 requires r À r0 but in the region faraway from galaxy, the scalar curvature
becomes small and the approximation (102) could be broken. Anyway if there appears a region
where velocity is the increasing function of r, this might be a signal of f(R)-gravity origin for dark
matter. For more precise quantitative arguments, it is necessary to include the contribution from
usual baryonic matter as well as to do numerical calculation. In any case, it seems very promising that
composite particles from viable modified gravity which unifies inflation with late-time acceleration
may play the role of dark matter.

7 Non-minimal modified gravity

In this section, we consider the theory with non-minimal gravitational coupling as an extension
to the F (R)-gravity.

In [18], the non-minimal gravitational coupling of the scalar field φ was considered:

S =

Z
d4x

√−g
h

R
2κ2 − f1(A)

2 ∂µφ∂
µφ− f2(A)

i
. (125)

Here A is a geometrical invariant like scalar curvature or Gauss-Bonnet invariant. In the FRW
universe (14), by the variation over φ, one finds

φ̇ = qf1(A)−1a−3 . (126)

Here q is a constant. By combining (126) and the gravitational field equation, we delete the scalar
field φ and obtain FRW -like equation:

6
κ2H2 = ρ1 + ρ2 ,

ρ1 = q2

f1a6

h
1
2 + 3

f ′1
f1

(Ḣ + 7H2) + 6H
(f ′1)2

f2
1
Ṙ− 3H

f ′′1
f1
Ṙ
i
,

ρ2 = f2 − 6f ′2(Ḣ +H2) + 6Hf ′′2 Ṙ . (127)

In case f2 = 0 and f1 = fHS in (8), if the curvature R is small, the following solution is obtained:

a ∝ t(k+1)/3 , (128)

which gives the effective EoS parameter weff in (12) as

weff = 1−n
1+n . (129)

Then the late-time acceleration of the universe weff < −1/3 occurs when n > 2. Furthermore, the
effective phantom regime weff < −1 appears when n < −1. Within such theory for proper choice of
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gravitational part (like in previous sections) one achieves the unification of early-time inflation with
late-time acceleration. Moreover, there is no extra problems to pass local tests.

One may also consider the theory with non-minimal coupling with electro-magnetic field [19]:

S =

Z
d4x

√−g
h

F (R)
2κ2 − I(R)

4 FµνF
µν
i
. (130)

Here I(R) is a proper function of the scalar curvature R. Even if gravity is the Einstein one (F (R) =
R), if I(R) is chosen as

I(R) = 1 + fHS(R) , (131)

(fHS(R) is given in (8)), the power law inflation occurs, where

a(t) ∝ t(n+1)/2 , (132)

when R/m2 À 1. Note that the large-scale magnetic fields are generated due to the breaking of
the conformal invariance of the electromagnetic field through its non-minimal gravitational coupling.
The main conclusion is that adding the non-minimal coupling with gravity, the qualitative results
of previous sections remain valid. On the same time, new bounds for non-minimal gravitational
couplings only restrict such couplings to tend to constant (or, sometimes, to zero) at current epoch.
The important point of non-minimal modified gravity is that as purely gravitational part any F (R)
gravity[2, 20, 21] may be discussed in cosmological context. The only condition is that it should be
realistic, i.e. to pass the local tests and cosmological bounds.

8 Discussion

In summary, we reviewed F (R)-gravity and demonstrated that some versions of such theory are
viable gravitational candidates for unification of early-time inflation and late-time cosmic accelera-
tion. It is explicitly shown that the known critical arguments against such theory do not work for
those models. In other words, the modified gravity under consideration may pass the local tests
(Newton law is respected, the very heavy positive mass for additional scalar degree of freedom is
generated). The reconstruction of modified F (R) gravity is considered. It is demonstrated that such
theory may be reconstructed for any given cosmology. Moreover, the partial reconstruction (at early
universe) may be done for modified gravity which complies with local tests and dark energy bounds.
This leads to some freedom in the choice of modified gravity for the unification of given inflationary
era compatible with astrophysical bounds and dark energy epoch. Moreover, non-minimal gravita-
tional coupling with usual matter may be successfully included into above scheme. As a final very
promising result it is shown that modified gravity under consideration may qualitatively well describe
dark matter, using the composite scalar particle from F (R) theory and Chameleon scenario.

Thus, modified gravity remains viable cosmological theory which is realistic alternative to stan-
dard Einstein gravity. Moreover, it suggests the universal gravitational unification of inflation, cosmic
acceleration and dark matter without the need to introduce any exotic matter. Moreover, it remains
enough freedom in the formulation of such theory which is very positive fact, having in mind, coming
soon precise observational data.
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Abstract
In order to solve the problem of exact integration of the field equations or equations

of motion of matter one can use the class of Riemannian metrics for which the simplest
equations of motion can be integrated by the method of complete separation of the
variables.

1 Introduction.

One of the main problems of mathematical physics for the gravity theory is the problem of exact
integration of the field equations or equations of motion of matter. To solve this problem one can
use the class of Riemannian metrics for which the simplest equations of motion can be integrated by
the complete separation of variables method. Apparently in this class the Stäckel metrics are of the
same interest [1]. Recall that metric is called the Stäckel one if the Hamilton–Jacobi equation

gijS,iS,j = m2 i, j, k, l = 1, ...n (1.1)

can be integrated by the complete separation of variables method. In this case the privileged co-
ordinate set {ui} exists for which complete integral of eq. (1.1) can be shown in the form

S =

nX
i=1

φi(u
i, λ) (1.2)

where λi – is the essential parameter.
It appears that the other important equations of motion (Klein–Gordon–Fock, Dirac, Weyl) can

be integrated by complete separation of variables method only for the metrics, belonging to the class
of Stäckel spaces [2]. That is why the research of this class of spaces belongs to the one of the
important problems of the mathematical physics. In the present report we consider the following
parts of this problem:

• The problem of complete separation of variables for the Hamilton–Jacobi equation.

• Integration of Einstein equations for the Stäckel spaces.

• Conformally Stäckel spaces.

• Homogeneous Stäckel space-times.
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2 Stäckel spaces.

The theory of Stäckel spaces has been developed by many authors. Let us recall the main
statements and enumerate the main theorems of the Stäckel spaces theory [1].
Definition 1 Let Vn be a n–dimensional Riemannian space with metric tensor gij. The Hamilton –
Jacobi equation can be integrated by complete separation of variables method if co-ordinate set {ui}
exists for which complete integral can be presented in the form (1.2).
Definition 2 Vn is called the Stäckel space if the Hamilton–Jacobi equation (1.1) can be integrated
by complete separation of variables method.

The next theorem was proved by Shapovalov [3, 4].
Theorem 1 Let Vn be the Stäckel space. Then gij in privileged co-ordinate set can be shown in the
form

gij = (Φ−1)ν
nG

ij
ν ,

Gij
ν = Gij

ν (uν), Φν
µ = Φν

µ(uµ) (2.1)

Gij
ν = δi

νδ
j
νεν(uν) + (δi

νδ
j
p + δj

νδ
i
p)Gνp

ν + δi
pδ

j
qG

pq
ν ,

p, q = 1, ...N, ν, µ = N + 1, ..., n.

where Φν
µ(uµ) – is called the Stäckel matrix.

It is assumed that summation is performed over repeated superscripts and subscripts provided
the symbol ns(i, j, ...) (no summation over the indices given in the brackets) does not occur on the
right of the formula. One can show that the geodesic equations of Stäckel spaces admit the first
integral that commutes pairwise with respect to the Poisson bracket

X
µ

= (Φ−1)ν
µHν , Hν = ενp

2
ν + 2Gνp

ν pppν + hpq
ν pppq,

Y
p

= Y
p

ipi. (2.2)

Thus for a covariant characterization of Stäckel spaces it is sufficient to find determining properties
of the integrals (2.1) in an arbitrary co-ordinate system {xi}n. Let us write the functions Xν , YP in
the form

X
ν

= X
ν

ijpipj , Y
p

= Y
p

ipi. (2.3)

Then

X
ν

(ij;k) = Y
p

(i;j) = 0

(the semicolon denotes the covariant derivative and the brackets denote symmetrization). Therefore

Yp
i, Xν

ij are the components of vector and tensor Killing fields respectively.
Definition 3 Pairwais commuting vector Yp

i, where p = 1, ...N and tensor Xν
ij, where ν = N +

1, ...n Killing fields form a complete set of the type (N.N0) if

Bpq
Y
p

i
Y
q

j +Bν
X
ν

ij = 0 =⇒ Bpq = Bν = 0 (2.4)

rank||Y
p

i
Y
q

i|| = N −N0 (2.5)

X
ν

ik
X
µ

j
k = Cpq

νµ Y
p

i
Y
p

j + Cτ
νµ X

τ

ij , (2.6)

Cτ
νµ = Φτ

ρ(Φ−1)ρ
ν(Φ−1)ρ

µ/(Φ
−1)ρ

n

X
ν

ij
Y
p

j = Cq
νp Y

q

i. (2.7)

Theorem 2 A necessary and sufficient geometrical criterion of a Stäckel space is the presence of a
complete set of the type (N.N0).

In other words the Hamilton - Jacobi equation can be integrated by the complete separation of
variables method if and only if the complete set of the first integrals exists.
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Now it is possible to give
Definition 4 Space - time is called the Stäckel one of the type (N.N0) if the complete set of the type
(N.N0) exists.

All these theorems and definitions are valid for the case when free Hamilton–Jacobi equation is
considered. Let us consider the Hamilton–Jacobi equation for the charged particle

gij(S,i +Ai)(S,j +Aj) = m2. (2.8)

Definition 5 Equation (2.8) admits complete separation of variables if co-ordinate set {ui} for which
complete integral can be presented in the form (1.2) exists.

It is possible to prove
Theorem 3 If eq.(2.8) admits complete separations of variables then gij is the metric tensor of the
Stäckel space type (N.N0).

Using this theorem one can show that the separation takes place for the same privileged co-
ordinate set and

Ai = (Φ−1)ν
nh

i
ν(uν), AiA

i = (Φ−1)ν
nhν(uν). (2.9)

The last condition can be regarded as a functional equation. Note that up to now this equation has
not been solved for the general case. It has been solved only for the case when Ai and gij obey the
Einstein–Maxwell equations [11-14]

Rij − 1

2
gijR = 4πκTij + Λgij , Λ = const, (2.10)

Tij =
1

4π
(FilF

l
j − 1

4
gijFklF

kl), (2.11)

Fij = Aj,i −Ai,j , F ij
;j = 0. (2.12)

3 Stäckel spaces and field equations of the theories of
gravity.

The metrics of the Stäckel spaces can be used for integrating the field equations of General Rel-
ativity and other theories of Gravity. Note that such famous solutions as Schwarcshild, Kerr, NUT,
Friedman and others belong to the class of Stäckel spaces. Apparently the first papers devoted to
the problem of classification of the Stäckel spaces satisfying the Einstein equations were published
by B.Carter. Later in our paper it has been found the complete classification of the special Stäckel
electrovac spaces. In other words all Stäckel spaces satisfying the Einstein–Maxwell equations (2.10–
2.12) for the case when potentials Ai admit complete separation of variables for Hamilton–Jacobi
equation (2.8) have been found. In our paper the classification problem has been solved for the case
when Ai are arbitrary functions and spaces are null (types (N.1)). In our paper all electrovac space-
times admitting diagonalization and complete separation of variables for the Dirac–Fock–Ivanenko
equation were found [6-10].

One of the complicated problems of the modern mathematical physics is the integration problem
of the Einstein–Dirac equations. Using the Newman–Penrose formalism [11] one can present these
equations in the form

Rij − 1

2
gijR = 4πGTij ,

∇ab′ξ
a = m0ηb′ , ∇ab′η

a = m0ξb′ (3.1)

where
Tij = Za

i Z
b
jσ

AB′
a σCD′

b TAB′CD′ ,

TAB′CD′ = ik(ξD′∇AB′ξC + ξB∇CD′ξA −
ξC∇AB′ξD′ − ξA∇CD′ξB′ − ηD′∇AB′ηC −
ηB∇CD′ηA + ηC∇AB′ηD′ + ηA∇CD′ηB′)
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Za
i = (li, ni,mi, m̄i)

∇AB - spinor derivative, σAB′
a - Infeld-Wan der Varden symbols.

Using spaces for which equation (3.1) can be integrated by the complete separation of variables
and separated solutions of the Dirac equation one can transform Einstein–Dirac equations to the
set of functional equations. The first papers devoted to the classification problem for the Einstein–
Dirac equations were done by Bagrov, Obukhov, Sakhapov [13]. The Stäckel spaces of type (3.1)
for Einstein–Dirac and Einstein–Weyl equations have been studied. Appropriate solutions have been
obtained. They contain arbitrary functions depending on null variable only.

The problem of classification of Stäckel spaces for other theories of gravity for the first time was
considered in papers [14–16]. The next theories have been considered

1. Brans–Dicke theory. The field equations have the form

Rij − 1

2
gijR =

8π

φ
Tij − ω

φ2
(φ;iφ;j −

− 1

2
gijφ;kφ

;k)− 1

φ
(φ;ij − gij2φ) (3.2)

2φ =
8π

3 + 2ω
T i

i, 2 = gij∇i∇j , ω = const.

The case when Tij has the form (2.10) and the metric has type (N.1) has been considered in
paper [14]. All appropriate solutions have been obtained.

2. The same problem for the multiscalar–tensor theory for which field equations have the form
[15]

∗
Rνµ = 2 < φ,νφ,µ > +8πG(

∗
T νµ − 1

2

∗
gνµ

∗
T ) (3.3)

∗
2φA + γA

BCφ
A
,νφ

B
,µ

∗
gνµ = 4πGγAB ∂α

∂φB

∗
T

was considered in paper [16]. Here g∗νµ, R
∗

νµ are metric tensor and Ricci tensor of the space
which conformal to space-time,

∗
gνµ = α2gνµ, α = α(φA),

< φνφµ >= γABφ
A
,νφ

B
,µ,

where φA - are scalar fields, γAB = γAB(φC) can be considered as a metric tensor of the n -
dimensional space of scalars,

γC
AB =

1

2
γCD(

∂γAD

∂φB
+
∂γDB

∂φA
− ∂γAB

∂φC
),

∗
2φA ≡ (

q
|∗g|∗g

νµ

φA
,ν),µ/

q
| ∗g |

3. The classification problem for the Einstein–Vaidya equations. Let the stress–energy tensor
have the form

Tij = T
(e)
ij + a(x)lilj , lil

i = 0 (3.4)

then Einstein equations can by written in the following way

Rij − 1

2
gijR = 4πG(T

(e)
ij + alilj). (3.5)

If T
(e)
ij has the form (2.11), and Fij satisfies the Maxwell equations (2.12) the solutions of

the equations (3.5), (2.12) are electrovac ones. For these equations the classification problem
was solved in paper [12] for the case when the complete set has type (N.1) (null case). In
other words all metrics and electromagnetic potentials satisfying equations (3.5) and (2.11–
2.12) provided that Hamilton–Jacobi equation (1.1) or (2.8) can be integrated by the complete
separation of variables method for null Stäckel spaces have been found.



290 V.V. Obukhov and K.E. Osetrin. Separation of Variables in Gravitational Theory

4 Conformally Stäckel spaces.

Let us consider the Hamilton–Jacobi equation for a massless particle

gijS,iS,j = 0 (4.1)

Obviously this equation admits complete separation of variables for a Stäckel space. Yet one can
verify that if gij has the form

gij = g̃ij(x) exp 2ω(x) (4.2)

where g̃ij is a metric tensor of the Stäckel space, then eq.(4.1) can be solved by complete separation
of variables method too. In paper [5] it was proved that (4.2) is necessary and additional condition of
the complete separation of variables. Note that conformally Stäckel spaces play important role when
massless quantum equations are considered (f.e. conformal invariant Chernikov–Penrose equation,
Weyl’s equation etc.). That is why the problem of investigation of Einstein spaces which admits
complete separation of variables in eq.(4.1) is exceptionally interesting. Apparently the first attempt
to consider this problem was taken in paper [18]. The next step was done in paper [19], where
some of metrics belonging to conformal Stäckel spaces of type (N.1) was studied. The problem of
classification of conformally Stäckel spaces satisfying the Einstein equation

Rij = Λgij , Λ = const (4.3)

is more difficult than appropriate problem for the Stäckel spaces. To obtain the functional equations
from eq. (4.3) one has to use the compatible conditions. These conditions were found by Brinkman
[17]. Let us recall the main Brinkman’s results. Let us denote Vn the Riemannian space with metric
tensor gαβ , Ṽn be an Einstein’s space with metric tensor g̃αβ . R̃αβ , R̃αβγδ, R̃ are components of Ricci
tensor , Rieman tensor and scalar curvature respectively for the space Ṽn, and Rαβ , Rαβγδ, R are
those tensors for the space Vn. Moreover we denote:

ωαβ = ω,α;β − ω,αω,β +
1

2
gαβ(∇ω)2,

(∇ω)2 = gαβ∇α(ω)∇β(ω),

Tαβ =
1

n− 2

„
Rαβ − Rgαβ

2(n− 1)

«
,

W =
1

2
(∇ω)2 − Λ

2(n− 1)
exp 2ω

where ω,α are the partial derivatives and ω;α ≡ ∇αω are the covariant derivatives in Vn. It is easy
to show that

R̃αβ = Rαβ + (n− 2)ωαβ + gαβg
γδωγδ,

R̃ = (R+ 2(n− 1)gγδωγδ) exp (−2ω).

We can write (4.3) in the form

ω,α;β − ω,αω,β +Wgαβ + Tαβ = 0. (4.4)

Brinkman has shown that integrability conditions of eq. (4.4) have the form

ω,δC
δ

αβγ = Sαβγ (4.5)

Sαβγ ≡ Tαγ;β − Tαβ;γ

where Cαβγδ are the components of Weyl tensor. In paper [19] eqs.(4.5) have been presented in a
more simple form. To simplify them we use the consequence from Bianchi identities

Rσ
αβγ;σ = Rαβ;γ −Rαγ;β . (4.6)
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One can present the right hand part of the eq. (4.6) in the form

Rαβ;γ −Rαγ;β = (n− 2)

"„
Tαβ +

Rgαβ

2(n− 1)(n− 2)

«

;γ

−

−
„
Tαγ +

Rgαγ

2(n− 1)(n− 2)

«

;β

#
=

= (n− 2)

„
Tαβ;γ − Tαγ;β +

gαβR,γ − gαγR,β

2(n− 1)(n− 2)

«
=

= (n− 2)

„
−Sαβγ +

gαβR,γ − gαγR,β

2(n− 1)(n− 2)

«
. (4.7)

It follows from (4.7) that

Rσ
αβγ;σ = −(n− 2)Sαβγ − 1

2(n− 1)
(R,γgαβ −R,βgαγ). (4.8)

Besides

Tα
β;α =

1

2(n− 1)
R,β . (4.9)

In terms of Tαβ Weyl tensor can be written as

Cαβγδ = Rαβγδ + gαγTβδ − gαδTβγ + gβδTαγ − gβγTαδ, (4.10)

then

Cα
βγδ;α = Rα

βγδ;α + Tβδ;γ − Tβγ;δ + gβδT
α
γ;α − gβγT

α
δ;α. (4.11)

Using eqs. (4.5) and (4.9) one can take out from (4.11) the next correlation

Cα
βγδ;α = Rα

βγδ;α + Sβγδ − 1

2(n− 1)
(gβγR,δ − gβδR,γ). (4.12)

That is why

Cδ
αβγ;δ = −(n− 3)Sαβγ (4.13)

and Brinkman’s conditions can be presented in the form

ω,δC
δ

αβγ = − 1

(n− 3)
Cδ

αβγ;δ,

finally

∇δ

“
Cδ

αβγ exp (n− 3)ω
”

= 0. (4.14)

If dimension of the space Vn equals to 4, eq. (4.14) has the form

∇δ (Cδαβγ expω) = 0. (4.15)

Using (4.15) we have proved the following theorem [19]

Theorem 4 Let gij be the metric tensor of the Stäckel space of type (N.1). Then Einstein space
conformal to Ṽ4 admits the same Killing vectors as V4.

Moreover one can prove the following statement.

Theorem 5 Let Ṽn is conformally Stäckel space of type (N.1) (N ≥ 2) satisfying the Einstein
equation (4.3). Then Hamilton–Jacobi equation (1.1) admits the complete separation of variables.

In other words all null conformally Stäckel Einstein spaces belong to the class of the null Stäckel
ones. Nontrivial null conformally Stäckel solutions of the Einstein equations belong only to (1.1)-type.
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5 Homogeneous Stäckel space-times.

This section is devoted to the problem of classification of space-homogeneous models of spacetimes
based on the presence of a complete set of Killing Vectors and Killing Tensors, which is a necessary
and sufficient condition for integration of the Hamilton-Jacobi equation by the method of complete
separation of variables.

Thus there is a problem of finding a subclass of homogeneous space-times admitting complete sets
of integrals of motion. In other words, a spacetime with a complete set must admit a 3-parametrical
transitive group of motions with space-like orbits. There are 7 types of complete sets for space-
times with the signature (−,+,+,+). This section is devoted to classification of space-homogenous
space-times with a complete set of types (2.1) and (3.1).

In a privileged coordinate set the metric of (3.1) type has the form

gij =

0
BB@

0 1 b2(x
0) b3(x

0)
1 0 0 0

b2(x
0) 0 a22(x

0) a23(x
0)

b3(x
0) 0 a23(x

0) a33(x
0)

1
CCA ,

where x0 is the wave-like variable.
This metric admit 3 commuting Killing vectors

X1, X2, X3; [Xp, Xq] = 0, p, q, r = 1, 2, 3

with components
Xp

i = δi
p.

The metric projection on orbits of this group of motions is degenerated. Thus, we need an
additional Killing vector

Xi
4 = ξi.

The commutation relations of group X1 — X4 have the form

[Xm, X4] = αmX4 + βm
nXn

[X1, X4] = α1X4 + β1
pXp, p, q = 1, 2, 3

[Xp,Xq] = 0

We can simplify it by using the transformations of Killing vectors, which do not break the group
structure

1) Xm = Sm
nX̃n, m, n = 2, 3, therefore we have new structure constants

α̃1 = α1, α̃n = (Sn
m)−1 αm, β̃1

1 = β1
1,

β̃1
m = β1

nSn
m, β̃n

m =
`
Sn

l
´−1

βl
kSk

m.

2) X4 = X̃4 + bmXm and new constants

α̃p = αp, β̃1
1 = β1

1, β̃p
m = βp

m + αpb
m.

We use also coordinate transformations, which do not break the form of the metric

x̃0 = a0x0

x̃1 = 1
a0 x1

x̃n = ap
nxp

¿From commutative relations and Jacobi identities we obtain the following form of Killing vector

ξi = βp
qδq

ixp + f i(x0), βm
1 = 0,

f0 = −β1
1x0 + σ0, f1 = σ1,

f2 = f3 = 0, σ = const.
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Further classification can be made by use of two following independent conditions:
1. According to the value of β1

1. If β1
1 6= 0, then we may choose β1

1 = 1, σ0 = σ1 = 0, if
β1

1 = 0, then we may choose σ0 = σ1 = 1. Thus, we have 2 types
Type A: ξ0 = −x0, ξ1 = x1;
Type B: ξ0 = 1, ξ1 = 1.
2. According to classes of matrix βm

n. By use of transformations it can be brought to one of
following 3 classes

1)

„
λ2 0
0 λ3

«
2)

„
λ 1
0 λ

«
3)

„
α β
−β α

«

Finally, we have 6 classes A1, A2, A3, B1, B2, B3 with some subclasses.
The contravariant metric tensor of the Stäckel space of type (2.1) in a privileged coordinate

system can be written as (signature (−,+,+,+))

gij = 1
∆

0
BB@

1 0 0 0
0 0 f(x1) 1
0 f(x1) c(x0, x1) b(x0)
0 1 b(x0) a(x0)

1
CCA

where ∆ = d0(x
0) + d1(x

1), c = c0(x
0) + c1(x

1)

det gij = − D
∆4 , D = a f2 − 2 b f + c > 0

The complete set of type (2.1) includes the following Killing vectors:

X1 = (0, 0, 0, 1) , X2 = (0, 0, 1, 0)

The vector X2 is space-like because D > 0; however, the restriction of the metric to the orbits of
soubgroup X1, X2 is degenerated. It is a general property of Stäckel spaces with N0 6= 0, which are
called null spaces. The breaking of space-likeness of the orbits of the complete set subgroup demands
the introduction of an additional Killing vectors,

X3 = ξ , X4 = η.

The commutation relations are

[X1, X2] = 0

[X1, Xa] = αa X1 + βa
b Xb, a, b = 3, 4

[X2, Xa] = γa
2X2 + γa

b Xb

[X3, X4] = γ5X3 + γ6X4 + γ7X2

These relations lead to the following differential equations:

1.


ξi

,3 = β3
3ξi + β3

4ηi + α3 δ
i
3 + β3

2 δi
2

ηi
,3 = β4

3ξi + β4
4ηi + α4 δ

i
3 + β4

2 δi
2

2.


ξi

,2 = γ3
3ξ1 + γ3

4ηi + γ3
2 δi

2

ηi
,2 = γ4

3ξi + γ4
4ηi + γ4

2 δi
2

3. ξj ηi
,j − ηj ξi

,j = γ5 ξ
i + γ6 ηi + γ7δ

i
2

To find uncrossed algebraic classes, the vectors of this subgroup can be subjected to the linear
trnsformation

X̃p = Sp
q Xq, p, q = 2..4

Also, one can use a coordinat transformation respecting the form of the metric tensor

x̃p = αp xp p, q = 0, 1
x̃ν = αν + βµ

ν(xp)xµ µ, ν = 2, 3
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There are 2 cases
1) g12 = f(x1) = 0 2) g12 = f(x1) 6= 0

1. Cosider the case f = 0.
Applying the admissible transformations ( 5, 5) and the Jacobi identities to the commutation

relations, one finds 6 types of dependences of the KV on the ignored variables x2, x3:
1) ξi = φi

ηi = ψi

2) ξi = φi + x2 δi
2

ηi = ψi

3) ξi = φi + γ3
2 x2 δ2

i + x3 δ3
i

ηi = ψi

4) ξi = φi + x3 δi
3

ηi = ψi + x2 δi
2

5) ξi = φi + ψi x2 + (γ3
2 x2 + β3

2 x3) δ32 + α3 x
3 δi

3

ηi = ψi

6) ξi = φi + ψi x2

ηi = ψi + x2 δi
2

,

where φi, ψi(x0, x1).
The finding of functions φi, ψi(x0, x1) is a difficulty leading to a large number of solutions.
2. If f 6= 0, the equations are integrated by the introduction of the new variable

x̃2 = x2 − f x3.

In the new coordinates, the block structure of the metric tensor is the following:

g̃ij = 1
∆

0
BB@

1 0 0 0
0 0 0 1
0 0 D B
0 1 B a

1
CCA ,

where D = a f2 − 2 b f + c, B = b − af − f ′x3. This is why the equation is solved in a manner
similar to the case f = 0.

In this section we are obtained next results:
1. Homogeneuos Stackel space-times of (2.1) type:
a) 29 types were found.
b) The solutions were classificated according Bianci, types I – VII are present.
c) Petrov types III and N are present, they are depend on conformal factor ∆:
∆ = d1(x

1), R = 0, type N;
∆ = d0(x

0), R = const < 0, type D.
d) Space-times of (3.1) type allow an analogue of spherical wave or an analogue of homogeneous

radiation for high-frequency radiation of general nature.
2. Homogeneuos Stackel space-times of (3.1) type:
a) 12 types were found.
b) The solutions were classificated according Bianci, types I – VII are present.
c) Petrov types D and N are present, they are depend on functions bk:
b2 = b3 = 0, R = 0, type N;
R 6= 0, type D.
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Hypermultiplet dependence of one-loop
effective action in the N = 2

superconformal theories

N.G. Pletnev1

Department of Theoretical Physics, Institute of Mathematics,
Novosibirsk, 630090, Russia

Abstract

I review the approach [1] to the one-loop low-energy effective action in the hypermul-
tiplet sector for N = 2 superconformal models. Any such a model contains an N = 2
vector multiplet and some number of hypermultiplets. We found a general expression
for the low-energy effective action in the form of a proper-time integral. The leading
space-time dependent contributions to the effective action are derived and their bosonic
component structure is analyzed. The component action contains terms with three and
four space-time derivatives of component fields and has the Chern-Simons-like form.

1 Introduction

I am very glad to take part in this book devoted to celebration of the 60 birth day of remarkable
scientist and my dear friend Ioseph L. Buchbinder.

Four-dimensional N = 2 supersymmetric gauge theories are formulated in terms of N = 2 vector
multiplet coupled to a massless hypermultiplets in certain representations R of the gauge group G.
All such models possess only one-loop divergences [2] and can be made finite at certain restrictions
on representations and field contents. In the model with nσ hypermultiplets in representations Rσ

of the gauge group G the finiteness condition has simple and universal form

C(G) =
X

σ

nσT (Rσ), (1)

where C(G) is the quadratic Casimir operator for the adjoint representation and T (Rσ) is the
quadratic Casimir operator for the representation Rσ. A simplest solution to Eq.(1) is N = 4
SYM theory where nσ = 1 and all fields are taken in the adjoint representation. It is evident that
there are other solutions, e.g. for the case of SU(N) group and hypermultiplets in the fundamental
representation one gets T (R) = 1/2, C(G) = N and nσ = 2N . A number of N = 2 superconformal
models has been constructed in the context of AdS/CFT correspondence (see e.g. [3], the examples

1pletnev@math.nsc.ru
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of such models and description of structure of vacuum states were discussed in details e.g. in Ref.
[4] ).

In this paper we study the structure of the low-energy one-loop effective action for the N = 2
superconformal theories. The effective action of the N = 4 SYM theory and N = 2 superconformal
models in the sector of N = 2 vector multiplet has been studied by various methods. However a
problem of hypermultiplet dependence of the effective action in the above theories was open for a
long time.

The low-energy effective action containing both N = 2 vector multiplet and hypermultiplet
background fields in N = 4 SYM theory was first constructed in Ref. [5] and studied in more details
in [6]. In this paper we will consider the hypermultiplet dependence of the effective action for N = 2
superconformal models. Such models are finite theories as well as the N = 4 SYM theory and one
can expect that hypermultiplet dependence of the effective action in N = 2 superconformal models is
analogous to one in N = 4 SYM theory. However this is not so evident. The N = 4 SYM theory is a
special case of the N = 2 superconformal models, however it possesses extra N = 2 supersymmetry in
comparison with generic N = 2 models. As it was noted in [5] just this extra N = 2 supersymmetry
is the key point for finding an explicit hypermultiplet dependence of the effective action in N = 4
SYM theory. Therefore a derivation of the effective action for N = 2 superconformal models in the
hypermultiplet sector is an independent problem.

In this paper we derive the complete N = 2 supersymmetric one-loop effective action depending
both on the background vector multiplet and hypermultiplet fields in a mixed phase where both vector
multiplet and hypermultiplet have non-vanishing expectation values. The N = 2 supersymmetric
models under consideration are formulated in harmonic superspace [7]. We develop a systematic
method of constructing the lower- and higher-derivative terms in the one-loop effective action given
in terms of a heat kernel for certain differential operators on the harmonic superspace and calculate
the heat kernel depending on N = 2 vector multiplet and hypermultiplet background superfields. We
study a component form of a leading quantum corrections for on-shell and beyond on-shell background
hypermultiplets and find that they contain, among the others, the terms corresponding to the Chern-
Simons-type actions. The necessity of such manifest scale invariant P -odd terms in effective action
of N = 4 SYM theory, involving both scalars and vectors, has been pointed out in [8]. Proposal for
the higher-derivative terms in the effective action of the N = 2 models in the harmonic superspace
has been given in [9]. We show how the terms in the effective action assumed in P.C. Argyres at al.
can be actually computed in supersymmetric quantum field theory.

2 The model and background field splitting

N = 2 harmonic superspace has been introduced in [10] extending the standard N = 2 su-
perspace with coordinates zM = (xm, θα

i , θ̄
i
α̇) (i = 1, 2) by the harmonics u±i parameterizing the

two-dimensional sphere S2: u+iu−i = 1, u+i = u−i .
The main advantage of harmonic superspace is that the N = 2 vector multiplet and hypermulti-

plet can be described by unconstrained superfields over the analytic subspace with the coordinates
ζM ≡ (xm

A , θ
+α, θ̄+α̇ , u

±
i ), where the so-called analytic basis is defined by

xm
A = xm − iθ+σθ̄− − iθ−σmθ̄+, θ±α = u±i θ

i
α, θ̄±α̇ = u±i θ̄

i
α̇ . (2)

The N = 2 vector multiplet is described by a real analytic superfield V ++ = V ++I(ζ)TI taking values
in the Lie algebra of the gauge group. A hypermultiplet, transforming in the representation R of the
gauge group, is described by an analytic superfield q+(ζ) and its conjugate q̃+(ζ) .

The classical action of N = 2 SYM theory coupled to hypermultiplets consist of two parts: the
pure N = 2 SYM action and the q-hypermultiplet action in the fundamental or adjoint representation
of the gauge group. Written in the harmonic superspace its action reads

S = 1
2g2 tr

Z
d8zW2 + 1

2

Z
dζ(−4)q+f

a (D++ + igV ++)q+a
f , (3)
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where we used the doublet notation q+a = (q+,−q̃+). By construction, the action (3) is manifestly
N = 2 supersymmetric. Here dζ(−4) = d4xd4θ+du denotes the analytic subspace integration measure
and

D++ = D++ + iV ++, D++ = ∂++ − 2iθ+σmθ̄+∂m, ∂++ ≡ u+i ∂
∂u−i

is the analyticity-preserving covariant harmonic derivative. It can be shown that V ++ is the single
unconstrained analytic, D+

(α,α̇)V
++ = 0, prepotential of the pure N = 2 SYM theory, and all other

geometrical object are determined in terms of it. So,the covariantly chiral superfield strength W
W = − 1

4 (D̄+)2V −−, W̄ = − 1
4 (D+)2V −−. (4)

is expressed through the (nonanalytic) real superfield V −− satisfying the equation

D++V −− −D−−V ++ + i[V ++, V −−] = 0.

This equation has a solution in form of the power series in V ++ [11].
For further use we will write down also the superalgebra of gauge covariant derivatives with the

notation D±(α,α̇) = Di
(α,α̇)u

±
i :

{D+
α ,D−β } = −2iεαβW̄ , {D̄+

α̇ , D̄−β̇ } = 2iεα̇β̇W , (5)

{D̄+
α̇ ,D−α } = −{D+

α , D̄−α̇ } = 2iDαα̇ ,

[D±α ,Dββ̇ ] = εαβD̄±β̇ W̄ , [D̄±α̇ ,Dββ̇ ] = εα̇β̇D±β W ,

[Dαα̇,Dββ̇ ] = 1
2i{εαβD̄+

α̇ D̄−β̇ W̄ + εα̇β̇D−αD+
β W} = 1

2i{εαβF̄α̇β̇ + εα̇β̇Fαβ} .
The operators D+

α and D̄+
α̇ strictly anticommute

{D+
α ,D+

β } = {D̄+
α̇ , D̄+

β̇
} = {D+

α , D̄+
α̇ } = 0 . (6)

A full set of gauge covariant derivatives includes also the harmonic derivatives (D++,
D−−,D0), which form the algebra su(2) and satisfy the obviously commutation relations with D±α
and D̄±α̇ .

The action (3) possesses the superconformal symmetry SU(2, 2|2) which is manifest in the har-
monic superspace approach. The low energy effective action at a generic vacuum of N = 2 gauge
theory includes only massless U(1) vector multiplets and massless neutral hypermultiplets, since
charged vectors and charged hypermultiplets get masses by the Higgs mechanism. The moduli space
of vacua for the theory under consideration is specified by the following conditions [12]:

[φ̄, φ] = 0, φfi = 0, f̄ iφ̄ = 0 f̄ (iTIf
j) = 0 . (7)

Here the φ, φ̄ are the scalar components of N = 2 vector multiplet and complex scalars fi are the
scalar components of the hypermultiplet.

The structure of a vacuum state is characterized by solutions to Eqs. (7). These solutions can
be classified according to the phases or branches of the gauge theory under consideration. In the
pure Coulomb phase fi = 0, φ 6= 0 and unbroken gauge group is U(1)rank(G). In the pure Higgs phase
fi 6= 0 and the gauge symmetry is completely broken; there are no massless gauge bosons. In the
mixed phases, i.e. on the direct product of the Coulomb and Higgs branches (some number of φ, φ̄
is not equal to zero and some number of fi is not equal to zero) the gauge group is broken down to
G̃×K where K is some Abelian subgroup.

Further we impose the special restrictions on the background N = 2 vector multiplet and hy-
permultiplet. They are chosen to be aligned along a fixed direction in the moduli space vacua; in
particular, their scalar fields should solve Eqs. (7):

V ++ = V++(ζ)H, q+ = q+(ζ)Υ . (8)

Here H is a fixed generator in the Cartan subalgebra corresponding to Abelian subgroup K, and Υ
is a fixed vector in the R-representation space of the gauge group, where the hypermultiplet takes
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values, chosen so that HΥ = 0 and ῩTIΥ = 0. Eq.(8) defines a single U(1) vector multiplet and a
single hypermultiplet which is neutral with respect to the U(1) gauge subgroup generated by H.

At the tree level and energies below the symmetry breaking scale, we have free field massless
dynamics of the N = 2 vector multiplet and the hypermultiplet aligned in a particular direction in the
moduli space of vacua. Thus the low energy propagating fields are massless neutral hypermultiplets
and U(1) vector which form the on shell superfields possessing the properties

(D±)2W = (D̄±)2W̄ = 0 , (9)

D++q+a = (D−−)2q+a = D−−q−a = 0, q−a = D−−q+a, D−(α,α̇)q
−a = 0 .

The equations (9) eliminate the auxiliary fields and put the physical fields on shell.
At the quantum level, however, exchanges of virtual massive particles produce the corrections to

the action of the massless fields. We quantize the N = 2 supergauge theory in the framework of the
N = 2 supersymmetric background field method [13] by splitting the fields V ++, q+a into the sum of
the background fields V ++, q+a, parameterized according to (8), and the quantum fields v++, Q+a

and expanding the Lagrangian in a power series in quantum fields. Such a procedure allows us to
find the effective action for arbitrary N = 2 supersymmetric gauge model in a form preserving the
manifest N = 2 supersymmetry and classical gauge invariance in quantum theory.

In the background-quantum splitting, the classical action of the pure N = 2 SYM theory can be
shown to be given by

SSY M [V ++ + v++] = SSY M [V ++] + 1
4

Z
dζ(−4)duv++(D+)2Wλ (10)

−tr

Z
d12z

∞X
n=2

(−ig)n−2

n

Z
du1...dun

v++
τ (z,u1)...v++

τ (z,un)
(u+

1 u+
2 )...(u+

n u+
1 ) .

Wλ and v++
τ denote the λ- and τ -frame forms of W and v++ respectively. The hypermultiplet action

becomes

SH(q +Q) = SH [q] +

Z
dζ(−4)duQ+

aD++q+a + 1
2

Z
dζ(−4)duq+a iv

++q+a (11)

+ 1
2

Z
dζ(−4)du{Q+

aD++Q+a +Q+
a iv

++q+a + q+a iv
++Q+a +Q+

a iv
++Q+a} .

The terms linear in v++ and q+ in (10), (11) determines the equation of motion and this term should
be dropped when considering the effective action.

To construct the effective action, we will follow the Faddeev-Popov Ansatz. We write the final
result for the effective action Γ[V ++, q+]

eiΓ[V ++, q+] = eiScl[V
++, q+]Det1/2_

2(4,0)

Z
Dv++DQ+DbDcDϕeiSq , (12)

where
_
2 = − 1

2 (D+)4(D−−)2 and action Sq is as follows

Sq[v
++, Q+,b, c, ϕ, V ++, q+] = S2[v

++, Q+,b, c, ϕ, V ++, q+] + Sint,

S2 = − 1
2 tr

Z
dζ(−4)duv++_

2v++ + tr

Z
dζ(−4)dub(D++)2c (13)

+ 1
2 tr

Z
dζ(−4)duϕ(D++)2ϕ+ 1

2

Z
dζ(−4)du{Q+

aD++Q+a

+Q+
a iv

++q+a + q+a iv
++Q+a} ,

This equations completely determine the structure of the perturbation expansion for calculating
the effective action Γ[V ++, q+] of the N = 2 SYM theory with hypermultiplets in a manifestly
supersymmetric and gauge invariant form. The action S2 defines the propagators depending on
background fields. In the framework of the background field formalism in N = 2 harmonic superspace
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there appear three types of covariant matter and gauge field propagators. Associated with
_
2 is a

Green’s function G(2,2)(z, z′) which satisfies the equation
_
2 G(2,2)(1|2) = −1δ(2,2)(1|2), is

G(2,2)(1, 2) = − 1
2

_
21

_
22

(D+
1 )4(D+

2 )4{1δ12(z1 − z2)(D
−−
2 )2δ(−2,2)(u1, u2)} . (14)

The Q+ hypermultiplet propagator associated with the action (13) has the form

G
a(1.1)
b (1|2) = −δa

b
(D+

1 )4(D+
2 )4

(u+
1 u+

2 )3
1_

21
δ12(z1 − z2) . (15)

It is not hard to see that this manifestly analytic expression is the solution of the equation D++
1 G(1,1) =

δ
(3,1)
A (1|2). For the hypermultiplet of the second type described by a chargeless real analytic superfield
ω(ζ, u) the equation for Green’ function is

(D++
1 )2G(0,0)(1|2) = δ

(4,0)
A (1|2). The suitable expression for G(0,0) is

G(0,0)(1|2) = − 1_
21

(D+
1 )4(D+

2 )4{1δ12(z1 − z2)
u−1 u−2

(u+
1 u+

2 )3 }. (16)

The operator
_
2 = − 1

2 (D+)4(D−−)2 transforms each covariantly analytic superfield into a covari-
antly analytic and, using algebra (5), can be rewritten as second-order d’Alemberian-like differential
operator on the space of such superfields. The coefficients of this operator depend on background
superfields W, W̄.

3 Structure of the one-loop effective action

Consider the loop expansion of the effective action within the background field formulation. A
formal expression of the one-loop effective action Γ[V ++, q+] for the theory under consideration is
written in terms of a path integral as follows (12), where the full quadratic action is defined in Eq.
(13). Here v++ is a quantum vector superfield taking values in the Lie algebra of the gauge group
and b, c are two real analytic Faddeev-Popov fermionic ghosts and ϕ is the bosonic Nielsen-Kallosh
ghost, all in the adjoint representation of the gauge group.

In the vector sector of the N = 2 SYM theory where the matter hypermultiplet are integrated
out, the one-loop effective action Γ[V ++] reads

Γ[V ++] = i
2Tr(2,2) ln

_
2 − i

2Tr(4,0) ln
_
2 − i

2Trad ln(D++)2 + iTrRq lnD++ + i
2TrRω ln(D++)2.

Currently, the holomorphic and non-holomorphic parts of the low-energy effective action N = 2, 4
SYM theory on the Coulomb branch, including Heisenberg-Euler type action in the presence of a
covariantly constant vector multiplet, are completely known. The general structure of the low-energy
effective action in N = 2, 4 superconformal theories is [14]:

Γ = Scl + c

Z
d12z lnW ln W̄ +

Z
d12z lnWΛ(D4 lnW

W̄2 ) + c.c.+

Z
d12zΥ( D̄4 ln W̄

W2 , D4 lnW
W̄2 ),

where Λ and Υ are holomorphic and real analytic function of the (anti)chiral superconformal invari-
ants. The c-term is known to generate four-derivative quantum corrections at the component level
which include an famous F 4 term.

The hypermultiplet dependent part of the effective action in N = 4 SYM theory in leading order
is also known [15]. For further analysis of the effective action it is convenient to diagonalize the
action of quantum fields S(2) using a special shift of hypermultiplet variables in the path integral

Q+a = ξ+a + i

Z
dζ

(−4)
2 q+b(2)v++(2)G

a(1.1)
b (1|2), (17)

Q+
a = ξ+a − i

Z
dζ

(−4)
2 Gb(1.1)

a (1|2)v++(2)q+b (2) ,
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where ξ+a, ξ+a are the new independent variables in the path integral. It is evident that the Jacobian
of the replacement (17) is equal to unity. Here G

a(1.1)
b (1|2) is the background-dependent propagator

(15) for the superfields Q+a, Q+
b . In terms of the new set of quantum fields we obtain for the following

hypermultiplet dependent part of the quadratic action

S
(2)
H = − 1

2

Z
dζ(−4)ξa+D++ξ+a − 1

2

Z
dζ

(−4)
1 dζ

(−4)
2 q+a(1)v++(1)Gb(1.1)

a (1|2)v++(2)q+b (2) .

Then the vector multiplet dependent part of the quadratic action gets the following non-local exten-
sion

S(2)
v = − 1

2 tr

Z
dζ

(−4)
1 v++

1

Z
dζ

(−4)
2

“
_
2δ

(2.2)
A (1|2) + q+a(1)Gb(1.1)

a (1|2)q+b (2)
”
v++
2 . (18)

Expression (18), written as an analytical nonlocal superfunctional, will be a starting point for our
calculations of the one-loop effective action in the hypermultiplet sector. Our aim in the current
and later sections is to find the leading low-energy contribution to the effective action for the slowly
varying hypermultiplet when all derivatives of the background hypermultiplet can be neglected. We
will show that for such a case the non-local interaction is localized.

Using the relation v++
2 =

R
dζ

(−4)
3 δ

(2.2)
A (2|3)v++

3 one can rewrite expression for S
(2)
v (18) in the

form

S(2)
v = − 1

2 tr

Z
dζ

(−4)
1 v++

1

Z
dζ

(−4)
2 (

_
2δ

(2.2)
A (1|2) (19)

+

Z
dζ

(−4)
3 q+a(1)Gb(1.1)

a (1|3)q+b (3)δ
(2.2)
A (3|2)v++

2 ) .

Then we use the explicit form of the Green function (15) and the relation allowing us to express the
(D+

1 )4(D+
2 )4 as a polynomial in powers of (u+

1 u
+
2 ) [16]:

(D+
1 )4(D+

2 )4 (20)

= (D+
1 )4

“
(D−1 )4(u+

1 u
+
2 )4 − i

2∆−−
1 (u+

1 u
+
2 )3(u−1 u

+
2 )−_

21(u
+
1 u

+
2 )2(u−1 u

+
2 )2
”
,

where the operator ∆−− is

∆−− = Dαα̇D−α D̄−α̇ + 1
2W(D−)2 + 1

2W̄(D̄−)2 + (D−W)D− + (D̄−W̄)D̄− . (21)

The non-local term in (19) takes the form

Z
dζ

(−4)
3 q+a(1)(D+

3 )4×

× `(D−3 )4(u+
3 u

+
1 ) 1_

23
− i

2∆−−
3 (u−3 u

+
1 ) 1_

23
− (u−3 u+

1 )2

(u+
3 u+

1 )

«
δ12(1|3)q+a (3)δ

(2.2)
A (3|2) .

The large braces here contain three terms. It is easy to see that two first terms include the derivatives
which will lead to derivatives of the hypermultiplet in the effective action. Since we keep only
contributions without derivatives, the above terms can be neglected. As a result, is it sufficient to
consider only the third term in the braces.

Now we apply the relation
R
dζ

(−4)
3 (D+

3 )4 =
R
d12z, allowing to integrate over z3, and obtain

−
Z
du3 q

+a(1)
(u−3 u+

1 )2

(u+
3 u+

1 ) q
+
a (u3, z1)δ

(2.2)
A (u3, z1|2) .

Then one uses the on-shell harmonic dependence of hypermultiplet q+a(3) = u+
3iq

ia and take the

coincident limit u1 = u3 (conditioned by δ
(2.2)
A (u3, z1|2)). After that we get

R
du3

u+
3i

u+
3 u+

1
= −u−1i. As

a result, the term under consideration has the form

q+a(1)q−a (1)δ
(2.2)
A (1|2),



302 N.G. Pletnev. Hypermultiplet dependence of one-loop effective action in the N = 2....

where the expression q+a(1)q−a (1) = qiaqia is treated further as the slowly varying superfield and
all its derivatives are neglected. Namely such an expression was obtained in [6] by summation of
harmonic supergraphs.

Thus, the second term in (19) becomes local in the leading low-energy approximation. As a

result, the operator in action S
(2)
v determining the effective background covariant propagator of the

quantum vector multiplet superfield v++
I takes the form

“
_
2IJ +q+a(z1, u1){TI , TJ}q−a (z1, u1)

”
δ
(2.2)
A (1|2) , (22)

where
_
2IJ= tr(T(I2TJ) + i

2T(I [D+αW, TJ)]D−α + i
2T(I [D̄+

α̇ W̄, TJ)]D̄−α̇ + T(I [W, [W̄, TJ)]]. (23)

Here 2 = 1
2Dαα̇Dαα̇ is the covariant d’Alemberian.

Thus, using the N = 2 harmonic superspace formulation of the N = 2 SYM theory with hy-
permultiplets and techniques of the non-local shift we obtained that the whole dependence on the
background hypermultiplet is concentrated in the quantum vector multiplet sector with the modified
quadratic action. Therefore the one-loop effective action is given by the expression

Γ(1)[V ++, q+] = Γ(1)
v [V ++, q+] + eΓ(1)[V ++] , (24)

where the first term in (24) is originated from quantum vector multiplet v++
I

Γ(1)
v [V ++, q+] = i

2Tr ln(
_
2IJ +q+a{TI , TJ}q−a ) . (25)

Second term in (24) is the contribution of ghosts and quantum hypermultiplet ξ+a and does not
depend on the background hypermultiplet.

As a result, the background hypermultiplet dependence of one-loop effective action is included
into the operator (23), acting on v++

I and containing the mass matrix of the vector multiplet

(M2
v)IJ = tr

`
[TI ,W][W̄, TJ ] + (I ↔ J)

´
+ q+a{TI , TJ}q−a , (26)

if q+ is in the fundamental representation, and

(M2
v)IJ = tr

`
[TI ,W][W̄, TJ ] + [q+a, TI ][TJ , q

−
a ]
´

+ (I ↔ J) , (27)

if q+ in an arbitrary matrix representation.
In the above discussion, the gauge group structure of the superfields W, q+a has been completely

arbitrary. Henceforth, the background superfields will be chosen to be aligned along a fixed direction
in the moduli space of vacua in such a way that their scalar fields should solve Egs. (7). Then the
hypermultiplet dependent effective action in the case under consideration takes the universal form

Γ(1)
v [V ++, q+] (28)

= i
2n(Υ)× Tr ln

`
2 + i

2α(H)(D+WD− + D̄+W̄D̄−) + α2(H)WW̄ + r(Υ)q+aq−a
´
.

As the examples we list the values of α(H), r(Υ) and n(Υ) for models considered in [4].
(i) N = 4 SYM theory with gauge groups SU(N), Sp(2N) and SO(N). Here the hypermultiplet

sector is composed of a single hypermultiplet in the adjoint representation of the gauge group. The
background was chosen such that the gauge groups are broken down as follows SU(N) → SU(N −
1)×U(1), Sp(2N) → Sp(2N − 2)×U(1), SO(N) → SO(N − 2)×U(1). All background fields aligned
along element H = U(1) of the Cartan subalgebra (with Υ = H). The mass matrix becomes

(M2
v)IJ = (WW̄ + q+aq−a )(α(H))2δI,J

and traces in Eq.(24) produce the coefficient n(Υ) which is equal to the number of roots with
α(H) 6= 0, i.e. to the number of broken generators

n(Υ) =

8
><
>:

2(N − 1) for SU(N) ,

4N − 2 for Sp(2N) and SO(2N + 1) ,

4N − 1 for SO(2N) .
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The form of the mass matrix shows that in this case r(Υ) = α(H) .
(ii) The model introduced in [17]. The gauge group is USp(2N) = Sp(2N,C)

T
U(2N). The

model contains four hypermultiplets q+F in the fundamental and one hypermultiplet q+A in the anti-
symmetric traceless representation USp(2N). The background fields W, q+F , q+A are chosen to solve
Eqs. (7) with the unbroken maximal gauge subgroup USp(2N − 2)×U(1):

W = W√
2 diag(1, 0, ..., 0| {z }

N−1

,−1, 0, ..., 0| {z }
N−1

), q+F = 0 ,

(q+A) β
α = q+√

2N(N−1) diag(N − 1,−1, ...,−1| {z }
N−1

, N − 1,−1, ...,−1| {z }
N−1

) .

The mass matrix (M2
v)IJ has been calculated in [4] and it has n(Υ) = 4(N − 1) eigenvectors with

the eigenvalue M2
v = W̄W + N

N−1 q̄
jqj .

(iii) The N = 2 superconformal model which is the simplest quiver gauge theory [18]. Gauge
group is SU(N)L × SU(N)R. The model contains two hypermultiplets q+, q̃+ in the bifundamental
representations (N, N̄) and (N̄ ,N) of the gauge group. In [4] a solutions of (7) with non-vanishing
hypermultiplet components that specifies the flat directions in massless N = 2 SYM theories has
been constructed. The moduli space of vacua for this model includes the following field configuration

WL = WR = W
N
√

2(N−1) diag(N − 1,−1...,−1| {z }
N−1

) ,

q+ = q̃+ = q+√
2 diag(1, 0, ..., 0) ,

which preserves an unbroken gauge group SU(N − 1)× SU(N − 1) together with the diagonal U(1)
subgroup in SU(N)L×SU(N)R associated with the chosen W. In such a background the mass matrix
has eigenvalue M2

v = 1
N−1W̄W + 1

N q+aq−a and the corresponding n(Υ) = 4(N − 1).
As the result, the hypermultiplet dependent effective action is given by the expression (28). In

the next section we will consider the evaluation of this expression.

4 Calculation of the one-loop effective action

The expression (28) is a basis for an analysis of the hypermultiplet dependence of the effective
action. In the framework of the Fock - Schwinger proper-time representation, the effective action
(28) is written as follows

Γ(1)
v [V ++, q+] = i

2n(Υ)

Z
dζ(−4)du

Z ∞

0

ds
s e

−s(2+
i
2 α(H)(D+WD−+D̄+W̄D̄−)+M2

v)× (29)

×(D+)4
“
δ12(z − z′)δ(−2,2)(u, u′)

”
|z=z′,u=u′ =

Z ∞

0

ds
s TrK(s),

where M2
v = α2(H)WW̄+r(Υ)q+aq−a . Here K(s) is a superfield heat kernel, the operation Tr means

the functional trace in the analytic subspace of the harmonic superspace TrK(s) = tr
R
dζ(−4)K(ζ, ζ|s),

where tr denotes the trace over the discrete indices. Representation of the effective action (29) al-
lows us to develop a straightforward evaluation of the effective action in a form of covariant spinor
derivatives expansion in the superfield Abelian strengths W, W̄. The leading low-energy terms in this
expansion correspond to the constant space-time background D−αD

+
β W = const, D̄−α̇ D̄

+

β̇
W̄ = const

and on-shell background hypermultiplet. However, it does not mean that we miss all space-time
derivatives in the component effective Lagrangian. Grassmann measure in the integral over har-
monic superspace d4θ+d4θ− generates four space-time derivatives in component expansion of the
superfield Lagrangian. Therefore the above assumption is sufficient to obtain a component effective
Lagrangian including four space-time derivatives of the scalar components of the hypermultiplet.

Calculation of the effective action (29) is based on evaluating the superfield heat kernel K(s)
and lead to a final result for the hypermultiplet dependent low-energy one-loop effective action of
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the Heisenberg-Euler type. We remind that the whole background hypermultiplet is concentrated in
M2

v. The explicit form of it is:

Γ(1)[V ++, q+] = 1
(4π)2 n(Υ)

Z
dζ(−4)du

Z ∞

0

ds
s3 e−s(α2(H)WW̄+r(Υ)q+aq−a )× (30)

×α4(H)
16 (D+W)2(D̄+W̄)2 s2(N2−N̄2)

cosh(sN )−cosh(sN̄ ) · cosh(sN )−1
N2 · cosh(sN̄ )−1

N̄2 .

Here N is given by N =
q
− 1

2D
4W2. It can be expressed in terms of the two invariants of the

Abelian vector field F = 1
4F

mnFmn and G = 1
4

?FmnFmn as N =
p

2(F + iG).It is easily to see that
the integrand in (30) can be expanded in power series in the quantities s2N 2, s2N̄ 2. After change

of proper time s to s′WW̄ we get the expansion in power of s
′2 N2

(WW̄)2 and their conjugate. Since
the integrand of (30) is already ∼ (D+W)2(D̄+W̄)2, we can change in each term of expansion the
quantities N 2, N̄ 2 by superconformal invariants Ψ2 and Ψ̄2 [14] expressing these quantities from

Ψ̄2 = 1
W̄2D4 lnW = 1

2W̄2 {N
β
αNα

β
W2 +O(D+W)} and its conjugate. After that, one can show that each

term of the expansion can be rewritten as an integral over the full N = 2 superspace.
It is interesting and instructive to evaluate the leading part of the effective action (30) that

exactly coincides, up to group factor Υ with the earlier results [5], [6], [15]:

Γ
(1)
lead = 1

(4π)2 n(Υ)

Z
d12z (lnW ln W̄ + Li2(X) + ln(1−X)− 1

X ln(1−X)). (31)

Here Li2(X) is the Euler’s dilogarithm function. Next-to-leading corrections to (31) can also be
calculated. The remarkable feature of the low-energy effective action (31) is the appearance of the
factor r(Υ)/α(H) in argument X. This factor is conditioned by the vacuum structure of the model
under consideration and depends on the specific features of the symmetry breaking.

Now we discuss some terms in the component Lagrangian corresponding to the effective action
(31). Component structure of the effective action (31) has been studied [5] in the context of N = 4
SYM theory in bosonic sector for completely constant background fields Fmn, φ, φ̄, f

i, f̄i. However,
it was pointed out above that the superfield effective action (31) allows us to find the terms in the
effective action up to fourth order in space-time derivatives of component fields. Now our aim is to
find such terms in the hypermultiplet scalar component sector. To do that we omit all components
of the background superfields besides the scalars φ, φ̄ in the N = 2 vector multiplet and scalars f, f̄
in the hypermultiplet and integrate over d4θ+d4θ− = (D−)4(D+)4. To get the leading space-time
derivatives of the hypermultiplet scalar components we should put exactly two spinor derivatives on
each hypermultiplet superfield. It yields, after some transformations, to the following term with four
space-time derivatives on q± in component expansion of effective action :

Γ
(1)
lead =

Z
d4xdu n(Υ)

(4π)2

∞X

k=2

1
16

k−1
k(k+1)

Xk−2

(WW̄)2

{−D̄+α̇D+αq−b D̄
+
α̇D

−
β q

+(bD̄−β̇D−βq+a)D̄−
β̇
D+

α q
−
a

+ 1
2 D̄

+α̇D+αq−b D̄
−β̇D−βq+bD̄−

β̇
D−β q

+aD̄+
α̇D

+
α q

−
a

+ 1
2 D̄

−β̇D+αq−b D̄
+α̇D−βq+bD̄+

α̇D
−
β q

+aD̄−
β̇
D+

α q
−
a }|θ=0 .

The straightforward calculation of the components in this expression shows that among the many
terms with four derivatives there is an interesting term of the special type. As the first term in

expansion over variable X0 = r(Υ)f̄ifi
α2φ̄φ we have

Γ
(1)
lead = − 1

48π2 n(Υ)
“

r(Υ)
α(H)

”2
Z
d4x (32)

× 1
(φφ̄)2 iε

µνλρ(∂µf̄
i∂νfi∂λf̄

j∂ρfj − ∂µf̄
i∂ν f̄i∂λf

j∂ρfj)
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The expression (32) has a form of the Chern-Simons-like action for the multicomponent complex
scalar filed. The terms of such form in the effective action were discussed in Refs. [8], [9] in context
of N = 4, 2 SYM models and in Refs. [19] for d = 6,N = (2, 0) superconformal models respectively.
Here the expression (32) is obtained as a result of straightforward calculation in the supersymmetric
quantum field theory.

5 Hypermultiplet dependent contribution
to the effective action beyond the on-shell condition

In the above consideration a crucial point was the condition that the hypermultiplet q+ satisfies
the one-shell conditions (9) and the constraint q+ = D++q−. Here we relax the on-shell condi-
tions and study some of possible subleading contributions with the minimal number of space-time
derivatives in the component effective action.

Figure 1: One-loop supergraph

We consider a supergraph given in Fig.1 with two external hypermultiplet legs and with all propa-
gators depending on the background N = 2 vector multiplet. Here the wavy line stands for the N = 2
gauge superfield propagator and the solid external and internal lines stand for the background hyper-
multiplet superfields and quantum hypermultiplet propagator respectively. For simplicity we suppose
that the background field is Abelian and omit all group factors. The corresponding contribution to
effective action looks like

iΓ2 =

Z
dζ

(−4)
1 dζ

(−4)
2 du1du2

„
(D+

1 )4(D+
2 )4

(u+
1 u+

2 )3
1_

21
δ12(1|2)

«
× (33)

×
„

(D+
2 )4(D+

1 )4
_
22

_
21

δ12(2|1)(D−−1 )2δ(−2,2)(u2, u1)

«
q̃+(z1, u1)q

+(z2, u2).

As usually, we extract the factor (D+)4 from the vector multiplet propagator for reconstructing the

full N = 2 measure. Then we shrink a loop into a point by transferring the
_
2 and (D+)4 from first

δ-function to another one and kill one integration. At this procedure the operator
_
2 does not act

on q+ because we are interesting in the minimal number of space-time derivatives in the component
form of the effective action. As a result, one obtains

iΓ2 =

Z
dζ

(−4)
1 du1du2
(u+

1 u+
2 )3

(D+
1 )4(D+

2 )4(D+
1 )4

_
22

_
2

2
1

δ12(z − z′)

˛̨
˛̨×

×
“
(D−−1 )2δ(−2,2)(u2, u1)

”
q̃+(z1, u1)q

+(z1, u2) .

Further we use twice the relation (20) allowing us to express the (D+
1 )4(D+

2 )4 as a polynomial in
powers of (u+

1 u
+
2 ). Then after multiplying the (D+

1 )4(D+
2 )4(D+

1 )4 with the distribution 1/(u+
1 u

+
2 )3

we obtain a polynomial in (u+
1 u

+
2 ) containing the powers of this quantity from 5-th to 1-st. The

first order is just a contribution of the type which we considered in the previous section, because one
derivation (D−−)2 is used for transformation (u+

1 u
+
2 ) into (u+

1 u
−
2 )|u1=u2 = 1 in the coincident limit.

Another D−− transforms q+ into q−. All that has been already done in Section 4.
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Here we consider the new contribution to the effective action containing term (u+
1 u

+
2 )2 in the

above polynomial:
(D+

1 )4(D+
2 )4(D+

1 )4

(u+
1 u+

2 )3 = (34)

...+ (u+
1 u

+
2 )2(u−1 u

+
2 )(u−2 u

+
1 )(D+

1 )4
“

i
2

_
21∆

−−
2 (u+

2 u
−
1 )− i

2∆−−
1

_
22(u

+
1 u

−
2 )
”

+ ...

The ellipsis means the terms with the powers of (u+
1 u

+
2 ) other then 2. One can show that in the

coincident limit they disappear. Now transferring (D−−)2 on (u+
1 u

+
2 )2 we obtain the expression:

iΓ2 = i

Z
dζ(−4)du(D+)4 1_

2
3 (

_
2∆−−
| {z }
Γ2(1)

−∆−−_
2| {z }

Γ2(2)

)δ12(z − z′)|z=z′ q̃
+(z, u)q+(z, u) , (35)

where ∆−− is defined in (21).
Let us consider each of the two underlined contributions separately. We use the representation

1_
2

2 ∆−−δ12(z − z′)| =
Z
ds ses

_
2 ∆−−δ12(z − z′)|, (36)

where | means the coincident limit z = z′. Then we can apply a derivative expansion of the heat
kernel. The goal is to collect the maximum possible number of factors of D+,D− acting on (θ+ −
θ
′+)4(θ− − θ

′−)4 and having the minimum order in s in the integral over s. Higher orders in s
generate the higher spinor derivatives in the effective action. We take terms 1

2W(D−)2 + c.c. from
∆−− and expand the exponential so as to find (D−)4. The Eq. (36) allows us to write the leading
contribution to Γ2(1) as follows

Γ2(1) = −
Z
d12zdu

Z ∞

0

ds · s
Z

d4p
(2π)4 e

−sp2
es(WW̄−ε) s2

32W̄(D+αWD+
αW)×

×(D−)2(D̄−)2δ8(θ − θ′)|q̃+q+ + c.c.

After trivial integration over p and s this contribution has the form

Γ2(1) = i
32π2

Z
d12zduD+WD+W

W̄W2 q̃+(z, u)q+(z, u)(D−)4δ8(θ − θ′)|+ c.c. (37)

Now we fulfil the same manipulations with the second underlined contribution Γ2(2) keeping the
same order in s and D−, D̄− as in the expression (37). After that we see that the leading term of the
form (37) is absent in Γ2(2). Then it is not difficult to show that the contribution (37) is rewritten
as follows [we use

R
d2θ̄− = D̄+2]

− i
32π2

Z
d4xd4θ+d2θ−du(D̄+)2(D+)2 ln W̄

W q̃+(z, u)q+(z, u)(D−)4δ8(θ − θ′)|

The non-zero result arises when all D+ - factors act only on the spinor delta-function. Thus, the
contribution under consideration is written as an integral over the measure d4xdud4θ+d2θ− which
looks like ”3/4 - part” of the full N = 2 harmonic superspace measure d4xdud4θ+d4θ−.

Therefore, the hypermultiplet dependent effective action contains the term

Γ2 = − i
32π2

Z
d4xdud4θ+d2θ− 1

W̄ ln(W)q̃+q+|θ̄−=0 (38)

− i
32π2

Z
d4xdud4 θ+d2θ̄− 1

W ln(W̄)q̃+q+|θ−=0 .

Presence of such a term in the effective action for N = 2 supersymmetric models in subleading
order was proposed in [9]. Here we have shown how this term can be derived in the supersymmetric
quantum field theory.

It is interesting and instructive to find a component form of such a non-standard superfield action
(38). Here we consider only a purely bosonic sector of (38). After integration over anticommuting
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variables, which can be equivalently replaced by supercovariant derivatives evaluated at θ = 0, we
obtain a Chern-Simons-like contribution to the effective action containing three space-time derivatives

Γ2 = − 1
2π2

Z
d4x 1

φφ̄ε
mnab∂mf̄

i∂nfiFab . (39)

This expression is the simplest contribution to the hypermultiplet dependent effective action beyond
the on-shell conditions (9) for the background hypermultiplet. Of course, there exist other, more
complicated contributions including the hypermultiplet derivatives, they also can be calculated by
the same method which led to (38). Here we only demonstrated a procedure which allows us to
derive the contributions to the effective action in the form of integral over 3/4 - part of the full
N = 2 harmonic superspace.

6 Summary

We have studied the one-loop low-energy effective action in N = 2 superconformal models. The
models are formulated in harmonic superspace and their field content correspond to the finiteness
condition (1). Effective action depends on the background Abelian N = 2 vector multiplet superfield
and background hypermultiplet superfields satisfying the special restrictions (7), (8) which define
the vacuum structure of the models. The effective action is calculated on the base of the N = 2
background field method for the background hypermultiplet on-shell (9) and beyond the on-shell
conditions. For an on-shell hypermultiplet we found the universal expression for the effective active
action. For hypermultiplet beyond on-shell, we calculated the special manifestly N = 2 supersym-
metric subleading contribution which is written as an integral over 3/4 of the full N = 2 harmonic
superspace. We believe that such contributions deserves a special study.
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for N = 4 super Yang-Mills theory
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Tomsk, Russia
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Abstract

We introduce theN = 4 harmonic superspace with harmonic variables on USp(4)/(U(1)×
U(1)) coset and apply it for solving the constraints in N = 4 SYM model and for con-
structing invariant actions in this superspace. In particular, we obtain the actions which
are responsible for F 2 and F 4 terms in SYM model.

Foreword

It is high pleasure for me to consider myself as one of the disciples of professor I.L. Buchbinder,
who is truly world-wide recognized theoretical physicist, devoted himself to the modern high energy
theoretical physics. During last several decades he was particularly engaged in the study of supersym-
metric field theories which are considered now as an important branch in the modern quantum field
theory. I joined I.L. Buchbinder in 1998 being third year student at quantum field theory department
in Tomsk state university. Since that time I have been involved in the studies of supersymmetric
models with extended supersymmetry in harmonic superspace. The main idea of harmonic superspace
approach is the use of such superspace formulation for N = 2 and N = 3 supersymmetric models,
in which all supersymmetries are manifest and all properties of these models can be studied directly
in harmonic superspace. However, the model of N = 4 supers Yang-Mills field, which, I think, is
the most beautiful field theory due to its unique properties, does not possess manifestly N = 4 super-
symmetric description in any harmonic superspace. In fact, the problem of unconstrained superfield
formulation of this model in N = 4 superspace has been open for about thirty years, despite such an
approach was always very desired. In our recent joint paper [13] we have got some new insight on this
problem by introducing a new N = 4 harmonic superspace which appeared very useful for constructing
some N = 4 supersymmetric actions directly in N = 4 superspace. The basic aspects of this new
superspace are described in the present note, with some applications to the N = 4 supergauge theory.
I hope that the development of these ideas will eventually lead to the long-wished-for unconstrained
superfield description of this model and will open a new way for studying its quantum aspects directly
in N = 4 superspace. I think it would be the most valuable present to I.L. Buchbinder, devoted to its
sixtieth birthday, which I could make to express my deep respect to I.L. Buchbinder and its scientific
achievements.

309



310 I.B. Samsonov. USp(4) harmonic superspace for N = 4 super Yang-Mills theory

1 Introduction

The N = 4 super Yang-Mills (SYM) field theory, being the maximally extended rigid supersym-
metric model, possesses many remarkable properties. The symmetry of this model is so large that
the only freedom in the classical action is the choice of the gauge group, and the quantum dynamics
is free of divergences. It worth pointing out that this theory has profound relations with superstring
theory, particularly due to the AdS/CFT correspondence (see, e.g., [1]).

The problems of N = 4 SYM theory in the quantum domain are mainly related to the effective
action and correlation functions of composite operators. The superfield approaches seem to be more
efficient for these purposes, since they allow one to use the supersymmetries in explicit form. However,
a description of N = 4 SYM theory in terms of unconstrained N = 4 superfields is still missing.
For various applications, formulations in terms of N = 1 superfields (see, e.g., [2]), in terms of
N = 2 superfields [3, 4], or in terms of N = 3 superfields [5] are used. All attempts to find an
unconstrained N = 4 harmonic superfield formulation for the N = 4 SYM theory have been futile so
far [6, 7, 8, 9, 10, 11], for a number of different types of harmonic variables originating from various
cosets of the SU(4) group. However, one may still hope that there exists some other harmonic
superspace, not based on some SU(4) coset, which is better suited for a superfield realization of
N = 4 supergauge theory. In other words, we need new superfield representations of the known
irreducible multiplets of the N = 4 superalgebra realized in an appropriate harmonic superspace.

In the present paper we introduce the N = 4 harmonic superspace with harmonic variables on
USp(4)/(U(1)× U(1)) coset. The main motivation for using this coset is the observation that both
massless and massive BPS multiplets can be describes in such superspace. Indeed, the massive vector
multiplet with N = 4 supersymmetry respects the N = 4 supersymmetry with central charge, which
breaks the R-symmetry group of internal automorphisms of N = 4 superalgebra down to USp(4).
Therefore one can use only USp(4) harmonics for such multiplets.

We show that the constraints of N = 4 SYM model are easily solved in the USp(4) harmonic
superspace resulting in six analytic superfields with different types of analyticity. All these superfields
satisfy equations of motion with covariant harmonic derivatives and describe N = 4 supergauge
multiplet on-shell. We apply these superfields for constructing various invariant actions in USp(4)
harmonic superspace which, in particular, describe F 2 and F 4 terms. We expect that it will help in
the development of unconstraint N = 4 superfield approach to the N = 4 SYM model.

The paper is organized as follows. In Section 2 we introduce the N = 4 harmonic superspace with
USp(4) harmonic variables and review the basic constructions in it. In the next Section we present
the solution of constraints in N = 4 SYM model in this superspace. The last section is devoted
to the construction of various superfield actions in USp(4) harmonic superspace. In Summary we
discuss the results obtained and some ideas of their further application to N = 4 SYM theory.

2 N = 4 USp(4) harmonic superspace

Consider standard N = 4 superspace with coordinates ZM = {xm, θiα, θ̄
i
α̇}, where m = 0, 1, 2, 3

is the Lorentz group index, α, α̇ = 1, 2 denote the SL(2, C) indices and i, j, . . . = 1, 2, 3, 4 correspond
to R-symmetry. There are supercovariant spinor derivatives in this superspace,

Di
α = ∂

∂θα
i

+ iθ̄α̇iσm
αα̇

∂
∂xm , D̄α̇i = − ∂

∂θ̄α̇i − iθα
i σ

m
αα̇

∂
∂xm , (1)

which satisfy standard anticommutation relations,

{Di
α, D̄jα̇} = −2iσm

αα̇
∂

∂xm , {Di
α, D

j
β} = {D̄iα̇, D̄jβ̇} = 0. (2)

As is well known, the N = 4 superalgebra without central charges respects the U(4) R-symmetry
group. Therefore one can apply theN = 4 harmonic superspace forN = 4 SYM model with harmonic
variables in one of the coset of SU(4) group. This issue was studied in details in many works, see,
e.g., [6, 7, 8, 9, 10, 11]. However, these superspaces do not help to achieve the unconstraint superfield
formulation for this model. Therefore in the present paper we introduce another N = 4 harmonic
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superspace, based on the USp(4)/(U(1) × U(1)) coset, and develop the description of N = 4 SYM
model in it. Such harmonic variables were introduced in [12] and recently applied in [13] for studying
the N = 4 harmonic superparticle model. As was explained in [13], both massless and massive BPS
multiplets of N = 4 supersymmetry can be described in such a harmonic superspace. Now we review
the basic properties of harmonic variables on USp(4)/U(1)× U(1) coset.

The USp(4) harmonic variables are 4 × 4 unitary matrices u = (ui
j) preserving constant anti-

symmetric tensor Ω,

u ∈ USp(4) ⇒ uu† = 1, uΩuT = Ω. (3)

In our work we prefer the following form of Ω,

Ωij =

0
BB@

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

1
CCA , Ωij = (Ωij)

−1 =

0
BB@

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

1
CCA , (4)

although many other equivalent choices are possible. Note that it is not necessary to impose the
constraint detu = 1 since it follows from (3).

Let us denote the elements of complex conjugate matrix as u∗ = (ūi
j). Then the identities (3)

can be written for the matrix elements as

ui
j ūk

j = δi
k, ui

jΩ
jkul

k = Ωil. (5)

As follows from (5),

ūi
j = Ωiku

k
lΩ

lj , (6)

the conjugated matrix in the USp(4) group is not independent, but is expressed through the original
one with the help of invariant tensor Ω. In other words, the fundamental and conjugated representa-
tions are equivalent, similarly as for the SU(2) group. Hence, the invariant tensors Ωij and Ωij are
used to lower and rise the USp(4) indices, e.g.,

uij = ui
kΩkj = Ωikūk

j , ūij = Ωiku
k

j = ūi
kΩkj . (7)

Here we assume (Ωij)
∗ = −Ωij .

Now we introduce the usp(4) algebra as a space spanned on the following differential operators

S1 = D1
1 −D2

2, S2 = D3
3 −D4

4,

D(++,0) = D1
2, D(−−,0) = D2

1,

D(0,++) = D3
4, D(0,−−) = D4

3,

D(+,+) = D1
4 +D3

2, D(−,−) = D2
3 +D4

1,

D(+,−) = D1
3 −D4

2, D(−,+) = D2
4 −D3

1, (8)

where

Di
j = ui

k
∂

∂uj
k
. (9)

It is easy to see that S1, S2 are Cartan generators in the USp(4) group which measure the U(1)
charges of the other generators,

[S1, D
(s1,s2)] = s1D

(s1,s2), [S2, D
(s1,s2)] = s2D

(s1,s2). (10)

It is convenient to label the harmonic variables by their U(1) charges as well,

u1
i = u

(+,0)
i , u2

i = u
(−,0)
i , u3

i = u
(0,+)
i , u4

i = u
(0,−)
i . (11)
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The harmonic derivatives (8) can now be rewritten in the more useful form for practical calculations
with harmonics (11),

S1 = u
(+,0)
i

∂
∂u

(+,0)
i

− u
(−,0)
i

∂
∂u

(−,0)
i

, S2 = u
(0,+)
i

∂
∂u

(0,+)
i

− u
(0,−)
i

∂
∂u

(0,−)
i

,

D(±±,0) = u
(±,0)
i

∂
∂u

(∓,0)
i

, D(0,±±) = u
(0,±)
i

∂
∂u

(0,∓)
i

,

D(±,±) = u
(±,0)
i

∂
∂u

(0,∓)
i

+ u
(0,±)
i

∂
∂u

(∓,0)
i

, D(±,∓) = u
(±,0)
i

∂
∂u

(0,±)
i

− u
(0,∓)
i

∂
∂u

(∓,0)
i

. (12)

Using the notations (11), the basic relations for harmonics (5) can be written as orthogonality

u(+,0)iu
(−,0)
i = u(0,+)iu

(0,−)
i = 1, (13)

u
(+,0)
i u(0,+)i = u

(+,0)
i u(0,−)i = u

(0,+)
i u(−,0)i = u

(−,0)
i u(0,−)i = 0 (14)

and completeness conditions,

u(+,0)iu
(−,0)
j − u

(+,0)
j u(−,0)i + u(0,+)iu

(0,−)
j − u

(0,+)
j u(0,−)i = δi

j . (15)

Apart from the usual complex conjugation there is the following conjugation for harmonics [12],

ũ
(±,0)
i = u(0,±)i, ũ

(0,±)
i = u(±,0)i, ũ(±,0)i = −u(0,±)

i , ũ(0,±)i = −u(±,0)
i . (16)

It is the conjugation (16) which allows one to define real objects in harmonic superspace with USp(4)
harmonics.

Now we define the N = 4 USp(4) harmonic superspace as a superspace with coordinates ZH =
{xm, θi

α, θ̄iα̇, u}, where the harmonic variables u are defined in (3). The main advantage of using the
harmonic superspace ZH is the possibility of passing to the harmonic projections for all objects with
USp(4) indices. For instance, for the Grassmann variables we have

θI
α = −uIiθiα, θ̄I

α̇ = uI
iθ̄

i
α̇, (17)

where the index I takes the following values

I = {(+, 0), (−, 0), (0,+), (0,−)}. (18)

One can promote the conjugation (16) to such objects,

θ̃
(±,0)
α = θ̄

(0,±)
α̇ , θ̃

(0,±)
α = θ̄

(±,0)
α̇ ,

˜̄
θ
(0,±)
α̇ = −θ(±,0)

α ,
˜̄
θ
(±,0)
α̇ = −θ(0,±)

α . (19)

Analogously, we project the Grassmann derivatives (1) with harmonics,

DI
α = uI

iD
i
α D̄I

α̇ = −uIiD̄iα̇. (20)

They are also related by the conjugation as

D̃
(±,0)
α = −D̄(0,±)

α̇ , D̃
(0,±)
α = −D̄(±,0)

α̇ ,
˜̄
D

(±,0)
α̇ = D(0,±)

α ,
˜̄
D

(0,±)
α̇ = D(±,0)

α . (21)

3 Solution of N = 4 SYM constraints in USp(4) HSS

According to the generic procedure of superspace formulation of the extended supersymmetric
models [14], one introduces the gauge connections for the covariant spinor derivatives (1),

Di
α → ∇i

α = Di
α + V i

α, D̄iα̇ → ∇̄iα̇ = D̄iα̇ + V̄iα̇ (22)

and defines the superfield strengths by the following anticommutators,

{∇i
α,∇j

β} = 2εαβW
ij , {∇̄iα̇, ∇̄jβ̇} = 2εα̇β̇W̄ij . (23)
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It is well known that the following N = 4 SYM constraints put the superfield strengths on-shell [14],

D̄iα̇W
jk = 1

3 (δj
i D̄lα̇W

lk − δk
i D̄lα̇W

lj), (24)

Di
αW

jk +Dj
αW

ik = 0, (25)

W ij = W̄ij = 1
2εijklW

kl. (26)

Let us project the strengths W ij with harmonics,

W ij →W IJ = uI
iu

J
jW

ij , (27)

where the indices I, J take the values (18). We denote these superfields also as

W1 = u
(0,+)
i u

(0,−)
j W ij , W2 = u

(+,0)
i u

(−,0)
j W ij ,

W (+,+) = u
(+,0)
i u

(0,+)
j W ij , W (−,−) = u

(−,0)
i u

(0,−)
j W ij ,

W (+,−) = u
(+,0)
i u

(0,−)
j Wij , W (−,+) = u

(−,0)
i u

(0,+)
j Wij . (28)

Contracting equations (24,25) with harmonics we find a number of Grassmann analyticity constraints
for these superfields,

D(0,+)
α W1 = D(0,−)

α W1 = D̄
(+,0)
α̇ W1 = D̄

(−,0)
α̇ W1 = 0,

D(+,0)
α W2 = D(−,0)

α W2 = D̄
(0,+)
α̇ W2 = D̄

(0,−)
α̇ W2 = 0,

D(+,0)
α W (+,+) = D(0,+)

α W (+,+) = D̄
(+,0)
α̇ W (+,+) = D̄

(0,+)
α̇ W (+,+) = 0,

D(−,0)
α W (−,−) = D(0,−)

α W (−,−) = D̄
(−,0)
α̇ W (−,−) = D̄

(0,−)
α̇ W (−,−) = 0,

D(+,0)
α W (+,−) = D(0,−)

α W (+,−) = D̄
(+,0)
α̇ W (+,−) = D̄

(0,−)
α̇ W (+,−) = 0,

D(−,0)
α W (−,+) = D(0,+)

α W (−,+) = D̄
(−,0)
α̇ W (−,+) = D̄

(0,+)
α̇ W (−,+) = 0. (29)

Moreover, by construction, the superfields (28) are annihilated by the following harmonic derivatives,

D(++,0)W1 = D(−−,0)W1 = D(0,++)W1 = D(0,−−)W1 = (D(+,+))2W1 = 0,

D(++,0)W2 = D(−−,0)W2 = D(0,++)W2 = D(0,−−)W2 = (D(−,−))2W2 = 0,

D(++,0)W (+,+) = D(0,++)W (+,+) = D(+,+)W (+,+) = D(+,−)W (+,+) = D(−,+)W (+,+) = 0,

D(−−,0)W (−,−) = D(0,−−)W (−,−) = D(−,−)W (−,−) = D(+,−)W (−,−) = D(−,+)W (−,−) = 0,

D(++,0)W (+,−) = D(0,−−)W (+,−) = D(+,−)W (+,−) = D(+,+)W (+,−) = D(−,−)W (+,−) = 0,

D(−−,0)W (−,+) = D(0,++)W (−,+) = D(−,+)W (−,+) = D(+,+)W (−,+) = D(−,−)W (−,+) = 0.

(30)

Let us now consider the reality constraint (26). Applying the following identities with harmonics

u(+,0)iu(−,0)jεijkl = 2u
(0,+)

[k u
(0,−)

l] ,

u(0,+)iu(0,−)jεijkl = 2u
(+,0)

[k u
(−,0)

l] ,

u(+,0)iu(0,−)jεijkl = −2u
(+,0)

[k u
(0,−)

l] ,

u(0,+)iu(−,0)jεijkl = −2u
(0,+)

[k u
(−,0)

l] ,

u(+,0)iu(0,+)jεijkl = −2u
(+,0)

[k u
(0,+)

l] ,

u(−,0)iu(0,−)jεijkl = −2u
(−,0)

[k u
(0,−)

l] , (31)

we find that (26) leads to the reality properties of superfield strengths,

W̃1,2 = W1,2, W̃ (+,+) = W (+,+), W̃ (−,−) = W (−,−),

W̃ (+,−) = W (−,+), W̃ (−,+) = W (+,−).
(32)

As a result, all the constraints (24)–(26) are solved by the superfields (28) satisfying (29,30,32).
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4 Invariant actions in USp(4)/(U(1)×U(1)) harmonic su-
perspace

Each of the superfields (28) depends effectively on eight Grassmann variables rather than six,
as is seen in each line in (29). In other words, there are six different analytic subspaces with eight
Grassmann variables in full N = 4 harmonic superspace. Here we restrict ourself to one such subspace
corresponding to the superfield W1, the others can be studied in a similar way.

The superfieldW1 lies in the analytic superspace with the coordinates ZA = {xm
A , θ

(±,0)
α , θ̄

(0,±)
α̇ , u},

where

xm
A = xm − iθ(0,−)σmθ̄(0,+) + iθ(0,+)σmθ̄(0,−) − iθ(+,0)σmθ̄(−,0) + iθ(−,0)σmθ̄(+,0). (33)

In the coordinates (33), the covariant spinor derivatives (20) and harmonic derivatives (12) are given
by

D(0,±)
α = ± ∂

∂θ(0,∓)α , D̄
(±,0)
α̇ = ± ∂

∂θ̄(∓,0)α̇ , (34)

D
(±±,0)
A = D(±±,0) + θ(±,0) ∂

∂θ(∓,0) , D
(0,±±)
A = D(0,±±) + θ(0,±) ∂

∂θ(0,∓) , (35)

D
(+,+)
A = D(+,+) − 2i(θ(+,0)σmθ̄(0,+) − θ(0,+)σmθ̄(+,0))∂m

+θ(0,+) ∂
∂θ(−,0) + θ̄(+,0) ∂

∂θ̄(0,−) . (36)

Using the expressions (34)–(36), one can easily find the on-shell component structure of the superfield
W1 by solving the equations (29,30,32),

W1 = φ+ if ij(u
(+,0)

[i u
(−,0)

j] − u
(0,+)

[i u
(0,−)

j] )

+iθ(+,0)αψi
αu

(−,0)
i − iθ(−,0)αψi

αu
(+,0)
i + iθ̄

(0,+)
α̇ ψ̄iα̇u

(0,−)
i − iθ̄

(0,−)
α̇ ψ̄iα̇u

(0,+)
i

+θ(+,0)
α θ

(−,0)
β F (αβ) + θ̄

(0,+)
α̇ θ̄

(0,−)

β̇
F̄ (α̇β̇) + . . . , (37)

where dots stand for the terms with derivatives of fields. Here φ, f [ij] are six real scalar fields, ψi
α are

four Weyl spinors and Fαβ , F̄α̇β̇ correspond to the spinor components of the Maxwell field strength.
All component fields here depend only on xm

A and satisfy the corresponding free equations of motion.
As a result, the N = 4 SYM multiplet is embedded into the on-shell superfield W1.

Since the superfield W1 is analytic, an action with this superfield should be given by the integral
over the analytic subspace ZA with the analytic measure (the details of integration over the harmonic
variables are given in [13])

dζ = 1
28 d4xAdu(D

(+,0))2(D(−,0))2(D̄(0,+))2(D̄0,−)2. (38)

In general, one can consider arbitrary superpotential F(W1) which gives us the manifestly supersym-
metric and gauge invariant action,

S =

Z
dζ F(W1). (39)

The following particular choices of the superpotential may by interesting for the physical applications,

S4 = g

Z
dζ (W1)

4 ∼ g

Z
d4xF 4 + . . . , (40)

Sconf =

Z
dζ ln(W1/Λ) ∼

Z
d4xF4

φ4 + . . . . (41)

Here g and Λ are constants with mass dimension −4 and +1, respectively. The leading terms in the
component structure of these actions, given in rhs of (40,41), are obtained by substituting (37) into
these actions. Here we see that (40) corresponds to the N = 4 supersymmetric generalization of
quartic term in the Born-Infeld action (see, e.g., [16] for a review on this subject) while the action
(41) is nothing but a scale-invariant generalization of this term. From the field theory point of view,
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(41) can be interpreted as the leading term in the low-energy effective action in N = 4 SYM model,
see [15].

Let us address the issue of N = 4 superfield description of the classical N = 4 SYM action in har-
monic superspace. One can check that the action (39) does not contain the F 2 term in its component
structure for any choice of the superpotential F . As a way out, we construct the action reproducing
the F 2 term in another analytic subspace with coordinates Z′A = {x′mA , θ(+,0)

α , θ
(0,+)
α , θ̄

(+,0)
α̇ , θ̄

(0,+)
α̇ , u},

where

x′
m
A = xm − iθ(−,0)σmθ̄(+,0) − iθ(+,0)σmθ̄(−,0) − iθ(0,−)σmθ̄(0,+) − iθ(0,+)σmθ̄(0,−). (42)

The corresponding analytic measure is given by

dζ(−4,−4) = 1
28 d4xAdu(D

(−,0))2(D(0,−))2(D̄(−,0))2(D̄(0,−))2. (43)

Now we propose the following action, which depends manifestly not only on the superfield W1 but
also on the Grassmann variables,

S2 =

Z
dζ(−4,−4)(D(+,+)W1)

2[(θ(+,0))2 − (θ̄(+,0))2][(θ(0,+))2 − (θ̄(0,+))2] ∼
Z
d4xF 2 + . . . . (44)

Here dots mean all component terms in classical action of N = 4 SYM model, which complement
Maxwell F 2 term up to the full N = 4 supersymmetry.

Of course, the manifest presence of Grassmann variables in (44) means that this action is super-
symmetric only if the superfield W1 satisfy some constraints. Indeed, one can check that the action
S2 is invariant under supersymmetry, δεS2 = 0, if

D(++,0)W1 = D(0,++)W1 = 0. (45)

It is very important to realize that the equations (45) do not put the superfield W1 on-shell but
just reduce the component structure in it. It follows from the fact that the operators (35) do not
have spatial derivatives in the corresponding analytic coordinates. The equations (45) mean that
the superfield W1 depends effectively on USp(4)/(SU(2)×SU(2)) harmonic variables rather than on
USp(4)/(U(1)× U(1)) ones. Hence, the action (44) may serve as the off-shell N = 4 SYM classical
action in the Abelian case, written in terms of superfield strength.

The action (44) requires further studies, to be useful for applications for the N = 4 SYM model.
In particular, one has to introduce the prepotentials for the superfield strength W1 and to express
(44) in terms of these prepotentials, resulting in the unconstrained superfield action for N = 4 SYM
model. We hope that it may open a way for the unconstrained N = 4 superfield quantization of this
model.

5 Summary

In this note we develop the N = 4 harmonic superspace approach for the N = 4 SYM model,
which is based on the use of USp(4)/(U(1) × U(1)) harmonic variables. We have shown that the
N = 4 SYM constraints are easily solved in this superspace resulting in six analytic superfield
strengths. Each of this superfields lies in its own analytic subspace with eight Grassmann variables
and satisfies definite equations of motion involving covariant harmonic derivatives. Using one of
these superfields, W1, we constructed a number of invariant actions in such harmonic superspace,
which contain F 2 or F 4 terms in their component structure. The action reproducing F 2 term in
components is interpreted as off-shell classical action for N = 4 SYM model. The action with F 4

term in components corresponds to superfield generalization of the quartic term in the Born-Infeld
action. We have found also a scale-invariant generalization of the quartic action which gives the
leading terms in low-energy effective action in N = 4 SYM model.

As a result, we show that the USp(4) harmonic superspace, introduced in [13], appears very useful
for the superfield formulation of the N = 4 SYM model. We expect that the further development of
this formulation will lead to the unconstraint N = 4 superfield approach for this model, which was
missing during last thirty years. Such unconstraint superfield formulation of N = 4 SYM model is
very desirable for studying quantum aspects of this model, directly in N = 4 superspace.
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Abstract

We consider the frame–like formulation of so–called bosonic and fermionic higher–spin
triplets in flat and AdS backgrounds of an arbitrary dimension. The relation of the
fields of higher–spin triplets to the higher–spin vielbeins and connections is found. The
gauge invariant actions are constructed including, in particular, the reducible higher–spin
fermion (i.e. triplet) case in AdS space.

1 Introduction

It is a pleasure to write this contribution on the occasion of the 60th birthday anniversary of
Joseph Buchbinder, our colleague and friend, who, among other important subjects in his fruitful
scientific carrier, made an extensive contribution to the theory of higher–spin fields.

The construction of gauge invariant actions for single (irreducible) massless higher–spin fields
usually requires that these fields are constrained to be double–traceless or traceless in the case
of integer spins and triple–gamma–traceless or gamma–traceless in the case of half integer fields,
depending on whether one uses the metric–like or frame–like formalism (see [1]–[4] for recent reviews
and references). The trace constraints on the dynamical fields can be removed by introducing a
number of auxiliary fields or allowing non–locality in the theory. Several versions of the unconstrained
Lagrangian formulation of higher–spin fields have been proposed (see e.g. [5, 6, 7, 8, 9, 10, 11, 12, 13]).

A nice unconstrained two–derivative formulation was proposed by J. Buchbinder, A. Galajinsky
and V. Krykhtin [11]. Their construction is closely related to (and is actually based on) the so called
triplets of higher–spin fields, on which we focus in this contribution.

The bosonic triplet system describes the field of an integer spin s together with its descendants
of spins s − 2, s − 4, . . . , 1 or 0. The fermionic triplet system consists of the field of a half–integer
spin s and its descendants of spins s− 1, s− 2, . . . , 1/2.

The massless higher–spin triplets show up when one picks up certain states of the open string
spectrum while taking its tensionless limit [14, 15, 17, 16, 9, 18] (see also [19] for further develop-
ments). So one can regard the triplets as fields which manifest their origin from massive higher–spin
fields of the tension–full string. The study of these sets of fields may shed some light on a mechanism

317



318 D.P. Sorokin and M.A. Vasiliev. Geometry and dynamics of higher–spin triplets

of higher–spin symmetry breaking resulting in the generation of mass in Higher Spin Theory, which
is the necessary step in establishing a relationship of the Higher Spin Gauge Theory with String
Theory.

However, the geometrical nature of triplet fields, i.e. their relation to higher–spin counterparts
of metric (or vielbein) and connection, has not been clarified yet. Moreover, neither equations of
motion nor the action for fermionic triplets in AdS space have been constructed. This hinders the
study of the relation of the fermionic triplets to string states in AdS backgrounds and corresponding
applications.

In this contribution we provide the answers to these problems using the frame–like formulation
of higher–spin fields [20, 21, 22, 1, 4]. Upon establishing the geometrical meaning of the triplet
fields and finding their proper gauge transformations, in particular in AdS, we obtain a relatively
simple Lagrangian description of the bosonic and fermionic triplets in flat and AdS backgrounds,
which should be useful for their applications, e.g. for studying interactions of triplets. In Conclusion
we also mention how one can get a frame–like version of the unconstrained formulation of single
higher–spin fields proposed in [11].

2 Frame–like action for bosonic higher–spin fields in flat
space–time

In the frame–like formulation (see [20, 21, 1, 4] for details) a massless symmetric field of an integer
spin s in flat space–time of dimension D is described by the higher–spin vielbein one–form1

en1...ns−1 = dxm em;
n1...ns−1 , (1)

by the one–form connection
ωn1...ns−1,p = dxm ωm;

n1...ns−1,p, (2)

and by extra fields which do not play a role in the free (linearized) field theory. In (1) and (2) the
indices n1 . . . ns−1 are symmetric, and ωn1...ns−1,p has the property of the Young tableau Y (s− 1, 1)
2, i.e. its part which is totally symmetric in all of the tangent space indices vanishes

ω(n1...ns−1,p) :=
1

s
(ωn1...ns−1,p + ωp...ns−1,n1 + s− 2 terms) = 0 . (3)

The brackets () and [] will define, respectively, the symmetrization and anti–symmetrization of indices
with the unit weight.

The connection is the auxiliary field if, like in the case of the Einstein gravity, we impose the zero
torsion condition

Tn1...ns−1 ≡ d en1...ns−1 − (s− 1) dxq ωn1...ns−1,p ηpq = 0 . (4)

If eq. (4) holds, the dynamical degrees of freedom of the massless higher–spin field are contained in
the higher–spin vielbein (1) which also has pure gauge degrees of freedom because of the presence in
the theory of the higher–spin gauge symmetry. In particular, the torsion (4) is invariant under the
following gauge transformations of the vielbein and the connection

δ en1...ns−1 = dξn1...ns−1 − (s− 1) dxq ξn1...ns−1,p ηpq , (5)

δ ωn1...ns−1,p = dξn1...ns−1,p − (s− 2) dxq ξn1...ns−1,pr ηrq . (6)

The gauge parameters ξn1...ns−1 , ξn1...ns−1,p and ξn1...ns−1,p1p2 are symmetric in each group of indices
n and p. In addition, ξn1...ns−1,p and ξn1...ns−1,p1p2 have the symmetry properties of the Young

1In flat space–time we shall not distinguish between the world and tangent space indices. Both kinds of
indices will be denoted by lower case Latin letters. World indices will be separated from the tangent–space
ones by ‘;’.

2To separate the sets of symmetric tangent–space indices we use coma. Y (s− 1, 1) means that the Young
tableau has s− 1 cells in the first row and 1 cell in the second raw.
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tableaux Y (s − 1, 1) and Y (s − 1, 2), respectively, which means like in (3) that the symmetrization
of any s indices gives zero.

Note that so far we have not imposed traceless conditions on the higher–spin vielbein, connection
and gauge parameters.

We would like to derive the zero torsion condition (4) from an action together with dynamical
field equations on the physical components of en1...ns−1 . We construct such an action by analogy
with the frame formulation of the action for (linearized) gravity.

The free higher–spin action has the following simple form

S =

Z

MD

dxa1 . . . dxaD−3 εa1...aD−3pqr (d en1...ns−2p − s− 1

2
dxm ωn1...ns−2p, m)ωn1...ns−2

q, r . (7)

The action is invariant under the transformations (5 – 6) provided the gauge parameters ξn1...ns−1, m

and ξn1...ns−1, ml satisfy the constraints

ηn1m ξn1...ns−1, m = 0 , ηn1m ξn1...ns−1, ml = 0 , (8)

while the parameter ξn1...ns−1 remains arbitrary.
To be consistent with (8) the connection ω is subject to the analogous trace constraint

ηn1m ωn1...ns−1, m = 0 . (9)

The consequence of (9) (and also of (8) for the gauge parameters) is that the trace of ω in a pair of
the symmetric indices n has again definite Y (s− 3, 1) Young–symmetry properties

ηn1n2 ω
n1n2(n3...ns−1, m) = 0 . (10)

We should stress that the trace ηn1n2 ω
n1n2n3...ns−1, m can be non–zero. Therefore, the condition (9)

is weaker than the conventional trace constraint on the quantities of the frame–like formulation of a
single higher–spin field which corresponds to Fronsdal theory [24]. We shall call eq. (9) the relaxed
traceless condition.

Note that the vielbein en1...ns−1 remains traceful. Here we should point out, however, that in the
case of the odd integer spins s = 2k+1 the fully trace part of en1...ns−1 , i.e. en1...n2kηn1n2 · · · ηn2k−1n2k

does not appear in the action (7) because of its differential form structure. Technically, the reason
for this is that the one–form associated with the spin–1 field does not have external (tangent–space)
indices required for the construction of the action as an integral of a differential form. Thus, the
action (7) does not describe fields of spin one.

In the case of the even integer spins s = 2k the total trace component of the higher–spin vielbein
e

n1...n2k+1
n; δn

n1ηn2n3 · · · ηn2kn2k+1 is pure gauge, in view of the gauge transformations (5). Thus, the
action (7) does not describe the kinematics of the scalar fields either.

To include the spin 0 and spin 1 fields into the system one should add to the action (7) the
corresponding Klein–Gordon and Maxwell terms. This can be achieved by adding to the action
the spin–one and spin–zero kinetic terms formulated in terms of the so-called Weyl zero-forms as
discussed in [23] for the scalar case and in [26] for the spin–one case.

By virtue of (9), the general local variation of the action (7) can be presented in two forms, which
are equivalent up to total derivatives,

δS =

Z

MD

dxa1 . . . dxaD−3 εa1···aD−3
pqr δTn1···ns−2p ω

n1···ns−2
q, r (11)

=

Z

MD

dxa1 . . . dxaD−3 εa1···aD−3
pqr (Tn1···ns−2p δω

n1···ns−2
q, r − δen1···ns−2p dω

n1···ns−2
q, r) ,

where the torsion Tn1···ns−1 is defined in the left hand side of (4).
The first form of the variation is convenient for the chek of the gauge invariance of the action

under (5), (6) and (8). The second line of (11) yields the field equations for ω and e, which follow
from

δm
[b δ

n
c δ

r
d] Tmn;n1···ns−2

b δ ωr;
n1···ns−2c, d = 0 , (12)
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and
δm
[b δ

n
c δ

r
d]δem;n1···ns−2

b ∂nωr;
n1···ns−2c, d = 0 . (13)

As one can show, the equation (12) is equivalent to the zero–torsion condition (4), modulo its full
trace in the tangent space indices in the case of spin s = 2k + 1. There is no condition on the full
trace of the torsion, since, as we have explained above the corresponding trace of the vielbein does
not appear in the action.

The zero torsion condition

(s− 1)ω
n1···ns−1,b

[n; ηm]b = ∂[m e
n1···ns−1

n]; (14)

expresses the higher–spin connection in terms of the first derivatives of the higher–spin vielbein up to
the Stueckelberg gauge transformations (6). In the case of odd s = 2k + 1, e

n1···ns−1
m in (14) stands

for the part of the vielbein whose total trace is zero e
n1···n2k

m ηa1a2 · · · ηa2k−1a2k = 0. In view of the
relation (14) the equations which follow from eq. (13), namely

δm
(b∂

cωd;
n1···ns−2)[c,d] + ∂d ω(b;n1···ns−2)

[m,d] + ∂(b ω
d;

n1···ns−2)[d,
m] = 0 (15)

are the dynamical (second–order) equations of motion of the higher–spin vielbein field.
Let us analyze the field content of this model.

2.1 Fronsdal case

We first consider the case of an irreducible massless field. Following [20] we impose on the
higher–spin vielbein and connection maximal trace constraints

ηn1n2 ẽ
n1...ns−1 = 0 ηn1n2 ω̃

n1...ns−1, m = 0 , (16)

where we use ẽ and ω̃ for the traceless objects to distinguish them from the original (relaxed) e and
ω. Note that the condition (9) follows from (3) and (16), but not vice versa.

The parameters of the gauge transformations (5) and (6) acting on the traceless ẽ and ω̃ are also
traceless

ηn1n2 ξ̃
n1...ns−1 = 0, ηn1n2 ξ̃

n1...ns−1, m = 0 , ηn1n2 ξ̃
n1...ns−1, mp = 0. (17)

Using the gauge transformations (5) and (6) with the parameters ξ̃ one can gauge fix to zero the
“antisymmetric” parts of the components of the vielbein ẽ and of the connection ω̃. Then, taking into
account the algebraic expression (14) we see that all the physical degrees of freedom are contained
in the symmetric part of the vielbein

s ẽ(ns; n1···ns−1) := φ̃n1···ns , (18)

which is double traceless because the vielbein ẽns;
n1···ns−1 is traceless in the indices n1 · · ·ns−1.

The remaining local symmetry is then just that of the Fronsdal metric–like formulation of the
dynamics of a single symmetric bosonic higher–spin field in flat space–time [24] with the completely
symmetric traceless parameter ξ̃n1···ns−1 .

If we now substitute into the action (7) the connection ω̃ with its expression (14) in terms of the
symmetric and double traceless field (18), the resulting action will be quadratic in the derivatives of
φ̃n1···ns and will be invariant under the local transformations

δ φ̃n1...ns = s ∂(n1 ξ̃n2...ns−1) (19)

with traceless gauge parameters ξ̃n1···ns−1 . As such, one can directly verify that this action is equiv-
alent (up to a total derivative) to the Fronsdal action for a massless gauge field of spin s

S =

Z
dDx

„
1

2
φ̃m1···ms Fm1···ms −

1

8
s(s− 1) φ̃ nm3···ms

n Fp
pm3···ms

«
(20)

where

Fm1···ms(x) ≡ ∂2 φ̃m1···ms − s ∂(m1∂
n φ̃m2···ms)n +

s(s− 1)

2
∂(m1∂m2 φ̃

n
m3···ms)n (21)

is the so–called Fronsdal operator.
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2.2 Triplet case

Let us now analyze the field content of the model described by the action (7) with the traceful
higher–spin vielbein and with the higher–spin connection subject to the relaxed traceless condition
(9). By representing the vielbein as a sum of traceless (lower rank) symmetric tensors, one can
see that the action (7) is actually the sum of the actions for the traceless vielbeins ẽa1···at−1 and
connections ω̃a1···at−1,b with t taking the even or odd values (t = 2, 4, · · · , s or t = 3, 5, · · · , s),
depending on whether s is even or odd,

S =
P[ s

2 ]

k=1 α(t,D)
R

MD dxa1 . . . dxaD−3 εa1...aD−3pqr (d ẽn1...nt−2p (22)

− t−1
2
dxm ω̃n1...nt−2p, m) ω̃n1...nt−2

q, r ,

In eq. (22) t = 2k or t = 2k+1, [ s
2
] denotes the integral part of s

2
when s is odd, α(t,D) are constants

which depend on space–time dimension D and the rank t (spin) of the tensor fields. Thus, the sum
in (7) is taken over even t = 2, 4, · · · , s− 2, s or odd t = 3, 5, · · · , s− 2, s depending whether s is even
or odd. Each of the terms of the sum (22) with a given t is gauge invariant under the transformations
eqs. (5), (6) with the traceless parameters (17).

As we have explained in Subsection 2.1, for a given t each term of (22) describes a free massless
field of spin t. Thus the action (22), and hence (7), describes the family of massless fields of even
integer spins t = 2, 4, · · · , s− 2, s and of odd integer spins t = 3, 5, · · · , s− 2, s.

These field contents are similar to the field contents of the higher–spin triplets [15, 16, 9, 18]
(except for the presence in the latter of the fields of the lowest spins 0 and 1). We shall now
demonstrate that there is indeed the relation between the triplet fields and the components of the
higher–spin vielbein e and connection ω, thus clarifying the geometrical meaning of the former.

Recall that the higher–spin triplet is described by the following three symmetric tracefull tensor
fields of rank s, s− 1 and s− 2

Φn1···ns , Cn1···ns−1 , Dn1···ns−2 .

On the mass shell these fields satisfy the following equations

Cn1···ns−1 = ∂mΦm
n1···ns−1 − (s− 1) ∂(ns−1 Dn1···ns−2) , (23)

2 Φn1···ns = s ∂(ns Cn1···ns−1) , 2 := ∂m∂
m, (24)

2Dn1···ns−2 = ∂m Cm
n1···ns−2 . (25)

Eqs. (23)–(25) are invariant under the gauge transformations

δΦn1···ns = s ∂(ns ξn1···ns−1) (26)

δCn1···ns−1 = 2 ξn1···ns−1 (27)

δDn1···ns−2 = ∂m ξm
n1···ns−2 (28)

where the unconstrained parameter ξn1···ns−1 is completely symmetric.
Let us now compare the gauge transformations (26)–(28) with the gauge transformations (5) and

(6) of the higher–spin vielbein and connection. This comparison suggests that the fields Φ and D of
the triplet are just the symmetric components of the higher–spin vielbein3

Φn1···ns = s e(ns; n1···ns−1) Dn1···ns−2 = ep; n1···ns−2ns−1 η
ns−1p . (29)

It remains only to identify the field C. To this end let us have a look at the zero torsion condition
(14). In (14) we first symmetrize the index n with n1, . . . , ns−1 and then take the trace of n with m.
In view of eqs. (3) and (9) we thus get

(s− 1)ωm;n1···ns−1,
m = ∂mΦm

n1···ns−1 − (s− 1) ∂(ns−1 Dn1···ns−2) − ∂mem;n1···ns−1 , (30)

3Note that using the transformation (5) with the parameter ξn1···ns−1,p one can gauge away from the
vielbein ep

n1···ns−1 its part which corresponds to the hook Young tableau of ξn1···ns−1,p, i.e. the part which
satisfies the ‘antisymmetry’ condition e(p; n1···ns−1) = 0 and is subject to the relaxed trace constraint similar

to (8).
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where Φ and D are defined in (29). Comparing (30) with (23) we see that the triplet field C is
actually composed of the trace of the higher–spin connection and the divergence of the higher–spin
vielbein

Cn1···ns−1 = (s− 1)ωm;n1···ns−1,
m + ∂mem;n1···ns−1 . (31)

We have thus identified the fields of the higher–spin triplet as components of the higher–spin vielbein
and connection of the frame–like formulation with the relaxed trace constraints.

The comment on the lowest spin fields (i.e. the scalar and the vector) is now in order. As we
have already mentioned, these fields are not contained in the frame–like action (7). In the case of
the even integer spin s = 2k the complete trace component of the vielbein, which could be the scalar
field, is a pure gauge. In the case of the odd integer spin s = 2k + 1, as we have explained earlier,
the spin 1 part of the vielbein does not enter the action (7).

As a result, the zero torsion condition (14) and its consequence (30), which defines the field
C (31), are applicable only to the components of the vielbein whose complete trace in the indices
n1, . . . , ns−1 is zero (i.e. do not contain the spin 1 field).

As we have already mentioned, to include the scalar and the vector field into the above scheme
one should add to the action (7) corresponding kinetic terms, and a systematic way to do this is to
use the zero-forms in the so-called twisted adjoint representation of the higher–spin algebra. (see e.g.
[23, 26]).

To conclude this section we note that the zero torsion condition (14) and the dynamical field
equations (15) indeed imply the equations of motion (23)–(25) of the triplet higher–spin fields defined
by eqs. (29)–(31). Thus, we have shown that, up to a subtlety regarding the spin–0 and spin–1 field,
the higher–spin system described by the frame–like action (7) for the unconstrained vielbein and
the connection subject to the relaxed trace constraint (9) is equivalent to the higher–spin triplet.
The triplet fields Φ, C and D have been thus endowed with a geometrical meaning to be certain
components of the higher–spin vielbein and connection. By singling out these components in the
action (7) and partially solving the zero–torsion condition (14) one should be able to reduce action
(7) to the triplet actions of [18].

We shall now extend the results of this section to the description of bosonic higher–spin triplets
in the AdS background.

3 Frame–like action for bosonic higher–spin fields in
AdS

The AdS space is described by the vielbein ea = dxm ea
m and the connection ωab = dxm ωab

m which
satisfy the following torsion and constant curvature conditions

T a := dea + ωa
b e

b := ∇ ea = 0 , (32)

Rab(ω) := dωab + ωa
c ω

cb = −Λ eaeb or [∇,∇] = R , (33)

where ∇ = d+ω is the O(1, D−1) covariant differential and Λ is the negative (cosmological) constant
determining the AdS curvature. The indices from the beginning of the Latin alphabet now denote
the tangent space indices transformed under the local O(1, D − 1) Lorentz transformations. The
indices m,n, . . . from the middle of the alphabet denote curved world indices.

The frame–like action for a system of higher–spin fields which generalizes to AdS the flat space
action (7) has the following form

S =
R

AdS
ea1 . . . eaD−3 εa1...aD−3cdf

ˆ
(∇ eb1...bs−2c − s−1

2
ek ω

b1...bs−2c, k)ωb1...bs−2
d, f

(34)

+Λ s(D+s−4)
2(s−1)(D−2)

ecb1···bs−2 ed
b1···bs−2 e

f − Λ (s−2)(s−3)
2(D−2)(s−1)

ecb1···bs−4j
j e

d
b1···bs−4i

i ef
i
.

We observe that, apart from covariantization, the action (34) differs from the flat space action (7)
by the last two mass–like terms proportional to the AdS space scalar curvature. Note that the last
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term in (7) contains the trace of the higher–spin vielbein. As is well known, in AdS space such terms
are required to keep the number of the physical states of the higher–spin field equal to that of the
massless field. The coefficients in front of these terms are fixed by the requirement of the invariance
of this action under gauge transformations of the higher–spin vielbein and connection whose form we
shall discuss in the next two subsections.

Here we only note that, as in the flat case, the higher–spin vielbein is unconstrained, while the
variation of the action (34) with respect to the higher–spin connection produces the zero torsion
condition

T a1···as−1 = 0 ⇔ (s− 1)ω[n;
a1···as−1,b em]b = ∇[m en];

a1···as−1 , (35)

provided that the higher–spin connection obeys the relaxed traceless condition

ηa1b ω
a1a2···as−1,b = 0 . (36)

The dynamical field equation of the higher–spin vielbein in AdS gets modified by the contribution of
the terms proportional to the AdS scalar curvature Λ and acquires the form

„
∇nωr;(a1···as−2

c, d − Λ
s(D + s− 4)

(s− 1)(D − 2)
ed

n er;(a1···as−2
c (37)

+Λ (s−2)(s−3)
2(D−2)(s−1)

ed
n er;(a3···as−2

c ηa1a2

”
em
[b)e

n
c e

r
d] = 0 ,

where we first antisymmetrized the indices b, c, d and then symmetrized the index b with a1, · · · , as−2.

3.1 Fronsdal case

The frame-like action for irreducible massless fields in AdSD was originally proposed in [28]. In
fact, the action proposed in this reference was the first action 4 for symmetric massless fields in D > 4.
The action constructed in [28] is manifestly gauge invariant due to the use of higher connections called
extra fields, which however do not contribute to the free field equations. A version of this approach
which is manifestly o(2, D−1) (rather than o(1, D−1) invariant) was later proposed in [29]. We shall
demonstrate how the o(2, D−1)–covariant approach works in the case of the higher–spin triplets in the
forthcoming paper [30]. Here we restrict our consideration to the o(1, D − 1)–invariant formulation.

If we impose on the higher–spin vielbein and connection an additional (conventional) traceless
condition (as above we distinguish between the traceless and traceful quantities by putting tildes on
the former)

ηa1a2 ẽ
a1a2···as−1 = 0, ηa1a2 ω̃

a1a2···as−1,b = 0, (38)

the action (34) reduces to

S =
R

AdS
ea1 . . . eaD−3 εa1...aD−3cdf

ˆ
(∇ ẽb1...bs−2c − s−1

2
ek ω̃

b1...bs−2c, k) ω̃b1...bs−2
d, f

(39)

+Λ s(D+s−4)
2(s−1)(D−2)

ẽcb1···bs−2 ẽd
b1···bs−2 e

f
i
.

It is invariant under the following gauge transformations of the higher–spin vielbein and connection

δ ẽa1...as−1 = ∇ξ̃a1...as−1 − (s− 1) ec ξ̃a1...as−1,b ηbc , (40)

δ ω̃a1...as−1,b = ∇ ξa1...as−1,b − (s− 2) ec ξ̃a1...as−1,bd ηcd − Λ (eb ξ̃a1...as−1 − e(a1 ξ̃a2...as−1)b) , (41)

4The metric-like formulation of Fronsdal was originally proposed in [24, 27] for the case of D = 4. It turns
out that the coefficients in front of different terms of the action are independent of D in Minkowski space but
those of mass-like terms are D-dependent in AdSD.



324 D.P. Sorokin and M.A. Vasiliev. Geometry and dynamics of higher–spin triplets

where the parameters ξ̃a1...as−1 and ξ̃a1...as−1,b are traceless and the parameter ξ̃a1...as−1,bd satisfies
the following trace conditions

ηa1a2 ξ̃
a1a2···as−1,b1b2 = 2Λ

(s−1)(s−2) ξ̃
a3···as−1b1b2 ,

(42)

ηa1b1 ξ̃
a1a2···as−1,b1b2 = − Λ

s−1 ξ̃
a2···as−1b2 .

In the flat limit Λ → 0, eqs. (40)–(42) reduce to the corresponding gauge transformations discussed
in Subsection 2.1.

Action (39) describes in AdS space the dynamics of a single massless field of spin s. Upon solving
ω̃a1···as−1,b in terms of ẽa1···as−1 and partially fixing local higher–spin symmetry (40), (41) one can
reduce (39) to the Fronsdal AdS action [25] for the double traceless field φa1···as := em(a1 ẽm;

a2···as).

3.2 Triplet case

If the full traceless condition is not imposed, the higher–spin connection only satisfies the relaxed
trace condition (36) and the higher–spin vielbein is unconstrained. Then the action (34) describes
in AdS space a system of free massless fields of descending spins s− 2, s− 4, . . . , 3 or 2 depending on
whether s is odd or even. The analysis and the proof is the same as in the flat case (see Subsection
2.2). The only difference is that the gauge transformations of the higher–spin vielbein and connection
which leave the action (34) invariant and which have the same form as eqs. (40) and (41) contain
the unconstrained parameter ξa1...as−1 , while ξa1...as−1,b satisfies the relaxed traceless condition

ξa1...as−1,b ηa1b = 0 , (43)

while the parameter ξa1...as−1,bd is subject to the following relaxed constraints

(s− 1) ηbc ξ
a1...as−2b,cd = Λ ( ηd(a1 ξa2...as−2)b

b − ξa1...as−2d) ⇒ (44)

ηbc ξ
a1...as−1,bc = Λ(ξa1...as−1 − η(a1a2 ξa3...as−1)b

b) ⇒ (45)

ηbc ξ
bc(a1...as−3,as−2)d = 2Λ

(s−1)(s−2)
(ξa1...as−2d − ηd(a1 ξa2...as−2)b

b) (46)

instead of being traceless as in the flat space case (see eq. (8)) or ‘partially’ traceless in the Fronsdal
AdS case (see eq. (42)).

Let us now identify the AdS higher–spin triplet in terms of components of the higher–spin vielbein
and connection. In the AdS space the bosonic higher–spin triplet is defined (in our notation and
convention) by the following equations [9, 18]

Cn1···ns−1 = ∇mΦm
n1···ns−1 − (s− 1)∇(ns−1 Dn1···ns−2) , (47)

2 Φn1···ns = s∇(ns Cn1···ns−1) + Λ [(s− (s− 2)(D + s− 3))Φn1···ns (48)

+ 2s(s− 1) g(n1n2(Φn3···ns)ml g
ml − 4Dn3···ns))

˜
,

2Dn1···ns−2 = ∇m Cm
n1···ns−2 − Λ

ˆ
(s(D + s− 2) + 6)Dn1···ns−2 (49)

−4Φn1···ns−2ml g
ml − (s− 2)(s− 3) g(n1n2 Dn3···ns−2)ml g

ml
˜
.

where 2 := ∇m∇m and gmn = ea
m eb

n ηab is an AdS metric.
The equations (23)–(25) are invariant under the following gauge transformations

δΦn1···ns = s∇(ns ξn1···ns−1) (50)

δDn1···ns−2 = ∇m ξm
n1···ns−2 , (51)

δCn1···ns−1 = 2 ξn1···ns−1 − Λ(D + s− 3) (s− 1) ξn1···ns−1 (52)

+(s− 1)(s− 2)Λ g(n1n2 ξn3···ns−1)lm glm .
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where the parameter ξn1···ns−1 is completely symmetric and traceful.

As in the flat case, we can identify the fields Φn1···ns and Dn1···ns with the completely symmetric
part and a trace part of the higher–spin vielbein e

a1···as−1
m; , respectively,

Φn1···ns = s e(ns; n1···ns−1) Dn1···ns−2 = ep; n1···ns−2ns−1 g
pns−1 , (53)

where the tangent space indices of the higher–spin vielbein have been converted into the ‘curved’
world indices with the use of the AdS vielbein ea

m. The field Cn1···ns−1 is then identified by analyzing
the zero torsion condition (35) and has the form similar to (31), namely

Cn1···ns−1 = (s− 1)ωm;n1···ns−1,
m +∇m em;n1···ns−1 . (54)

As in the flat space case, one can show that the gauge transformations (50)–(52) and the equations of
motion (47)–(49) of the triplet fields follow, respectively, from the transformations (40)–(41) and the
equations of motion (35)–(37). For instance, the last two terms in the variation of the field C (52)
come from the terms of the gauge variation of the higher–spin connection which are proportional to
Λ (see eqs. (41) and (45)).

By singling out the fields (53) and (54) in the action (34) and partially solving the zero–torsion
condition (35) one should be able to reduce the action (34) to the AdS triplet actions of [18] for
s ≥ 2. As has been already explained in the case of flat space–time, the scalar and the vector field
are not part of the triplet spectrum in our formulation, but they can be included into the model by
adding corresponding terms to the AdS action (34).

4 Frame–like action for fermionic higher–spin fields in
flat space–time

The frame-like formulation of irreducible higher–spin fermions was originally developed in D = 4
Minkowski space in [20, 31] and then for AdSD with any D in [22]).

It looks simpler than that of bosons because the field equations are of the first order and hence
the free action does not contain auxiliary fields.

The flat space higher–spin field strength (torsion) is of the same form as in the bosonic case [22]

Ta1...a
s− 3

2
= dψa1...a

s− 3
2
− ebψa1...a

s− 3
2

,b (55)

where ψα
a1...aσ−1 = dxnψα

n ;a1...aσ−1 and ψa1...a
s− 3

2
,b are one-form fermionic vielbein and connection

(with respect to the index n) and rank s − 3
2 and s − 1

2 tensor-spinors, respectively, and α being a
(usually implicit) index associated with a spinor representation of Spin(1, D−1)5). The field strength
(55) is manifestly invariant under the gauge transformations

δψa1...a
s− 3

2
= dξa1...a

s− 3
2
− ebξa1...a

s− 3
2

,b . (56)

δψa1...a
s− 3

2
,b = dξa1...a

s− 3
2

,b − ecξa1...a
s− 3

2
,bc .

As in the bosonic case the symmetry properties of the fermionic higher–spin fields and of the
gauge parameters are governed by the Young tableaux. The tensor–spinor connection ψa1...a

s− 3
2

,b is

the so–called extra field. It will not participate in the description of the free higher–spin fermionic
system.

5In a generic D–dimensional space–time the spinors are of the Dirac type. In even dimensions one can
restrict spinors to be Weyl and in certain dimensions, e.g. D = 3, 4, 6, 10 and 11, one can consider Majorana or
symplectic Majorana tensor–spinors. In the case of the Dirac and Weyl spinors the actions which we consider
below implicitly contain the hermitian conjugate part, which we shall skip for brevity.
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Let us consider the following first order action for the fermionic higher–spin field

S =

Z

MD

ea1 . . . eaD−3 εa1...aD−3pqr(ψ̄d1...d
s− 3

2
γpqrdψ

d1...d
s− 3

2 − 6(s− 3
2 ) ψ̄d1...d

s− 5
2

pγq dψ
d1...d

s− 5
2

r)

(57)
where γp1···pk ≡ γ[p1 · · · γpk] .

The coefficients in the action (57) are fixed by requiring its invariance under the gauge transfor-
mations (56). As in the bosonic case, the gauge invariance takes place provided that gauge parameters
satisfy some constraints. In the fermionic case they have the following form

γb ξ
a1...a

s− 3
2

,b

= 0 , ξ
a1...a

s− 5
2

b,

b = 0 . (58)

Note that eqs. (58) are weaker than the gamma-trace condition, and that the parameter ξ
a1...a

s− 3
2

remains unconstrained.
The variation of the action (57) with respect to ψ produces the following equations of motion

2
s− 3

2
γmqr∂r ψq;a1···a

s− 3
2

= γq ∂r ψq;r(a2···a
s− 3

2

δm
a1) − γm ∂r ψ(a1;a2···a

s− 3
2

)r

+γr ∂r ψ(a1;a2···a
s− 3

2

)
m − γr ∂r ψ

p;
p(a2···a

s− 3
2

δm
a1) (59)

+γm ∂(a1 ψ
q;

a2···a
s− 3

2

)q − γq ∂(a1 ψ
m;

a2···a
s− 3

2

)q .

4.1 Fang–Fronsdal case

Let us now consider the case in which the fermionic higher–spin vielbein, the connections and
the gauge parameters are (in addition) required to be gamma–transversal (or gamma–traceless) and
hence traceless in all tangent space indices

γcψ̃a1...a
s− 3

2

,b1...btc = 0 , γcψ̃a1...a
s− 5

2

c ,b1...bt = 0, (60)

γcξ̃a1...a
s− 3

2

,b1...btc = 0 , γcξ̃a1...a
s− 5

2

c ,b1...bt = 0. (61)

As we shall now demonstrate, in this case the action (57) is the frame–like counterpart of the Fang–
Fronsdal action [27] for a single fermionic field of half–integer spin s in flat space.

The gamma–tansversal higher–spin vielbein ψ̃α
m; n1···n

s− 3
2

contains the irreducible Lorentz ten-

sors6 described by the following gamma-transversal Young tableaux

⊗ s − 3
2 = s − 1

2 ⊕ s − 3
2 ⊕ s − 5

2 ⊕
1

s − 3
2 . (62)

The first tableau of length s on the right hand side of (62) describes the totally symmetric and
gamma–transversal part ψ̃(m; n1···n

s− 3
2

), the second and third tableaux of the length s − 3
2 and

s − 5
2 , respectively, corresponds to the contractions γmψ̃m; n1···n

s− 3
2

and ηmkψ̃m; n1···n
s− 5

2

k, respec-

tively. The hook tableau corresponds to the irreducible (gamma–transversal) part of ψ̃ that satisfies
ψ̃(m; n1···n

s− 3
2

) = 0.

In virtue of the gauge transformations of the higher–spin vielbein (with gamma–traceless param-
eters)

δ ψ̃
n1···n

s− 3
2 = dξ̃n1···nσ−1 − em ξ̃

n1···n
s− 3

2

,b

ηmb , (63)

6As in the bosonic case, in flat space–time we do not distinguish between symmetric tangent space indices
a, b, . . . and world indices m, n, . . .. The latter are separated from the former by ‘;’.
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the hook part of the higher–spin vielbein field can be gauge fixed to zero by the appropriate choice of

the parameter ξ̃
a1···a

s− 3
2

,b

. As a result, the remaining part of the vielbein amounts to the combination
of three totally symmetric gamma-transversal tensor–spinors of rank s − 1

2 , s − 3
2 and s − 5

2 which
are equivalent to the Fang–Fronsdal symmetric tensor–spinor field Ψα

n1···n
s− 1

2

that satisfies the triple

gamma–traceless condition

γl γm γp Ψlmpn1···n
s− 5

2

= ηlmγpΨlmpn1···n
s− 5

2

= 0 . (64)

The remaining local symmetry is the gauge invariance of the Fang–Fronsdal metric–like formu-
lation in flat space–time with the completely symmetric gamma–traceless tensor–spinor parameter
ξ̃m1···m

s− 3
2

γn ξ̃m1···m
s− 5

2

n = 0 . (65)

Thus, the action (57) with the fields restricted by the conditions (60) is equivalent to the Fang-
Fronsdal action as was shown long time ago in [20, 31, 22].

4.2 Triplet case

Let us now consider the case in which the fermionic higher–spin vielbein ψ
a1...a

s− 3
2 and the gauge

parameter ξ
a1...a

s− 3
2 are unconstrained while the parameter ξ

a1...a
s− 3

2

,c

of the gauge transformation
(56) (for t = 0) is constrained by the relaxed conditions

γb ξ
a1...a

s− 3
2

,b

= 0 , ξ
a1...a

s− 5
2

b,

b = 0 ⇒ [γc , γd]ξa1...aσ−2c ,d = 0 . (66)

In order to figure out what is the field spectrum of the model in this case we observe that, the
one-form fermionic field ψa1...a

s− 3
2

= dxm ψm;a1...a
s− 3

2

is composed of the tensors characterized by

the following unrestricted (i.e. gamma–traceful) Young tableaux

⊗ s − 3
2 = s − 1

2 ⊕ 1

s − 3
2 . (67)

On the other hand, the parameter ξα1...aσ−1 ,b of the Stueckelberg gauge symmetry that satisfies (66)
has the following components

1

s − 3
2

.
( s − 3

2 ⊕ s − 5
2 ) (68)

where the subtracted (factored out) tensors take into account the two conditions (66). As a result, we
find that, upon gauge fixing to zero the pure gauge part of ψa1...a

s− 3
2

associated with the Stueckelberg

symmetry, the remaining components of the fermionic field are described by the sum of the following
unrestricted Young tableaux

s − 1
2 ⊕ s − 3

2 ⊕ s − 5
2 . (69)

Each term in (69) describes unconstrained totally symmetric spinor–tensors of ranks s − 1
2 , s − 3

2

and s − 5
2 , respectively. Decomposing this set of fields into Lorentz irreducible gamma-traseless

components, we get the set of Fang-Fronsdal massless fields of the half–integer spins descending
from s down to 3/2. Note that, analogously to the fields of spin one and zero in the bosonic case,
the spin–1/2 field (being a zero–form) is not described by the action (57) and should be treated
separately.

Up to this subtlety, the field content of the model under consideration is the same as that of the
fermionic higher–spin triplets [9, 18]. Sine both models describe free fields, there should be a relation
between them.
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To find this relation let us look at the form of the equations and gauge transformations which de-
fine the triplet of unconstrained fermionic higher–spin fields Ψm1···m

s− 1
2

, χm1···m
s− 3

2

and λm1···m
s− 5

2

in flat space–time [9, 18]. Their equations of motion are

γn ∂n Ψm1···m
s− 1

2

= (s− 1
2 ) ∂(m1 χm2···m

s− 1
2

) , (70)

∂n Ψnm2···m
s− 1

2

− (s− 3
2 ) ∂(m2 λm3···m

s− 1
2

) = γn ∂n χm2···m
s− 1

2

, (71)

γn ∂n λm1···m
s− 5

2

= (s− 5
2 ) ∂n χnm1···m

s− 5
2

. (72)

These equations are invariant under the following unconstrained gauge transformations of the
fields

δΨm1···m
s− 1

2

= (s− 1
2 ) ∂(m1 ξm2···m

s− 1
2

) , (73)

δ χm1···m
s− 3

2

= γn∂n ξm1···m
s− 3

2

, (74)

δ λm1···m
s− 5

2

= ∂n ξnm1···m
s− 5

2

. (75)

The form of the gauge transformations (73)–(75) prompts us that the fermionic triplet fields are
related to the components of the fermionic higher–spin ‘vielbein’ ψn;m1...m

s− 3
2

as follows

Ψm1···m
s− 1

2

= (s− 1
2 )ψ(m1;m2...m

s− 1
2

) , (76)

χm1···m
s− 3

2

= γn ψn;m1...m
s− 3

2

(77)

and
λm1···m

s− 5
2

= ηnl ψn;lm1...m
s− 5

2

. (78)

Upon this identification the fermionic triplet field equations of motion (70)–(72) follow from eqs. (59).
As such, upon substituting eqs. (76)–(78) for corresponding components of the fermionic frame–like
field into the action (57) and gauge fixing to zero its Stueckelberg symmetry, one will reduce eq. (57)
to the fermionic triplet action of [18] in flat space–time.

5 Frame–like action for fermionic higher–spin fields in
AdS

In AdS space the gauge transformations (56) of the dynamical fermionic field ψα
a1···as− 3

2
get

modified as follows
δψa1···as− 3

2
= D ξa1···as− 3

2
− eb ξa1···as− 3

2
,b , (79)

where following [32] the generalized covariant differential D is defined as the sum of the conventional

AdS covariant differential ∇ and the term i
√−Λ

2
ea γa, namely,

D = ∇+
i
√−Λ

2
ea γa . (80)

The external differential (80) is actually covariant with respect to the AdS isometry group Spin(2, D−
2), it is defined in such a way that its square vanishes when acting on spinor differential forms

D2 χα = 0 (81)

and it acts as ∇2 on the tensor differential forms

D2 T a1···at = ∇2 Ta1···at = −tΛ e(a1 eb T
a2···at)b . (82)
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Thus, in virtue of eq. (81), D2 acts on the tensor–spinor forms in the same way as on the tensors,
i.e.

D2 ψa1···at = −tΛ e(a1 eb ψ
a2···at)b. (83)

Note also that

D γa = − i
√−Λ

2
eb [γb, γa] = −i√−Λ eb γba . (84)

Eqs. (81)–(84) are useful when checking the gauge invariance of the action for the fermionic higher–
spin fields in AdS under the transformations (79).

5.1 Fang-Fronsdal case in AdS

As in the flat–space, the fermionic dynamical higher–spin field ψ̃
a1···as− 3

2 in AdS is subject to
the gamma–trace condition

γcψ̃a1...a
s− 5

2

c = 0 . (85)

For this condition to be compatible with the gauge transformations (79) the gauge parameters must
obey the following constraints

γcξ̃a1...a
s− 5

2

c = 0 , γcξ̃a1...a
s− 5

2

c,b = i
√−Λ γb

c ξ̃a1...a
s− 5

2

c = −i√−Λ ξ̃a1...a
s− 5

2

b (86)

=⇒ γbξ̃a1...a
s− 5

2

c,b = (s− 3
2
) i
√−Λ ξ̃a1...a

s− 5
2

c,
¯̃
ξa1...a

s− 5
2

c,b γ
b = −(s− 3

2
) i
√−Λ

¯̃
ξa1...a

s− 5
2

c .

The action for γ–traceless ψ̃a1...a
s− 3

2

in AdS which is invariant under (79) with the parameters

satisfying (86) has the following form

S =

Z

MD

ea1 . . . eaD−3 εa1...aD−3pqr

»
¯̃
ψd1...d

s− 3
2
γpqrD ψ̃d1...d

s− 3
2 − 6(s− 3

2 )
¯̃
ψd1...d

s− 5
2

pγq D ψ̃d1...d
s− 5

2
r

+
3i
√−Λ (s− 3

2 )

D − 2
er ¯̃
ψd1...d

s− 3
2
γpqψ̃

d1...d
s− 3

2 +
6i
√−Λ (s− 3

2 )2

D − 2
ep ¯̃
ψq

d1...d
s− 5

2
ψ̃

rd1...d
s− 5

2

#
. (87)

The last two “mass–like” terms in (87) are proportional to the square root of the cosmological constant
(which is also present in the covariant differential D (80). These terms insure the gauge invariance
of the higher–spin system in AdS.

5.2 Fermionic triplets in AdS

Let us now consider the form of the action in AdS space for the fermionic higher–spin fields

ψ
a1···as− 3

2 which are not subject to the gamma–trace condition, i.e. describe fermionic triplets.
By now the action and the equations of motion for the fermionic triplets in AdS space have been
unknown. To demonstrate that such an action does exist, we first consider the simplest case of the
spin 5

2
field.

Spin– 5
2 example

The one–form tensor–spinor field under consideration is the gamma–traceful field ψa = dxm ψa
m.

Its gauge transformations have the form

δψa = Dξa − ebξa,b, (88)

where the parameter ξa is gamma–traceful, while the antisymmetric parameter ξa,b = −ξb,a is re-
quired to satisfy the following relation

γb ξ
a,b = −i√−Λ γabξb = i

√−Λ (ξa − γa γb ξb). (89)
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The condition (89), which reduces to the corresponding eq. (86) in the gamma–traceless case, ensures
that the gamma trace of ψa transforms as a divergence, i.e. as a Rarita–Schwinger field of spin 3/2,

δ(γa ψ
a) = D(γa ξ

a). (90)

The action for the field ψa which is invariant under the transformations (88)–(90) has the following
form

S =

Z

MD

ea1 . . . eaD−3 εa1...aD−3bcd

»
ψ̄fγ

bcdDψf − 6 ψ̄bγcDψd +
3i
√−Λ

D − 2
ed ψ̄fγ

bcψf

+
6i
√−Λ

D − 2
eb ψ̄cψd +

6i
√−Λ

D − 2
ed (ψ̄fγ

f ) γbψc − 3i
√−Λ

D − 2
ed (ψ̄fγ

f ) γbc (γiψ
i)

–
. (91)

One can see that in comparison with the action (87) for a single spin–5/2 field, the action (91)
contains two terms which depend on the gamma–trace of ψa. It can be shown that by splitting ψa

into the gamma-traceless and gamma-trace parts

ψa = ψ̃a − 1

D
γa ψ̃, γa ψ̃

a = 0, ψ̃ = γa ψ
a , (92)

the action (91) splits into the direct sum of the actions for the single spin–5/2 field ψ̃a and the
spin–3/2 field ψ̃ in a way similar to the bosonic case (see Subsection 2.2). As mentioned above, the
spin–1/2 field has not appeared in our construction. The above example is the simplest fermionic
“triplet” (actually the doublet) of fields in AdS space.

Generic case of AdS higher–spin fermion triplets

The gamma–traceful one–form tensor–spinor field ψ
a1···as− 3

2 describing the fermionic triplet in
AdS space undergoes the gauge transformations

δψ
a1···as− 3

2 = D ξa1···as− 3
2 − eb ξ

a1···as− 3
2

,b
, (93)

with the unconstrained parameter ξ
a1···as− 3

2 and the parameter ξ
a1···as− 3

2
,b

satisfying the Young

property, ξ
(a1···as− 3

2
,b)

= 0, and the relaxed traceless condition (as in the case of the bosonic triplets)

ξ
a1···as− 5

2
c,b
ηbc = 0 (94)

and the following relation

γbξ
a1...a

s− 3
2

,b

= −(s− 3

2
) i
√
−Λγ(a1

b ξ
a2...a

s− 3
2

)b

,

(95)

ξ̄
a1...a

s− 3
2

,b

γb = −(s− 3

2
) i
√−Λ ξ̄

(a2...a
s− 3

2 b γ
a1)b .

Eq. (95) reduces to (86) if the parameter ξ
a1···as− 3

2 was gamma–traceless and ensures that the

gamma–trace of ψ
a1···as− 3

2 transforms as a spin–(s− 1) field, i.e. similar to (93) with s → s− 1.
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The action which is invariant under the transformations (93)–(95) has the following form

S =
R

MD ea1 . . . eaD−3 εa1...aD−3abc

»
ψ̄d1...d

s− 3
2
γabcDψd1...d

s− 3
2

−6(s− 3
2 ) ψ̄d1...d

s− 5
2

aγbDψd1...d
s− 5

2 c

+
3i
√−Λ (s− 3

2 )

D−2

„
ec ψ̄d1...d

s− 3
2
γabψ

d1...d
s− 3

2 + 2(s− 3
2 ) ea ψ̄b

d1...d
s− 5

2
ψ

cd1...d
s− 5

2

«

(96)

+
3i
√−Λ (s− 3

2 )

D−2

„
2 ec (ψ̄d1...d

s− 5
2

fγ
f ) γaψ

bd1...d
s− 5

2

− ec (ψ̄d1...d
s− 5

2
fγ

f ) γab (γiψ
id1...d

s− 5
2 )

«

− 6i
√−Λ (s− 3

2 )(s− 5
2 )

D−2
ea (ψ̄bi

d1...d
s− 7

2
γi) (γfψ

cfd1...d
s− 7

2 )

–
.

It has one more (the last) term in comparison with the action (91) for the s = 5
2 triplet. The

AdS analogues of the flat–space fermionic triplet fields of [9, 18] are extracted from ψa1···as− 3
2

=

ebψb;a1···as− 3
2

in a way similar to (76)–(78)

Ψa1···a
s− 1

2

= (s− 1
2 )ψ(a1;a2...a

s− 1
2

) , (97)

χa1···a
s− 3

2

= γb ψb;a1...a
s− 3

2

, (98)

λa1···a
s− 5

2

= ηbc ψb;ca1...a
s− 5

2

. (99)

Their gauge transformations are easily derived from eqs. (93)–(95)

δΨa1···a
s− 1

2

= (s− 1
2 )D(a1 ξa2···a

s− 1
2

) , (100)

δ χa1···a
s− 3

2

= γbDb ξa1···a
s− 3

2

− (s− 3

2
) i
√−Λγ(a1

b ξa2...a
s− 3

2

)b , (101)

δ λa1···a
s− 5

2

= Db ξba1···a
s− 5

2

≡ ∇b ξba1···a
s− 5

2

− i
√−Λ

2 γb ξba1···a
s− 5

2

, (102)

and the equations of motion, which generalize to AdS space eqs. (70)–(72), follow from the action
(96).

Upon eliminating the Stueckelberg degrees of freedom and splitting the components of the spinor-
tensor ψb;a1···as− 3

2
in its triplet constituents (97)–(99) one can reduce the action (96) to an action

which describes the fermionic triplets in AdS in the metric–like formulation.

6 Concluding remarks

We have considered the frame–like Lagrangian formulation of free systems of bosonic and fermionic
higher–spin fields in flat and AdS backgrounds of arbitrary dimension. We have shown that the
higher–spin systems described by an unconstrained higher–spin vielbein and by the connections
which are subject to weaker (gamma)–trace constraints than those required for the description of
single Fronsdal and Fang–Fronsdal fields correspond to the higher–spin triplets whose fields are asso-
ciated with certain components of the higher–spin vielbein and connection. We have thus endowed
the triplet fields with a clear geometrical meaning. This allowed us to identify the appropriate form
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of the gauge transformations of the fermionic triplets in AdS space and construct the gauge invariant
action which describes their dynamics.

It might be of interest to reformulate the unconstrained construction of irreducible higher–spin
fields by [11] in the geometrical frame–like fashion. Actually, the additional constraints introduced in
[11] (see e.g. their eqs. (10)) to relate triplet components to first derivatives of the compensator field
αa1···as−3 , in our construction amount to imposing the requirement that the trace of the higher–spin
vielbein field is a pure gauge

em;
a1···as−3b

b = ∇m αa1···as−3 − (s− 1)βa1···as−3,
m , (103)

where, for the higher–spin vielbein to obey the transformation rules (5) and (8) (or (40), (43)–(46)
in the AdS case), the compensator fields αa1···as−3 and βa1···as−3,m (the latter having the symmetry
of the Young tableu Y (s− 3, 1)) are gauge transformed in the appropriate way

δ αa1···as−3 = ξa1···as−3b
b , δ βa1···as−3,m = ξa1···as−3

b
b,m .

We expect that the frame–like version of [11] is obtained by adding to our triplet actions the Lagrange
multiplier term which produces (103) on the mass shell.

Analogously, in the fermionic case the additional requirement that the gamma–trace of the higher–
spin field ψm; a1...a

s− 3
2

is a pure gauge, i.e.

γ
a

s− 3
2 ψm; a1...a

s− 3
2

= Dm αa1...a
s− 5

2
− βa1...a

s− 5
2

, m (104)

(with αa1...a
s− 5

2
and βa1...a

s− 5
2

, m being fermionic compensators) reduces the fermionic triplet to the

single field of spin s in the unconstrained formulation.

The results obtained can be useful for further study of higher–spin triplets, their interactions and
their generalization to mixed–symmetry fields, in particular in AdS backgrounds, in various contexts
of higher–spin theory and its relation to string theory.
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Abstract

We review the result of the quantum AdS×S5 superstring 2-loop computation of cor-
rection to the cusp anomalous dimension which is a function f(λ) of the gauge coupling

λ or the string tension
√

λ
2π . The result provides a check of the recent Bethe ansatz pro-

posal for the string spectrum. This computation verified the cancellation of all 2-loop
logarithmic divergences thus demonstrating the quantum consistency of the AdS5 × S5

Green-Schwarz superstring action to this order.

Anomalous dimension of minimal twist large spin single trace operator or anomalous dimension
of a Wilson line with a null cusp [2] was a subject of much attention in the context of the AdS/CFT
duality for several years starting with the seminal work of [3] (see also [4, 5, 6]). In the planar limit

this dimension is a function f(λ) of the ‘t Hooft coupling λ or of the AdS5 × S5 string tension
√

λ
2π

.
Finding this function exactly would be an important progress. A series of recent developments based
on the apparent integrability of the theory culminated in a suggestion [7] of an integral equation
that, in principle, determines f(λ) for any value of λ.

To check the consistency of this equation and thus of the underlying asymptotic Bethe ansatz it
is important compare its prediction with that of the quantum superstring theory in AdS5 × S5 . The
perturbative string theory or the strong-coupling expansion of f(λ) can be written as

f(λ) =

√
λ

π

ˆ
a0 +

a1√
λ

+
a2

(
√
λ)2

+
a3

(
√
λ)3

+ ...
˜
, (1)

where the tree-level [3] and the 1-loop [4] superstring predictions are

a0 = 1 , a1 = −3 ln 2 . (2)

The computation of the 2-loop superstring coefficient was initiated in [8] where it was found to be

expressed in terms of the Catalan’s constant K =
P∞

n=0
(−1)n

(2n+1)2
≈ 0.9159.

The expansion of the BES [7] equation at strong coupling turned out to be a non-trivial problem
[9, 10, 11, 12, 13]. The results for the three leading an coefficients 2 were first found only numerically

335
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[9] (a0 was later computed exactly [11]).1 The numerical result for the third coefficient found in [9]
was a3 ≈ −0.9158± 0.0039.2

Very recently the analytic results for the coefficients in the strong coupling expansion of the
solution of the BES equation for the cusp anomaly function 1 was found in a remarkable paper of
[19], with the first few leading coefficients given by3

a2 = −K , (3)

a3 = − 1
32

ˆ
27ζ(3) + 96K ln 2

˜
, (4)

a4 = − 1
16

ˆ
84β(4) + 81ζ(3) ln 2 + 32K2 + 144K(ln 2)2

˜
, (5)

a5 = − 9
2048

ˆ
4785ζ(5) + 10572β(4) ln 2 + 4416ζ(3)K + 5184ζ(3)(ln 2)2 + 4096K2 ln 2

˜
(6)

where

ζ(k) =

∞X
n=1

1

nk
, β(k) =

∞X
n=0

(−1)n

(2n+ 1)k
, β(2) = K . (7)

The expression for a2 3 thus agrees with the numerical value found in [9] and matches precisely (the
corrected version of) the result of the 2-loop superstring computation in [8].

The aim of [1] was to confirm the Catalan constant value of a2 in 3 by an independent 2-loop
superstring computation. The agreement of the results for a2 obtained in [9] and [19] from the BES
equation with our superstring expression provides an important test of the BES equation and thus
of the underlying asymptotic Bethe ansatz. The significance of the result of the present paper is that
it provides a highly non-trivial confirmation of the proposal for the all-order strong-coupling phase
[18] and its weak-coupling continuation in [7]. Indeed, while the expressions for the tree-level [16]
and the 1-loop [20, 21] terms in the strong-coupling expansion for the phase where essentially put
into the Bethe ansatz expression from the known string theory results, the higher order terms in the
phase where conjectured in [18] using the crossing symmetry condition [22] (which so far was not
directly derived from string theory). The present computation demonstrates that the 2-loop term in
the phase suggested in [18] is indeed in agreement with string theory.

The computation described in [1] resolved also a technical problem related to UV regularization
present in the original approach of [8]. The manifest cancellation of the logarithmic UV divergences
that we find here provides a direct demonstration of the quantum consistency of the AdS5 × S5

Green-Schwarz (GS) action of [23]. This (together with the earlier 1-loop results [4, 24]) removes
any doubt that this action can be used as a basis for non-trivial strong-coupling computations in
the AdS/CFT. The agreement with the Bethe ansatz result provides also an implicit check of the
quantum integrability of this AdS5 × S5 superstring theory.

Another new result is the suggestion of a 2d Feynmann diagram (i.e. quantum superstring)
interpretation to the higher-order coefficients 4–6, etc. found in [19]. In our computation f(λ)
appears in the quantum 2d effective action of the AdS5×S5 superstring sigma model expanded near
a particular “homogeneous” string background in AdS5

Γ = − lnZ =
1

2
f(λ)V2 . (8)

Γ is proportional to the (large) volume factor V2.
4 This 2d QFT interpretation of f(λ) implies that

1a1 was also computed [17] from the “string” version of the Bethe ansatz, i.e. with the magnon scattering
phase taken in the strong-coupling expanded form [18].

2The proximity of the absolute value of this number to the value of the Catalan’s constant was noticed by
the authors of [8] but the final result for the coefficient a3 in the original version of [8] was incorrect due to
several errors which were finally corrected in the revised version ([8],v4).

3The relation of the notation used in [19] to ours is: Γcusp(g) = 1
2
f(λ), ck = − 1

(4π)k ak, g =
√

λ
4π

. We do

not shift the argument of cusp anomaly function Γcusp(g) by c1 as was done in [19].
4For a homogeneous backgrounds such as those considered in [8] and here there is no distinction between

the 1-PI effective action and the logarithm of the partition function Z: connected but not 1-PI irreducible 2d
Feynman graphs vanish.
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different parts of the transcendental coefficients aL appearing in 1,3-6 can be associated with the
contributions of different L-loop Feynmann diagrams in the superstring sigma model.

In the 2-loop case both the bosonic and the fermionic “sunset” diagrams happen to contribute
terms proportional to K (see [8] and below). Extending our superstring computation to the 3-loop
order appears to be relatively straightforward. A qualitative analysis shows that ζ(3) term in a3 in
4 should originate from the corresponding 3-loop diagrams like sunset one.

In general, it is natural to conjecture that the “maximally irreducible” terms ζ(2m + 1) in the
coefficients a2m+1 and β(2m) in the coefficients a2m [19] should originate, respectively, from the
“maximally irreducible” odd-loop L = 2m+1 and even-loop L = 2m superstring Feynman diagrams.
This should apply starting with 2-loop order. Using this logic at the 1-loop order one would get
a1 ∼ ζ(1) but this is logarithmically divergent; in fact, the 1-loop divergences cancel between bosons
and fermions and the finite remainder happens to be proportional to ln 2 [4, 25]. The 1-loop tadpoles
adjoined to lower-loop topologies should perhaps be interpreted in this way.

This string world-sheet, i.e. 2d QFT interpretation of the function f(λ) may help to clarify the
meaning of the Borel non-summability of the strong-coupling expansion for f(λ) as found from the
BES equation in [19]. As was observed in [19], all coefficients ak in 1 except the first one are negative
and their values grow factorially (cf. 4–6). It appears that in contrast to sign-alternating Borel-
summable series usually found in QM or QFT problems with perturbatively stable vacuum here we
are dealing with an expansion near an unstable point. This is puzzling since the rotating folded
string solution or the null cusp solution of [5] we consider below (which are closely related [25, 26])
are perturbatively stable.5 One may contemplate the presence of some non-perturbative instability.

The computation in [1] was organized as follows. We start with setting up the computation of
the the cusp anomaly function using the open-string (Wilson line [27, 28]) approach which is based
on expansion near a Wilson line surface with a null cusp [5, 25]. As was explained in [25, 29, 26] it is
equivalent to the closed-string approach used in [3, 4, 30, 8]. We use the AdS5 × S5 GS superstring
action in a special κ-symmetry gauge which becomes quadratic in fermions [31] after the T-duality
along the 4 AdS5 boundary directions in the Poincare coordinates. This action was found in [31]
by starting with the action of [23] written in a special κ-symmetry gauge discussed in [32]. An
equivalent action which also becomes quadratic in fermions after the T-duality was found in a similar
κ-symmetry gauge (“S-gauge”) in Appendix C of [33]. This action was already used in [25] for the
computation of the 1-loop coefficient a1 in 2. We utilize its simple structure (in particular, the
absence of the quartic fermionic terms) to perform the computation of the 2-loop coefficient a2.

We then compute the quantum corrections to string partition function expanded near the “null
cusp” string background and discuss the issue of UV regularization, pointing out that the structure
of the superstring action involving the εab tensor in the fermionic term prohibits the use of a direct
version of the 2d dimensional regularization. Its use is not actually necessary since we find that all
the logarithmic 2-loop divergences cancel out separately in the sums of the bosonic and fermionic
graphs computed directly in d = 2. The remaining power divergences can then be eliminated using
a kind of analytic regularization which essentially amounts to setting δ(2)(0) = 0.6 The same applies
to the fermionic sector.7 This should be considered as a regularization prescription that defines the

5In the conformal gauge we are using there is formally a ghost fluctuation mode corresponding to the time
direction in AdS5 but like in the flat Minkowski space case or in the AdS3 WZW model the underlying string
theory should be unitary: the Virasoro condition selects only physical on-shell modes. In our conformal-
gauge partition function computation we are expanding near a consistent on-shell string background so the
unphysical modes (a massless time-like (ghost) fluctuation mode and another massless longitudinal mode)
should decouple and they actually do (their trivial 1-loop contribution cancels against that of the conformal
gauge ghosts).

6In principle, one should be able to show the cancellation of all power-like divergent terms directly, by
carefully including the contributions of all local factors (measure, κ-symmetry ghosts, Jacobians due to change
of fluctuation bases, etc.). Bosonic power-like divergences are indeed cancelled by the invariant measure
contribution [8].

7As was discussed in Appendices C and D.1 in [8], the cancellation of the 2-loop power-like divergences
is required in order for the superstring partition function to be equal to 1 in supersymmetric cases such as
the flat space GS action expanded near a long fundamental string background and the AdS5 × S5 GS action
expanded near a BMN geodesic.
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quantum AdS5 × S5 superstring theory in a way consistent with its classical symmetries, i.e. as a
conformal quantum 2d field theory.

The resulting finite contributions to the 2-loop coefficient in 1 coming from the bosonic and from
the fermionic 2-loop graphs in Figure 1 happen to be the same as found in the closed-string picture
computation in [8]

a2 = a2B + a2F = K− 2K = −K , (9)

so that the total result matches the value in 3.
Going to higher, e.g. 3-loop, order is, in principle, straightforward. We again expect that all

logarithmic divergences will cancel directly in d = 2 while power divergences can be unambiguously
separated and regularized away.

Based on the spectrum of fluctuations and the form of the propagators and vertices in the string
fluctuation action it is relatively straightforward to determine the general structure of the finite higher
loop contributions to the effective action and thus to the strong-coupling expansion of cusp anomaly
function as predicted by the string inverse tension expansion.

On dimensional grounds, the finite contribution to the effective action or cusp anomaly comes
from momentum integrals of mass dimension −2. Most vertices in the action contain derivatives;
employing partial fractioning and 2d Lorentz invariance these derivatives may be used to cancel
some of the propagators. Since many of the fluctuation fields in the theory are massive, this leaves
behind terms with uncanceled propagators and with the momenta in the numerators replaced by
the mass values. Thus, the L-loop contribution to the effective action can be expressed in terms of
scalar vacuum integrals whose topology is that of the initial Feynman diagrams as well as that of
the “daughter” diagrams obtained by collapsing some of the propagators. It will then lead to ζ(n)
coefficients.

One consequence of the strong-coupling solution of the BES equation found in [19] was that the
coefficients a1, a2, ... are all negative and grow factorially. The series in 1 is then not Borel summable,
i.e. its summation is ambiguous and this might be suggesting adding to 1 exponentially small terms

∼ e−k
√

λ for some positive k. By formally changing the sign of
√
λ

√
λ → −

√
λ (10)

one finds that 1 becomes a sign-alternating and thus Borel summable series. This is puzzling since
the weak-coupling expansion f(λ) = b1λ + b2λ

2 + ... which is also described by the BES equation
(and which has finite radius of convergence) is formally invariant under the sign change 10 and
thus is “not aware” of the problem with summation of the strong-coupling expansion. The string
theory interpretation of f(λ) as a coefficient in the partition function expanded near a perturbatively
stable string solution would also suggest a standard asymptotic but Borel-summable expansion in
1√
λ
. However, the string theory result for a2 in f(λ) found in [8] and here reproduces the negative

sign of a2 in 3 and thus appears to support the conclusion of [19] about the lack of Borel-summability
of the strong coupling expansion of f(λ).8
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On gauge invariant description
of massive high spin fields

Yu.M. Zinoviev1

Institute for High Energy Physics
Protvino, Moscow Region, 142280, Russia

Abstract

We present a mini review of gauge invariant description of massive high spin fields
as well as some simple examples of its possible applications such as investigation of
massive and partially massless particles in (A)dS spaces, constructing massive high spin
supermultiplets and search for high spin particles interactions.

Introduction

As is well known, Lorentz covariant description of massless high spin fields requires a theory to be
gauge invariant. This, in particular, lead to so called constructive approach to investigation of consis-
tent interactions of such fields when interaction Lagrangians and appropriate gauge transformations
are constructed iteratively by the number of fields. In turn, common description of massive fields
requires that some constraints must follow from equation of motion excluding all unphysical degrees
of freedom. In this, at least two general problems appear then one tries to switch on interactions.
First of all, a number of constraints could change thus leading to a change in a number of degrees
of freedom and reappearing of unphysical ones. At second, even if a number of constraints remains
to be the same as in free theory, interacting theory very often turns out to be non-casual, i.e. has
solution corresponding to non-luminal propagation.

One of the possible solutions is to use gauge invariant description of massive high spin fields.
There at least two basic approaches to such description. One of them based on the powerfull BRST
method [1, 2, 3, 4, 5]. Another one appeared in attempt to generalize to high spins a very well known
mechanism of spontaneous gauge symmetry breaking [6]. In such a breaking a set of Goldstone fields
with non-homogeneous gauge transformations appear making gauge invariant description of massive
gauge fields possible. In what follows, we give a short review of such approach and some of its
applications.

1E-mail address: Yurii.Zinoviev@ihep.ru
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1 Gauge invariant description of massive fields

Let us start with some simple examples. The simplest and very well known example is a gauge
invariant description for massive spin 1 particle using vector Aµ and scalar ϕ fields. The Lagrangian

L = − 1
4Aµν

2 + 1
2 (∂µϕ)2 −mAµ∂µϕ+ m2

2 Aµ
2

is invariant under the following gauge transformations

δAµ = ∂µλ δϕ = mλ

In this, the possibility to have gauge invariance for massive particle depends on the non-trivail (shift)
transformations of scalar Goldstone filed ϕ. Note also, that in a massless limit such theory describes
just a sum of massless spin 1 and spin 0 particles.

Our next example deals with massive spin 2 particle. Usual non-gauge invariant description is
given by the famous Fierz-Pauli Lagrangian for the symmetric second rank tensor hµν :

L0 = 1
2∂

αhµν∂αhµν − (∂h)µ(∂h)µ + (∂h)µ∂µh− 1
2∂

µh∂µh− m2

2 (hµνhµν − h2)

It’s equations of motion give 5 conditions:

∂µhµν = 0, h = hµµ = 0

leaving us with 10 - 5 = 5 physical degrees of freedom.

In the massless limit such theory has gauge invariance with vector parameter ξµ, so a natural
first step to gauge invariant description is an introduction of vector field Aµ. And indeed it is easy
to check that if one adds the following additional terms to the initial Lagrangian:

∆L = − 1
4 (Aµν)2 +m

√
2[hµν∂µAν − h(∂A)]

the result will be gauge invariant under

δhµν = ∂µξν + ∂νξµ, δAµ = m
√

2ξµ

But our vector Goldstone field Aµ is a gauge field itself and in the massless limit has it’s own gauge
invariance which was broken by our construction. So to achieve fully gauge invariant description of
massive spin 2 we need one more Goldstone field, namely scalar ϕ. Total Lagrangian turns out to
be:

L = L0(hµν) + L0(Aµ) + L0(ϕ) +m
√

2[hµν∂µAν − h(∂A)]−m
√

3Aµ∂µϕ−
−m2

2 (hµνhµν − h2)−m2
q

3
2hϕ+m2ϕ2

In this, the Lagrangian is invariant under the following gauge transformations:

δhµν = ∂µξν + ∂νξµ + m√
2gµνΛ, δAµ = ∂µΛ +m

√
2ξµ, δϕ = m

√
3Λ

Now we are ready to consider generalization of such construction for the arbitrary spin case.
There are at least two possible approaches:

• Start from known(?) form of massive theory and “unHiggs” it introducing additional (Stukel-
berg) fields e.g. [1].

• Start from the appropriate set of massless fields with all their gauge invariances and obtain
massive theory as a smooth deformation ⇒ spontaneous symmetry breaking [7].
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Here we will follow the second approach. In this, for the gauge invariant description of massive
integer spin s particle we need tensor fields Φs,Φs−1, . . .Φ0 which are symmetric and double traceless.
Here we use condensed notations where subscript on Φk denotes just a number of indices and not
the indices themselves. The Lagrangian has the following general form:

L ∼
sX

k=0

[Φk∂
2Φk +mΦk∂Φk−1 +m2(ΦkΦk + ΦkΦk−2)]

while gauge transformations leaving it invariant look like:

δΦk ∼ ∂ξk−1 +m[ξk + g2ξk−2]

Note that double tracelessness condition severely restricts a number of possible terms here. In
this, requirement of gauge invariance gives a number of algebraic equations on unknown parameters
which could be easily solved. Note also that almost all fields play double role being gauge and
Goldstone fields simultaneously. In the massless limit such Lagrangian reduces to the sum of massless
Lagrangians for spin s, s-1, ... 0 particles.

Note that a set of double traceless tensors Φs,Ψs−4, . . . could be combined into one unconstrained
tensor Φs. Doing the same with all other tensors one can rewrite total gauge invariant Lagrangian
in terms of just four unconstrained fields Φs, Φs−1, Φs−2 and Φs−3. At the same time, joining
together ξs−1, ξs−3. . . . and ξs−2, ξs−4, . . . one can rewrite all gauge transformations in terms of two
unconstrained gauge parameters ξs−1 and ξs−2. Such description was considered in [8] (see also [9]).

It is instructive to look how our gauge invariant description is related with non-gauge invariant
one [10]. First of all, we represent our double traceless tensors in terms of two traceless ones:
Φk = Φ′k + k−1

4 g(12ϕk−2). Then we can use gauge transformations in order to set the gauge where all
Φ′k = 0, 0 ≤ k ≤ s− 1. This leaves us with our main double traceless tensor Φs (which is equivalent
to two traceless tensors Φ′s and ϕs−2) and a set of auxiliary traceless tensors ϕk, 0 ≤ k ≤ s − 3
exactly as in [10].

Such gauge invariant description of massive fields works well not only in flat Minkowski space-
time, but in (anti) de Sitter space-times as well [11, 3]. All that one needs to do is to replace
ordinary partial derivatives with the covariant ones and take into account commutator of these
derivatives which is non-zero now. In particular, this formulation turns out to be very convenient
for investigation of so called partially massless theories which appear in de Sitter space. Lets again
take spin 2 case as an example. As we have seen, complete gauge invariant description of massive
particle requires three fields: hµν , Aµ and ϕ. But in de Sitter space for critical mass value m2 = Λ/3
scalar fields ϕ completely decouples and we obtain theory with just two fields hµν and Aµ, describing
partially massless particle with four physical degrees of freedom (helicities ±2, ±1).

In four-dimensional Minkowski space-time for the description of all irreducible representations
of Poincare group it is enough to consider completely symmetric (spin)-tensors only. But in dimen-
sions greater than four one faces the fact that many interesting and physically important theories
such as supergravity, superstring and (supersymmetric) high spin theories, necessarily contain mixed
symmetry (spin)-tensors. In the (A)dSd space the situation becomes even more complicated because
besides general problems related with the existence of forbidden mass ranges and partially massless
particles, we discover that some fields do not have massless limit at all [12] making the very definition
of mass problematic.

Gauge invariant description of massive fields, which could be constructed for mixed symmetry
bosonic fields as well [13, 5], allows one carefully investigate all related problems. Let us consider as
an example simplest mixed symmetry tensor Φ[µν],α such that Φ[µνα] = 0. In flat space free massless
Lagrangian is invariant under two gauge transformations:

δΦµν,α = ∂µxνα − ∂νxµα + 2∂αyµν − ∂µyνα + ∂νyµα

where parameter x(αβ) — symmetric, while y[αβ] — antisymmetric on their indices. In turn, gauge
invariant description of massive particle requires four fields: Φµν,α, symmetric tensor h(µν), antisym-
metric one B[µν] and vector Aµ. Such formulation [13] could be easily deformed into (A)dS space
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without introduction of any other fields. In this, it turns out that there is no massless limit at all
(i.e. limit where both gauge symmetries become unbroken). Instead, depending on the sign of cos-
mological term one can get one of the two possible partially massless limits. In the AdS space fields
Bµν and Aµ decouple while Φµν,α and hµν describes partially massless theory [12]. At the same time,
in dS space hµν and Aµ could decouple leaving us with Φµν,α and Bµν fields describing one more
partially massless theory.

At last but not least, gauge invariant formulation is possible for massive fermionic fields (both in
flat Minkowski space and in (A)dS spaces) as well [14, 2, 4]. Let us take simplest example — massive
spin 3/2 particle. Gauge invariant formulation requires two fields: vector-spinor Ψµ and spinor χ.
The Lagrangian

L = i
2ε

µναβΨ̄µγ5γν∂αΨβ + i
2 χ̄∂̂χ+ m

2 Ψ̄µσ
µνΨν + im

q
3
2 (Ψ̄γ)χ+mχ̄χ

is invariant under the following gauge transformations

δΨµ = (∂µ + im
2 γµ)ξ δχ = m

q
3
2ξ

and in the massless limit reduces to the sum of massless spin 3/2 and spin 1/2 particles.

In general, for the gauge invariant description of massive half-integer spin s+1/2 particle [14] one
needs the spin-tensors Ψs,Ψs−1, . . .Ψ0 which are symmetric and triple γ-traceless. The Lagrangian
has the following general form:

L ∼
sX

k=0

[Ψ̄k∂̂Ψk +m(Ψ̄kΨk + iΨ̄kγΨk−1)]

and gauge transformations leaving it invariant look like:

δΨk ∼ (∂ + imγ)ξk−1 +mξk

Once again note correct massless limit of such description.

2 Massive high spin supermultiplets

It is evident that in any theory of high spin particles most of them have to be massive (and their
gauge symmetries have to be spontaneously broken). It means that in any supersymmetric high spin
theory like the superstring these particles must belong to some massive supermultiplet. It may seems
strange but though explicit realization of massless supermultiplets with arbitrary spins were known
for a long time [15] explicit construction for massive supermultiplets was not available until recently
[16]. To make presentation as simple as possible here we restrict ourselves with the simplest case —
N = 1 supersymmetry in flat d = 4 Minkowski space-time though the procedure works for extended
supersymmetries and in AdS space as well [17, 18].

Massless N = 1 supermultiplets contain one bosonic and one fermionic fields which differ in spin
by 1/2. In this, general structure of supertransformations is very simple:

δF ∼ ∂Bη, δB ∼ F̄ η

where F - fermion while B - boson. Note that by choosing canonical dimensions of bosonic and
fermionic fields and appropriate dimension of the parameter η all the coefficients can be made dime-
sionless. Surprisingly, the structure of supertransformations for massive supermultiplets turns out to
be much more complicated. Even explicit realization of relatively low superspins such as 1 and 3/2
requires hard work [19, 20, 21].

Let us consider simplest nontrivial example — massive supermultiplet with superspin 1 containing
four fields: vector-spinor Ψµ, two vector fields Aµ and Bµ and spinor χ. Starting with the known
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form of supertransformations for massless supermultiplets by usual “trial and error” method one can
obtain following result:

δΨµ = − i
4σ

αβγµCαβη +mCµη − 1
m (∂µ + im

2 γµ)[ 16σ
αβCαβη + 2im

3 Ĉη]

δC̄µ = 2(Ψ̄µη) + 2i√
3 (χ̄γµη)− 2

m
√

3∂µ(χ̄η) δχ = − 1
2
√

3σ
αβCαβη + im√

3 Ĉη

Here Cµ = Aµ + γ5Bµ. One can see that there are three type of terms in these formulas. At
first there are terms having the same form as in the massless case. Then there are corrections to
the fermionic supertransformations containing bosonic fields without derivatives with the coefficients
proportional to the mass m. At last, there are higher derivatives terms (up to two derivatives in the
fermionic transformations and up to one derivative in the bosonic transformations in this simplest
case) with coefficients proportional to inverse powers of mass m so that there is no any straightforward
massless limit. Moreover, the higher superspin one tries to consider the higher and higher derivatives
one will have to introduce. Doing carefull rearrangement of these higher derivative terms (as have
been done in the formulas above) one can observe that these terms are just some field dependent
gauge transformations and this in turn suggests that we can achieve much more straightforward and
transparent construction by using gauge invariant description of massive high spin particles.

The main idea is that massive supermultiplet must be easily constructed out of the appropriate set
of massless ones exactly in the same way as massive particle could be constructed using appropriate
set of massless ones. Let us show how this general procedure works on the particular case of superspin
1 multiplet shown above.

• Determine an appropriate set of massless supermultiplets. Using the fact that in the massless
limit massive spin 3/2 particle reduces to massless spin 3/2 and 1/2 particles, while massive
spin 1 particle — to massless spin 1 and 0 ones, it is easy to see that we will get three massless
supermultiplets: 0

@
3/2

1 1′

1/2

1
A ⇒

„
3/2
1

«
⊕
„

1′

1/2

«
⊕
„

1/2
0, 0′

«

• Duality rotation. As is known two bosonic fields in the massive supermultiplet must have
different parity. This allows one to consider duality transformations mixing massless super-
multiplets, containing these particles. As a result, the most general supertransformations
leaving sum of kinetic terms invariant have the following form:

δΨµ = − i
2
√

2σ
αβ [cos(θ)Aαβ − sin(θ)Bαβγ5]γµη

δAµ =
√

2 cos(θ)(Ψ̄µη) + i sin(θ)(ρ̄γµη)

δBµ =
√

2 sin(θ)(Ψ̄µγ5η) + i cos(θ)(ρ̄γµγ5η)

δρ = − 1
2σ

αβ [sin(θ)Aαβ + cos(θ)Bαβγ5]η

δχ = −i∂̂(ϕ+ γ5π)η δϕ = (χ̄η) δπ = (χ̄γ5η)

where θ — mixing angle to be determined.

• Now we obtain massive theory as a smooth deformation of initial massless one by adding to the
Lagrangian mass terms for all fields as well as corrections to the fermionic supertransformations,
containing bosonic fields without derivatives. In this, mixing angle θ turns out to be fixed.
Resulting supertransformations:

δΨµ = − i
4σ

αβγµCαβη −Dµzη δC̄µ = 2(Ψ̄µη) + i
√

2(ρ̄γµη)

δρ = − 1
2
√

2σ
αβCαβη δχ = −iD̂zη δz̄ = 2(χ̄η)

where Cµ = Aµ + γ5Bµ, z = ϕ+ γ5π, Dµz = ∂µz −mCµ
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• Apart from global supertransformations resulting theory is invariant under the following local
gauge transformations:

δΨµ = (∂µ − im
2 γµ)ξ δρ = − m√

2ξ δχ = mξ

δCµ = ∂µΛ δz = mΛ Λ = λ+ γ5λ̃

Note, that one can use these transformations to choose a gauge where all Goldstone fields equal
to zero leaving us with just four physical massive fields. In this, supertransformations must be
completed with the field dependent gauge transformations restoring the gauge. This explains
the appearance of higher derivative terms we have shown above.

3 Interactions

Construction of consistent high spin particles interactions is one of the old, hard and still unsolved
problems. For the massless particles it is possible to formulate constructive approach to this problem
(for BRST formulation see [22]). In this approach one starts with free Lagrangian for the collection of
massless fields with appropriate gauge transformations and tries to construct interacting Lagrangian
and modified gauge transformations iteratively by the number of fields so that:

L ∼ L0 + L1 + L2 + . . . , δ ∼ δ0 + δ1 + δ2 + . . .

where L1 — cubic vertex, L2 — quartic one and so on, while δ1 — corrections to gauge transforma-
tions linear in fields, δ2 — quadratic in fields and so on.

The mere existence of gauge invariant formulation for massive high spin particles allows us to
extend such constructive approach for any collection of massive and/or massless particles. Let us
illustrate this idea using relatively simple but non-trivial example — interaction of massive spin 2
particles with gravity [23].

First of all let us denote a metric tensor as gµν . Let us stress that it is not some fixed background
here, but a dynamical filed with its own equations of motion:

Rµν − 1
2gµνR = 0

Here we assume that the cosmological term is absent, though it could be easily introduced. As
usual in gravity, we also assume that connection is metric compatible Dαgµν = 0 and we have usual
identities:

DµRµν,αβ = DαRβν −DβRαν , DµRµν = 1
2DνR

Now consider gauge invariant Lagrangian for massive spin 2 particle where all derivatives are
replaced by the covariant ones:

L2 = 1
2D

αhµνDαhµν −DαhµνDµhνα + (Dh)µDµh− 1
2D

µhDµh− 1
2 (DµAν −DνAµ)2 +

+3DµϕDµϕ+ 2m[hµνDµAν − h(DA)]− 6mAµDµϕ−
−m2

2 [hµνhµν − h2]− 3m2hϕ+ 6m2ϕ2

as well as appropriate gauge transformations:

δhµν = Dµξν +Dνξµ +mgµνλ, δAµ = Dµλ+mξµ, δϕ = mλ

Here we use slightly different normalization of Goldstone fields compatible with that in [23]. Covariant
derivatives do not commute and, as a result, this Lagrangian is not invariant under these gauge
transformations any more. But gauge invariance could be restored if one adds to the Lagrangian:

∆L = −2Rµνhµαhνα +Rµνhµνh+ 1
2Rh

αβhαβ − 1
4Rh

2

and requires that metric gµν has non-trivial transformations

δgαβ = 2(Dµhαβ −Dαhβµ −Dβhαµ)ξµ + 2m[Aαξβ +Aβξα − gαβ(Aξ)]
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Note that in any case when the number of derivatives in the interactions is equal or greater than
that in free Lagrangian, the theory is always determined up to the possible field redefinitions. In the
case at hands, cubic vertex and concrete form of gauge transformations are determined up to the
redefinitions of metric tensor:

gµν ⇒ gµν + κ1hµαhαν + κ2hhµν + κ3gµνh
αβhαβ + κ4gµνh

2

It is instructive to compare our results here with the investigations of massive spin 2 particle in
gravitational background [24, 25, 26].

Conclusion

We hope that a few simple examples given here clearly shows that gauge invariant description of
massive high spin particles really provides powerfull approach to investigation of the whole number
related problems including possible interactions of such particles.
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Abstract

We review harmonic superspaces of the D = 3, N=3 and 4 supersymmetries and
gauge models in these superspaces. Superspaces of the D=3, N=5 supersymmetry use
harmonic coordinates of the SO(5) group. The superfield N=5 actions describe the
off-shell infinite-dimensional Chern-Simons supermultiplet.

1 Introduction

Supersymmetric extensions of the D=3 Chern-Simons theory were discussed in [1]-[10]. A su-
perfield action of the D=3, N=1 Chern-Simons theory can be interpreted as the superspace integral
of the differential Chern-Simons superform dA + 2i3 A

3 in the framework of our theory of superfield
integral forms [3]-[6].

The Abelian N=2 CS action was first constructed in the D=3, N=1 superspace [1]. The cor-
responding non-Abelian action was considered in the D=3, N=2 superspace with the help of the
Hermitian superfield V (xm, θα, θ̄α), where θα and θ̄α are the complex conjugated spinor coordinates
[3]. The unusual dualized form of the N=2 CS Lagrangian contains the second vector field instead
of the scalar field[7].

The D=3, N=3 CS theory was first analyzed by the harmonic-superspace method [8, 9]. Su-
persymmetric action of the D=3, N=4 Yang-Mills theory can also be constructed in the D=3, N=3
superspace, but the alternative formalism exists in the N=4 superspace [15].

The authors of [18] propose using the SO(5)/U(2) harmonic superspace for the superfield de-
scription of the D=3, N=5 Chern-Simons theory. The detailed analysis of the superfield formalism
of the Chern-Simons theory in this harmonic superspace was presented in our recent paper [19]. The
alternative formalism of this theory using the SO(5)/U(1)×U(1) harmonics and additional harmonic
conditions was considered in [20]. It was shown that the action of this model is invariant with re-
spect to the D=3, N=6 superconformal group. The superfield action without harmonic constraints
describes additional matter fields [21].

1E-mail: zupnik@theor.jinr.ru
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2 N = 4 and N = 3 harmonic superspaces

We consider the following coordinates of the D = 3, N = 4 superspace:

z = (xm, θα
ik̂), (1)

where i and k̂ are two-component indices of the automorphism groups SUL(2) and SUR(2), respec-
tively, α is the two-component index of the SL(2, R) group and m = 0, 1, 2 is the 3D vector index.
The N = 4 supersymmetry transformations are

δxm = −i(γm)αβ(εαjk̂θ
βjk̂ − iεβ

jk̂
θαjk̂), (2)

where γm are the 3D γ matrices.

The SUL(2)/U(1) harmonics u±i [11] can be used to construct the left analytic superspace [15]
with the LA coordinates

ζL = (xm
L , θ

+k̂α). (3)

The L-analytic prepotential V ++(ζL, u) describes the left N = 4 vector multiplet Am, φk̂l̂, λ
α
ik̂
, Dik.

The D = 3, N = 4 SYM action can be constructed in terms of this prepotential by analogy with the
D = 4, N = 2 SYM action [14].

Let us introduce the new notation for the left harmonics u±i = u
(±1,0)
i and the analogous notation

v
(0,±1)

k̂
for the right SLR(2)/U(1) harmonics. The biharmonic N = 4 superspace uses the Grassmann

coordinates [15]

θ(±1,±1)α = u
(±1,0)
i v

(0,±1)

k̂
θik̂α. (4)

In this representation, we have

ζL = (xm
L , θθ

(1,±1)α), θV ++ ≡ V (2,0), (5)

D(1,±1)
α V (2,0) = 0, θD(0,2)

v V (2,0) = 0. (6)

The right analytic N = 4 coordinates are

ζR = (xm
R , θθ

(±1,1)α), θxm
R = xm

L − 2i(γm)αβθ
(−1,1)αθ(1,1)β . (7)

The mirror R analytic prepotential V̂ (0,2)

D(±1,1)V̂ (0,2) = 0, θD(2,0)
u V̂ (0,2) = 0 (8)

describes the right N = 4 vector multiplet Âm, φ̂ij , λ̂
α
ik̂
, D̂ik, where Âm is the mirror vector gauge

field using the independent gauge group. The right N = 4 SYM action is similar to the analogous
left action. These multiplets can be formally connected by the map SUL(2) ↔ SUR(2).

The N = 4 superfield Chern-Simons type (or BF -type) action for the gauge group U(1)× U(1)
connects two mirror vector multiplets

Z
dud3xldθ

(−4,0)V (2,0)(ζL, u)D
(1,1)αD(1,1)

α V̂ (0,−2), (9)

where the right connection satisfies the equation

D(0,2)
v V̂ (0,−2) = D(0,−2)

v Ṽ (0,2), θD(2,0)
u V̂ (0,−2) = 0. (10)

The component form of this action was considered in [16, 17].

We can identify the left and right isospinor indices in the N = 4 spinor coordinates

θα
jk̂ → θα

jk = θα
(jk) + 1

2
εjkθ

α, (11)
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where the Grassmann coordinates θα
(jk) describe the N = 3 superspace. The harmonic superspace of

the D = 3, N = 3 supersymmetry uses the standard harmonics u±i [8, 9]

xαβ
3 = xαβ + i(θα++θβµ + θβ++θαµ) , (12)

θ++α = u+
i u

+
k θ

(ik)α , θ−−α = u−i u
−
k θ

(ik)α , θασ0 = u+
i u

−
k θ

(ik)α , (13)

δxαβ
3 = −2iε−−αθ++β − 2iε−−βθ++α + 2iε0αθ0β .

The vector N = 3 supermultiplet is described by the analytic superfield V ++(x3, θ
++, θ0, u) and

the corresponding analytic N = 3 superfield strength is

W++(x3, θ
++, θ0, u) = −1

2
D++αD++

α V −−. (14)

The action of the corresponding CS-theory can be constructed in the full or analytic N = 3 super-
spaces [8, 9].

3 Harmonic superspaces for the group SO(5)

The homogeneous space SO(5)/U(2) is parametrized by elements of the harmonic 5×5 matrix

UK
a = (U+i

a , U0
a , U

−
ia) = (U+1

a , U+2
a , U0

a , U
−
1a, U

−
2a), (15)

where a = 1, . . . 5 is the vector index of the group SO(5), i = 1, 2 is the spinor index of the group
SU(2), and U(1)-charges are denoted by symbols +,−, 0. The basic relations for these harmonics
are

U+i
a U+k

a = U+i
a U0

a = 0, θU−iaU
−
ka = U−iaU

0
a = 0, θU+i

a U−ka = δi
k, θU

0
aU

0
a = 1,

U+i
a U−ib + U−iaU

+i
b + U0

aU
0
b = δab. (16)

We consider the SO(5) invariant harmonic derivatives with nonzero U(1) charges

∂+i = U+i
a

∂
∂U0

a
− U0

a
∂

∂U−
ia
, θ∂+iU0

a = U+i
a , θ∂+iU−ka = −δi

kU
0
a ,

∂++ = U+
ia

∂
∂U−

ia
, θ[∂+i, ∂+k] = εki∂++, θ∂+i∂+

i = ∂++,

∂−i = U−ia
∂

∂U0
a
− U0

a
∂

∂U+i
a
, θ∂−i U

0
a = U−ia, θ∂

−
i U

+k
a = −δk

i U
0
a , (17)

∂−− = U−i
a

∂
∂U+i

a
, θ[∂−i , ∂

−
k ] = εki∂

−−, θ∂−k∂−k = −∂−−,
where some relations between these harmonic derivatives are defined. The U(1) neutral harmonic
derivatives form the Lie algebra U(2)

∂i
k = U+i

a
∂

∂U+k
a

− U−ka
∂

∂U−
ia
, θ[∂+i, ∂−k ] = −∂i

k, (18)

∂0 ≡ ∂k
k = U+k

a
∂

∂U+k
a

− U−ka
∂

∂U−
ka
, θ[∂++, ∂−−] = ∂0,

∂i
kU

+l
a = δl

kU
+i
a , θ∂i

kU
−
la = −δi

lU
−
ka. (19)

The operators ∂+k, ∂++, ∂−k , ∂
−− and ∂i

k satisfy the commutation relations of the Lie algebra SO(5).
One defines an ordinary complex conjugation on these harmonics

U+i
a = U−ia, θU0

a = U0
a , (20)

however, it is convenient to use a special conjugation in the harmonic space

(U+i
a )∼ = U+i

a , θ(U−ia)∼ = U−ia, θ(U
0
a)∼ = U0

a . (21)

All harmonics are real with respect to this conjugation.
The full superspace of the D=3, N=5 supersymmetry has the spinor CB coordinates θα

a , θ(α =
1, 2; θa = 1, 2, 3, 4, 5) in addition to the coordinates xm of the three-dimensional Minkowski space.
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The group SL(2, R)×SO(5) acts on the spinor coordinates. The superconformal transformations of
these coordinates are considered in Appendix.

The SO(5)/U(2) harmonics allow us to construct projections of the spinor coordinates and the
partial spinor derivatives

θ+iα = U+i
a θα

a , θθ
0α = U0

aθ
α
a , θθ

−α
i = U−iaθ

α
a , (22)

∂−iα = ∂/∂θ+iα, θ∂0
α = ∂/∂θ0α, θ∂+i

α = ∂/∂θ−α
i .

The analytic coordinates (AB-representation) in the full harmonic superspace use these projec-
tions of 10 spinor coordinates θ+iα, θ0α, θ−α

i and the following representation of the vector coordinate:

xm
σA ≡ ym = xm + i(θ+kγmθ−k ) = xm + i(θaγ

mθb)U
+k
a U−kb. (23)

The analytic coordinates are real with respect to the special conjugation.
The harmonic derivatives have the following form in AB:

D+k = ∂+k − i(θ+kγmθ0)∂m + θ+kα∂0
α − θ0α∂+k

α ,

D++ = ∂++ + i(θ+kγmθ+k )∂m + θ+α
k ∂+k

α , (24)

Dk
l = ∂k

l + θ+kα∂−lα − θ−α
l ∂−k

α .

We use the commutation relations

[D+k,D+l] = −εklD++, θD+kD+
k = D++. (25)

The AB spinor derivatives are

D+i
α = ∂+i

α , θD−iα = −∂−iα − 2iθ−β
i ∂αβ ,

D0
α = ∂0

α + iθ0β∂αβ . (26)

The coordinates of the analytic superspace ζ = (ym, θ+iα, θ0α, UK
a ) have the Grassmann dimen-

sion 6 and dimension of the even space 3+6. The functions Φ(ζ) satisfy the Grassmann analyticity
condition in this superspace

D+k
α Φ = 0. (27)

In addition to this condition, the analytic superfields in the SO(5)/U(2) harmonic superspace pos-
sess also the U(2)-covariance. This subsidiary condition looks especially simple for the U(2)-scalar
superfields

Dk
l Λ(ζ) = 0. (28)

The integration measure in the analytic superspace dµ(−4) has dimension zero

dµ(−4) = dUd3xσA(∂0
α)2(∂−iα)4 = dUd3xσAdθ

(−4). (29)

The SO(5)/U(1)×U(1) harmonics can be defined via the components of the real orthogonal 5×5
matrix [20, 21]

UK
a =

“
U (1,1)

a , U (1,−1)
a , U (0,0)

a , U (−1,1)
a , U (−1,−1)

a

”
(30)

where a is the SO(5) vector index and the index K = 1, 2, . . . 5 corresponds to given combinations of
the U(1)×U(1) charges.

We use the following harmonic derivatives

∂(2,0) = U
(1,1)
b ∂/∂U

(−1,1)
b − U

(1,−1)
b ∂/∂U

(−1,−1)
b ,

∂(1,1) = U
(1,1)
b ∂/∂U

(0,0)
b − U

(0,0)
b ∂/∂U

(−1,−1)
b ,

∂(1,−1) = U
(1,−1)
b ∂/∂U

(0,0)
b − U

(0,0)
b ∂/∂U

(−1,1)
b ,

∂(0,2) = U
(1,1)
b ∂/∂U

(1,−1)
b − U

(−1,1)
b ∂/∂U

(−1,−1)
b ,

∂(0,−2) = U
(1,−1)
b ∂/∂U

(1,1)
b − U

(−1,−1)
b ∂/∂U

(−1,1)
b . (31)
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We define the harmonic projections of the N=5 Grassmann coordinates

θK
α = θaαU

K
a = (θ(1,1)

α , θ(1,−1)
α , θ(0,0)

α , θ(−1,1)
α , θ(−1,−1)

α ). (32)

The SO(5)/U(1)× U(1) analytic superspace contains only spinor coordinates

ζ = (xm
σA, θ

(1,1)
α , θ(1,−1)

α , θ(0,0)
α ), (33)

xm
σA = xm + iθ(1,1)γmθ(−1,−1) + iθ(1,−1)γmθ(−1,1),

δεx
m
σA = −iε(0,0)γmθ(0,0) − 2iε(−1,1)γmθ(1,−1) − 2iε(−1,−1)γmθ(1,1), (34)

where εKα = εαaU
K
a are the harmonic projections of the supersymmetry parameters.

General superfields in the analytic coordinates depend also on additional spinor coordinates
θ
(−1,1)
α and θ

(−1,−1)
α . The harmonized partial spinor derivatives are

∂(−1,−1)
α = ∂/∂θ(1,1)α, θ∂(−1,1)

α = ∂/∂θ(1,−1)α, θ∂(0,0)
α = ∂/∂θ(0,0)α, (35)

∂(1,1)
α = ∂/∂θ(−1,−1)α, θ∂(1,−1)

α = ∂/∂θ(−1,1)α.

We use the special conjugation ∼ in the harmonic superspace

Ũ
(p,q)
a = U (p,−q)

a , θθ̃
(p,q)
α = θ(p,−q)

α , θgxm
σA = xm

σA,

(θ(p,q)
α θ

(s,r)
β )∼ = θ

(s,−r)
β θ(p,−q)

α , θf̃(xσA) = f̄(xσA), (36)

where f̄ is the ordinary complex conjugation. The analytic superspace is real with respect to the
special conjugation.

The analytic-superspace integral measure contains partial spinor derivatives (35)

dµ(−4,0) = − 1
64dUd

3xσA(∂(−1,−1))2(∂(−1,1))2(∂(0,0))2 = dUd3xσAd
6θ(−4,0), (37)Z

d6θ(−4,0)(θ(1,1))2(θ(1,−1))2(θ(0,0))2 = 1.

The harmonic derivatives of the analytic basis commute with the generators of the N=5 super-
symmetry

D(1,1) = ∂(1,1) − iθ(1,1)
α θ

(0,0)
β ∂αβ − θ(0,0)α∂(1,1)

α + θ(1,1)α∂(0,0)
α ,

D(1,−1) = ∂(1,−1) − iθ(1,−1)
α θ

(0,0)
β ∂αβ − θ(0,0)α∂(1,−1)

α + θ(1,−1)α∂(0,0)
α = −(D(1,1))†,

D(2,0) = [D(1,−1),D(1,1)] = ∂(2,0) − 2iθ(1,1)
α θ

(1,−1)
β ∂αβ − θ(1,−1)α∂(1,1)

α + θ(1,1)α∂(1,−1)
α ,

D(0,2) = ∂(0,2) + θ(1,1)α∂(−1,1)
α − θ(−1,1)α∂(1,1)

α

D(0,−2) = −(D(0,2))† = ∂(−2,0) + θ(1,−1)α∂(−1,−1)
α − θ(−1,−1)α∂(1,−1)

α .

It is useful to define the AB-representation of the U(1) charge operators

D0
1A

(p,q) = pA(p,q), θD0
2A

(p,q) = q A(p,q), (38)

where A(p,q) is an arbitrary harmonic superfield in AB.

The spinor derivatives in the analytic basis are

D(−1,−1)
α = ∂(−1,−1)

α + 2iθ(−1,−1)β∂αβ , θD
(−1,1)
α = ∂(−1,1)

α + 2iθ(−1,1)β∂αβ ,

D(0,0)
α = ∂(0,0)

α + iθ(0,0)β∂αβ , θD
(1,1)
α = ∂(1,1)

α , θD(1,−1)
α = ∂(1,−1)

α . (39)
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4 N = 6 Chern-Simons theory in harmonic superspaces

The harmonic derivatives D+k,D++ together with the spinor derivatives D+k
α determine the CR-

structure of the harmonic SO(5)/U(2) superspace. This U(2)-covariant CR-structure is invariant
with respect to the N=5 supersymmetry. This CR-structure should be preserved in the superfield
gauge theory.

The gauge superfields (prepotentials) V +k(ζ) and V ++(ζ) in the harmonic SO(5)/U(2) super-
space satisfy the following conditions of the Grassmann analyticity and U(2)-covariance:

D+k
α V +k = D+k

α V ++ = 0, θDi
jV

+k = δk
j V

+i, θDi
jV

++ = δi
jV

++. (40)

In the gauge group SU(n), these traceless matrix superfields are anti-Hermitian

(V +k)† = −V +k, θ(V ++)† = −V ++, (41)

where operation † includes the transposition and ∼-conjugation.
Analytic superfield parameters of the gauge group SU(n) satisfy the conditions of the generalized

CR analyticity
D+k

α Λ = Di
jΛ = 0, (42)

they are traceless and anti-Hermitian Λ† = −Λ.
We treat these prepotentials as connections in the covariant gauge derivatives

∇+i = D+i + V +i, θ∇++ = D++ + V ++,

δΛV
+i = D+iΛ + [Λ, V +i], θδΛV

++ = D++Λ + [Λ, V ++], (43)

D+k
α δΛV

+k = D+k
α δΛV

++ = 0, θDi
jδΛV

+k = δk
j δΛV

+i, θDi
jδΛV

++ = δi
jδΛV

++,

where the infinitesimal gauge transformations of the gauge superfields are defined. These covariant
derivatives commute with the spinor derivatives D+k

α and preserve the CR-structure in the harmonic
superspace.

We can construct three analytic superfield strengths off the mass shell

F++ = 1
2
εki[∇+i,∇+k] = V ++ −D+kV +

k − V +kV +
k ,

F (+3)k = [∇++,∇+k] = D++V +k −D+kV ++ + [V ++, V +k].

The superfield action in the analytic SO(5)/U(2) superspace is defined on three prepotentials
V +k and V ++ by analogy with the off-shell action of the SYM3

4 theory [12]

S1 = ik
12π

Z
dµ(−4)Tr{V +jD++V +

j + 2V ++D+
j V

+j + (V ++)2 + V ++[V +
j , V +j ]}, (44)

where k is the coupling constant, and a choice of the numerical multiplier guarantees the correct
normalization of the vector-field action. This action is invariant with respect to the infinitesimal
gauge transformations of the prepotentials (43). The idea of construction of the superfield action in
the harmonic SO(5)/U(2) was proposed in [18], although the detailed construction of the superfield
Chern-Simons theory was not discussed in this work. The equivalent superfield action was considered
in the framework of the alternative superfield formalism [20]. The superconformal N = 5 invariance
of this action was proven in [19].

The action S1 yields superfield equations of motion which mean triviality of the superfield
strengths of the theory

F
(+3)
k = D++V +

k −D+
k V

++ + [V ++, V +
k ] = 0,

F++ = V ++ −D+kV +
k − V +kV +

k = 0. (45)

These classical superfield equations have pure gauge solutions for the prepotentials only

V +k = e−ΛD+keΛ, θV ++ = e−ΛD++eΛ, (46)
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where Λ is an arbitrary analytic superfield.
The transformation of the sixth supersymmetry can be defined on the analytic N=5 superfields

δ6V
++ = εα6D

0
αV

++, θδ6V
+k = εα6D

0
αV

+k, (47)

δ6D+kV +l = εα6D
0
αD+kV +l, θδ6D++V +l = εα6D

0
αD++V +l, (48)

where εα6 are the corresponding odd parameters. This transformation preserves the Grassmann
analyticity and U(2)-covariance

{D0
α, D

+k
β } = 0, θ[Dk

l , D
0
α] = 0, θ[D+k, D0

α] = D+k
α , θ[D++, D0

α] = 0. (49)

The action S1 is invariant with respect to this sixth supersymmetry

δ6S1 =

Z
dµ(−4)εα6D

0
αL

(+4) = 0. (50)

In the SO(5)/U(1)×U(1) harmonic superspace, we can introduce the D=3, N=5 analytic matrix
gauge prepotentials corresponding to the five harmonic derivatives

V (p,q)(ζ, U) = [V (1,1), θV (1,−1), θV (2,0), θV (0,±2)],

(V (1,1))† = −V (1,−1), θ(V (2,0))† = V (2,0), θV (0,−2) = [V (0,2)]†, (51)

where the Hermitian conjugation † includes ∼ conjugation of matrix elements and transposition.
We shall consider the restricted gauge supergroup using the supersymmetry-preserving harmonic

(H) analyticity constraints on the gauge superfield parameters

H1 : D(0,±2)Λ = 0. (52)

These constrains yield additional reality conditions for the component gauge parameters.
We use the harmonic-analyticity constraints on the gauge prepotentials

H2 : V (0,±2) = 0, θD(0,−2)V (1,1) = V (1,−1), θD(0,2)V (1,1) = 0 (53)

and the conjugated constraints combined with relations (51).
The superfield CS action can be constructed in terms of these H-constrained gauge superfields

[21]

S = − 2ik
12π

Z
dµ(−4,0)Tr{V 2,0D(1,−1)V (1,1) + V 1,1D(2,0)V (1,−1)

+V 1,−1D(1,1)V (2,0) + V 2,0[V (1,−1), V (1,1)]− 1
2
V (2,0)V (2,0)}. (54)

Note, that the similar harmonic superspace based on the USp(4)/U(1) × U(1) harmonics was
used in [22] for the harmonic interpretation of the D = 4, N = 4 super Yang-Mills constraints.

This work was partially supported by the grants RFBR 06-02-16684, DFG 436 RUS 113/669-3,
INTAS 05-10000008-7928 and by the Heisenberg-Landau programme.
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âåðîÿòíîñòåé, êëàññè÷åñêàÿ ìåõàíèêà, ýëåêòðîäèíàìèêà, êâàíòîâàÿ
ìåõàíèêà, ñòàòèñòè÷åñêàÿ ôèçèêà, ÿäåðíàÿ ôèçèêà, ôèçèêà ýëåìåíòàðíûõ
÷àñòèö, ìåòîäû ìàòåìàòè÷åñêîé ôèçèêè, îáùàÿ òåîðèÿ îòíîñèòåëüíîñòè,
êâàíòîâàÿ òåîðèÿ ïîëÿ, ñóïåðñèììåòðèÿ, òåîðèÿ ãðóïï.

Íàó÷íî - îðãàíèçàöèîííàÿ ðàáîòà â ðàçëè÷íîå âðåìÿ

Ðóêîâîäèòåëü àñïèðàíòóðû, Ðóêîâîäèòåëü äîêòîðàíòóðû
Ïðåäñåäàòåëü äèññåðòàöèîííîãî ñîâåòà ïî ïðèñóæäåíèþ ó÷åíîé ñòåïåíè
êàíäèäàòà ôèç.-ìàò. íàóê ïî ñïåöèàëüíîñòè òåîðåòè÷åñêàÿ ôèçèêà â
Òîìñêîì ïåäàãîãè÷åñêîì óíèâåðñèòåòå
Çàìåñòèòåëü ïðåäñåäàòåëÿ äèññåðòàöèîííîãî ñîâåòà ïî ïðèñóæäåíèþ
ó÷åíîé ñòåïåíè êàíäèäàòà ôèç.-ìàò. íàóê ïî ñïåöèàëüíîñòè
òåîðåòè÷åñêàÿ ôèçèêà â Òîìñêîì ïåäàãîãè÷åñêîì óíèâåðñèòåòå
×ëåí äèññåðòàöèîííîãî ñîâåòà ïî ïðèñóæäåíèþ ó÷åíîé ñòåïåíè
êàíäèäàòà ôèç.-ìàò. íàóê ïî ñïåöèàëüíîñòè òåîðåòè÷åñêàÿ ôèçèêà
â Îìñêîì ãîñóäàðñòâåííîì óíèâåðñèòåòå
×ëåí äèññåðòàöèîííîãî ñîâåòà ïî ïðèñóæäåíèþ ó÷åíîé ñòåïåíè äîêòîðà
ôèç.-ìàò. íàóê ïî ñïåöèàëüíîñòè òåîðåòè÷åñêàÿ ôèçèêà â Òîìñêîì
ãîñóäàðñòâåííîì óíèâåðñèòåòå
×ëåí äèññåðòàöèîííîãî ñîâåòà ïî ïðèñóæäåíèþ ó÷åíîé ñòåïåíè äîêòîðà
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ôèëîñîôñêèõ íàóê ïî ñïåöèàëüíîñòè ôèëîñîôèÿ è èñòîðèÿ íàóêè â
Òîìñêîì ïåäàãîãè÷åñêîì óíèâåðñèòåòå
×ëåí ó÷åáíî-ìåòîäè÷åñêîãî îáúåäèíåíèÿ Ìèíèñòåðñòâà Îáðàçîâàíèÿ è
Íàóêè ÐÔ ïî ôèçè÷åñêîìó îáðàçîâàíèþ â ïåäàãîãè÷åñêèõ ÂÓÇàõ
×ëåí ðåäêîëëåãèè ìåæäóíàðîäíîãî íàó÷íîãî æóðíàëà "Ãðàâèòàöèÿ è
êîñìîëîãèÿ"
Ïðåäñåäàòåëü è ÷ëåí îðãêîìèòåòîâ Âñåðîññèéñêèõ è Ìåæäóíàðîäíûõ
íàó÷íûõ êîíôåðåíöèé

Ðåöåíçåíò íàó÷íûõ æóðíàëîâ:
Physical Review D,
Nuclear Physics B,
Physics Letters B,
Classical and Quantum Gravity,
Europhysics Letters,
Journal of Physics A,
International Journal of Modern Physics A,
Modern Physics Letters A,
Journal of High Energy Physics
ßäåðíàÿ ôèçèêà,
Òåîðåòè÷åñêàÿ è ìàòåìàòè÷åñêàÿ ôèçèêà
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