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Preface

All the fundamental interactions that exist in Nature (electromagnetic, gravitational,
strong and weak) can be described in terms of gauge theories. The quantization of gauge
theories is one of the most essential means providing insight into the quantum properties of
the fundamental forces. The formalisms of Hamiltonian and Lagrangian quantization of gauge
theories present two different approaches to the quantum description of dynamical systems
[77, 84, 75, 47, 120, 170, 188, 174, 80, 104, 103, 158, 62, 205].

There are many reasons for the interest in the covariant quantization of general gauge
theories in the framework of Lagrangian formalism. First of all, in contrast to canonical
quantization, it is possible to retain the covariance of description at all stages of calculations.
This formalism provides a systematic method of obtaining the conservation laws on the basis
of the Noether theorem. The most essential ingredient of covariant quantization is the path
integral technique, being the most popular method currently available, and providing the
most economic way of obtaining the Feynman rules directly from the classical Lagrangian. In
solving the problem of quantization, we achieve a better understanding of the structure and
quantum properties of general gauge theories.

The covariant quantization of gauge theories has made a long way starting from the famous
works of Feynman [83], Faddeev, Popov [79], and DeWitt [74].

Many authors have contributed to developing the methods of covariant quantization, as
well as to providing them with various applications. More references can be found in [125]
(Henneaux and Teitelboim), [205] (Weinberg) and [108] (Gomis, Paris and Samuel).

The main purpose of this book is to introduce the reader to modern approaches to covariant
quantization of gauge theories. We shall proceed according to the following plan of exposition.

The first subject to be considered is "Canonical quantization of constraint systems”. Re-
garding this question as one of the necessary educational elements for anyone engaged in the
study of quantum theory, we give a brief review of the principal results obtained in this area,
following the books [77] (Dirac) and [103] (Gitman and Tyutin).

Considered next is "Faddeev—Popov quantization”, the first success in the quantization of
non-trivial gauge theories, like Yang—Mills ones, in the Lagrangian formalism proposed by
Faddeev and Popov [79].

The third subject area to be covered is "Batalin—Vilkovisky method”. This method, de-
veloped by Batalin and Vilkovisky [40, 41], provides a unique closed approach to covariant
quantization, based on a special kind of global supersymmetry, the so-called BRST symmetry,
discovered by Becchi, Rouet and Stora [45, 46], and, independently, also by Tyutin [195].

We next proceed with "Sp(2)-covariant Lagrangian quantization". This method, proposed
by Batalin, Lavrov and Tyutin [25, 26, 27], handles the quantization of general gauge the-
ories using a realization of so-called extended BRST symmetry, including BRST symmetry
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and antiBRST symmetry, discovered for Yang—Mills theories by Curci and Ferrari [66], and,
independently, also by Ojima [166].

Following is "Triplectic quantization”. This quantization method, proposed by Batalin,
Marnelius and Semikhatov [28, 35, 29|, gives a completely anticanonical form to the Sp(2)-
covariant procedure. A modified version of triplectic quantization has recently been suggested
by Geyer, Gitman and Lavrov [96].

Then we deal with "Superfield BRST quantization". This approach, proposed by Lavrov,
Moshin and Reshetnyak [145], realizes the BRST transformations for general gauge theories
as supertranslations in superspace with respect to an additional (Grassmann) coordinate,
thereby giving an elegant geometric interpretation to the Ward indentities in the quantum
theory of gauge fields.

The above subject area is followed by "Superfield extended BRST quantization”. This
method, discovered by Lavrov [144], succeeds in presenting BRST and antiBRST transfor-
mations as supertranslations in superspace along additional Grassmann coordinates, thus
giving a geometric interpretation to the Ward indentities in the method of Sp(2)-covariant
quantization.

As regards superfield quantization, it should be noted that the geometric content of the
BRST and antiBRST transformations in Yang—Mills theories, as supertranslations in super-
space along additional (Grassmann) coordinates, was realized many years ago by the studies
[53] (Bonora and Tonin), [54] (Bonora, Pasti and Tonin), [6] (Alvarez-Gaume and Baulieu),
and [44] (Baulieu); however, no satisfactory superfield description of the quantization proce-
dure was proposed. Moreover, the crucial point of these superfield methods was the manifest
structure of Yang—Mills theories, and therefore the treatment of arbitrary gauge theories
remained an unsolved peoblem.

Finally considered is "osp(1,2)-covariant quantization". This approach, recently proposed
by Geyer, Lavrov and Miilsch [98, 99] on the basis of invariance under the global supergroup
0sp(1,2), generalizes the method of Sp(2)-quantization and ensures the symplectic invariance
of the quantum action in general gauge theories.

This reveiw was originated by a lecture course given by one of the authors (P.M.L.) to
students and aspirants at the Graduate College "Quantum Field Theory" of Leipzig University
(Germany) and at the Institute for Physics of Juiz de Fora University (Brazil). We are greatly
indebted to D. Miilsch for useful discussions and participation at the initial stage of this work,
and also to S. Falkenberg, one of the most attentive and responding listeners of this lecture
course, a young promising scientist. Untimely and tragic death both of them was a heavy
loss for us. We would like to thank I.A. Batalin, I.L.. Buchbinder, A.A. Deriglazov, A.V.
Galajinsky, D.M. Gitman, S.M. Kuzenko, P.Yu. Moshin, V.I. Mudruk, A.P. Nersessian, J.A.
Neto, V.F. Popov, S.D. Odintsov, W. Oliveira, A.A. Reshetnyak, I.L. Shapiro, S. Theisen,
1.V. Tyutin, B.L. Voronov for useful discussions on the related topics.



Chapter 1

Canonical Quantization of Constraint
Systems

At present, the problem of quantization of an arbitrary Lagrangian system in the Hamilto-
nian formalism should be considered as solved. Here, we state only the main results following
from the (appropriately modified) canonical quantization and reformulate it in terms of the
Feynman path integral formalism (for a more detailed consideration, see [77, 120, 188, 174,
103]). Despite preferring the time coordinate, resulting in the loss of manifest covariance in
the quantization of relativistic theories, canonical quantization is a natural starting point for
all further considerations. For the sake of simplicity, we first present it for the case of finite
degrees of freedom and, at the end of each subsection, we generalize to field theories; also
various illustrations are given in this respect.

1.1 Lagrange equations

Let the system under consideration be described by the Lagrangian L

L=L(g,q), ¢=—, (1.1.1)

where (¢*,4"), i = 1,2, ...,n, are generalized coordinates and velocities, respectively. The fun-
damental equations of the classical theory, the equations of motion, follow from the principle
of stationary action, .5 = 0, applied to the action functional,

Si = Slg = / dtL(g. d)- (11.2)

They are given by the Lagrange equations

L ddL _

- T T = — 1.1.
d¢*  dt 0¢* (1.1.3)
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1.2 Hessian matrix

Going over to the Hamiltonian formulation of the classical theory, we introduce the generalized
momenta p;, corresponding to the generalized coordinates ¢*, according to

0L
= o

DPi :pi(QaQ)~ (1-2-4)

Since these equations need to be resolved for ¢* = ¢*(p, q), the further analysis relies on the
properties of the Hessian matrix,

0%L
Hi=——"". 1.2.5
7 0¢10¢ ( )
Two different cases are possible
A) det |sz| 7é O7 (1.2.6)
B) det |Hlj| = 0, (1.2.7)

which will be dealt with independently.

1.3 Hamiltonian equations of unconstrained systems

Consider, firstly, the simple case corresponding to condition ( 1.2.6). Then the relations
pi; = pi(q, q) can be solved uniquely in terms of the velocities

pi=pi(g.4) <= ¢ =4q({pq, (1.3.8)

and thus we have a dynamical system without constraints. Let us introduce the quantity

which, in view of ( 1.3.8), can be represented as a function of the variables (p,q), and is
referred to as the Hamiltonian H = H(p,q) of the system. The transition from L(q,q)
to H(p,q), given by Eq. ( 1.3.9), is a Legendre transformation. One easily establishes the
following properties of this transformation:

pi = e & ¢ = “op (1.3.10)
oLa.q)|  _ _9Ha)| (1.3.11)
aq* ) dq* »

Note that in the phase space (p,q) more curves may be specified than in the coordinate
space. Indeed, singling out a continuous trajectory ¢(¢) in the coordinate space produces
the (piecewise) continuous curve ¢(t); and therefore the corresponding trajectory (q(t), p(t) =
p(q(t),4(t))) in the phase space is uniquely defined. On the other hand, singling out a curve
(p(t),q(t)) in the phase space specifies the curve ¢(t) = dq(t)/dt. However, also such curves
q(t) may occur that the relation p(t) = OL/0¢ = p(q(t), ¢(t)) is violated, and therefore there
is no corresponding trajectory in the coordinate space.
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Despite this fact, the extremum of the action holds at the same trajectories in both the
coordinate and the phase space. Namely, let us introduce the Hamiltonian action by

S = Slpval = [ dt(pid’ = Hp.0). (1.312)

Taking the variation of the action Sy considered as a functional of the variables p and ¢, we
obtain the following equations which determine the classical extremals in the phase space:

_oH- . _ oH
_6}71;7 bi = (9q“

3

q

(1.3.13)

these relations are the Hamilton equations. In addition, one easily proves the equivalence of
the equations of motion in both the Lagrangian and the Hamiltonian formalism (Eqgs. ( 1.1.3)
and ( 1.3.13)); in other words,

(SSHZO = 6SL:0.

To establish this fact, it is necessary to use the above-mentioned properties of the Legendre
transformations.

1.4 Poisson bracket

It is advantageous to introduce the Poisson bracket, defined for any two quantities F, G in the
phase space, by the rule

oF 0G  OF 0G

{F,G} = 00 Op O 90 (1.4.14)
The Poisson bracket ( 1.4.14) obeys the following properties:
(1) Antisymmetry
{F,G} = —{G, F}, (1.4.15)
(2) Jacobi identity
{F,{G, H} + cyclic perms.(F,G,H) =0, (1.4.16)
(3) Linearity
{F+G,H}={F,H}+{G,H} (1.4.17)
(4) Leibniz rule
{FH,G} = F{H,G} + {F,G}H. (1.4.18)

One easily verifies the following equalities:
{d". ¢’} ={pi,p;} =0, {d',p;} =6 (1.4.19)
By using the Poisson bracket, the Hamilton equations ( 1.3.13) can be presented in the form
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and the time evolution of any physical quantity A(p,q) is given by
A={AH}. (1.4.21)

Obviously, egs. ( 1.4.15) — ( 1.4.21) introduce an algebraic structure of the classical theory.
It will be the basis of canonical quantization (see, for example [80, 103, 62]) where these
algebraic properties, given in terms of Poisson brackets, are translated into quantum brackets
defined as commutation relations between the corresponding operators according to

(F,G} = (ih)"'[F, G]. (1.4.22)

1.5 Quantization

That quantization procedure is governed by the following postulates:

(1) A state of the system is described by a (normalized) vector |¢) in the Hilbert space
‘H with the inner product (1)1 |t¢)2). Generically, the Hilbert space is realized as a Fock space
constructed with the help of a (unique) vacuum state |0).

Physical observables A are represented by Hermitian operators A acting on the Hilbert space.

(2) The expectaction value of an observable A with respect to a state [1) is given by (| AJ).

(3) The initial coordinates and momenta ¢*(t), p;(¢) in the Heisenberg picture are described
by Hermitian operators ¢*(t), p;(t), which satisfy the (equal time) canonical commutation
relations

[G'(), @ (O] =0, [pi(t),p;(1)] =0, [§'(t), p;(t)] = ihd, (1.5.23)
where h is the Planck constant.

(4) The time evolution of operators A(t) is determined, similarly to ( 1.4.21), by the equation

LdA(Y) s -
ih=—= = [A(t), H), (1.5.24)

where the Hermitian operator H, the quantum Hamiltonian, is obtained from the classical
Hamiltonian H by substituting the operators ¢*(t), p;(t) in place of the coordinates q*(¢) and
momenta p;(t).

In performing quantization according to the above rules, one faces the problem of the ar-
rangement of the operators ¢, p in the values representing physical quantities, like the Hamil-
tonian H = H (¢, 4). Notice that different forms of the correspondence principle give rise to
restrictions on the zeroth and first terms in the expansion of physical quantities in powers
of h. However, there remains considerable arbitrariness in the arrangement of operators. In
what follows, it is assumed that a certain arrangement of the non—commuting operators ¢, p
has been applied. (Note that in the path integral quantization, to be introduced further, the
so-called Weyl ordering is preferred.)
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1.6 Green’s functions

The fundamental objects of the quantum theory are the Green's functions of the position
operators ¢*(t) defined by the following vacuum expectation values

G (thyetn) = (0T (¢ (t1)--G™ (£0)) |0). (1.6.25)

11...ln

Here, the symbol T denotes chronological ordering, which implies that the operators must
be arranged from left to right so that their (mutually different) time arguments decrease.
Moreover, under the sign of the T—product all operators commute with each another. The set
of Green’s functions {le)ln (t1y..ytn),mn = 1,2, ..., } contains the complete information one
expects to derive from quantum theory. In other words, possessing the knowledge of the whole
set of Green’s functions, one can recover the Hilbert space and the algebra of observables.
This is the meaning of the GNS construction, well known in general quantum field theory
(see, for example [119]).

1.7 Generating functional of Green’s functions
Instead of considering the set of Green’s functions G(") separately, one can introduce an
object combining all of them. Let J;(t) be a set of scalar functions belonging e.g. to some

space of test functions and referred to as external sources, then the generating functional Z(J)
of (complete) Green’s functions is defined by

Z(J): ( > / .. / 00,G™ . (s ootn) T (£1) T, (), (1.7.26)

such that

Gy (b, ntn) = (;) T )6n5J 0 )Z(J)‘J:O. (1.7.27)

in

Tt is well known |84, 174, 170, 104| that this functional Z(J) can be written as a functional
or path integral over trajectories in the phase (or configuration) space with the integrand
depending on the phase of the action integral,

Z(J) /Dqu exp{h/dT[qu H(p,q) —|—Jiqi]} (1.7.28)

where the expression

/Dqu = /H (dq 2:,? )> (1.7.29)

is referred to as functional integration over the entire phase space without boundary condi-
tions, i.e. the integration is performed over all the trajectories without restrictions. Taking
into account egs. ( 1.6.25) and ( 1.7.27), we obtain

O (3" (0)-d™(00) 10 = [ PaDp (¢ ()™ @) exw { . [ arlpid’ = HH 0] .

Let us point to the fact that the time ordering in this approach appears automatically. Some-
times the generating functional ( 1.7.28) is called the vacuum-to-vacuum transition amplitude
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in the presence of the external current J, i.e. Z(J) = (0]0)7. Since the functional integral (
1.7.28) contains the entire information of the quantum theory obtained from a classical sys-
tem with the Hamiltonian H, this procedure is called path integral quantization in phase space
(The reader, not familiar with the path integral formulation of quantum theory, may profit
from the short exposition of the essential steps leading to eq. ( 1.7.28) given in Appendix
B).

It is important that the generating functional Z(J) should also be expressed directly in
terms of the Lagrangian of the theory,

Z(J) :/quxp{;/(L(q,q)+,]z-qi)dt}. (1.7.30)

This can be seen from the following consideration. Let us make a shift p — p(q,q) + p of
the integration variable, where p(g, ¢) is the solution of the Hamilton equation of motion (
1.3.13), i.e.

i = {¢,H} =

Opi p=P

Of course, this results from the translation invariance of the measure ( 1.7.29) and takes the
classical solution p(q, ¢) as reference curve for the quantum fluctuations p around it. If the
Hamiltonian H is build up from the Lagrangian L, which is assumed to be the case, then
such a solution always exists and is given by (see eq. ( 1.3.10))

oL
g

pi(g:9) =
Here, the identity holds
(pid" — H)|p=p = L(q,q). (1.7.31)
Therefore,

SH|p_)p+5 =5 —l—/thH,

where S;, = S[q] is the classical Lagrangian action, and

o0

1 o"H
Al == Z n? op™

n=2 P=p

Making use of ( 1.7.31), one can write:

20 =[P4 exp{;<5[q1 ¥ Jiqw} (1.7.32)

A(g) =/DpeXp (;/thH(p,q))

Formula ( 1.7.32) expresses the generating functional Z(J) of a nonsingular theory in the
form of a functional integral in configuration space. It acquires an especially simple form if

where
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the interaction does not contain derivatives of the coordinates with respect to time. In this
case, H is a quadratic form in the momenta with constant coefficients, so that A(g) is simply
a constant and we arrive at the above-mentioned form ( 1.7.30) for Z(J). Consequently, it
is obvious that the path integral over the configuration space is more restricted than the one
over the entire phase space.

The above results for theories with finite degrees of freedom can be generalized to field
theories, i.e. to the case of infinite degrees of freedom. The trajectory ¢'(t) in configuration
spaces is replaced by a field function ¢(z), where 2 = (¢,x). The Lagrangian density £ =
L(p,0u9,...) is considered as a function of the fields ¢ and their partial derivatives d,¢ =
O¢/0x+. The degrees of freedom are now labeled by the continuous index x as well as by
additional labels indicating the field components with respect to certain symmetries of the
theory; obviously, the number of degrees of freedom is infinite. The corresponding momenta
are given by 7(z) = dL/0yp(x). To define the appropriate path integral, one can start from
a multiple integral on a discrete, and to begin with, finite lattice of space-time points. This
amounts to defining the quantum field theory as a limit of a theory possessing only a finite
number of degrees of freedom. Note that a consistent definition of functional integral in
quantum field theory can be given, at least in perturbation theory, without any reference to
the limiting process [182, 80].

By analogy with the above results, we may postulate the following path integral repre-
sentation for the generating functional of Green’s function of a quantum field theory without
constraints:

- / DrDg exp {;<SH i, ] + J¢>>} (1.7.33)

where Sy, ¢] is the classical Hamiltonian action ( 1.3.12); here we have used the notation
J¢ = [dxJ(z)p(z). The corresponding functional integral over configuration space reads:

— [Doexn {5 (s1l61+ 70 (1.7.34)

Example: real scalar field

The standard field theoretic example of the above situation is the model of a real scalar field
o(z) with the action

(Dupdto —m*p*) — V() (1.7.35)

N —

] =/dw£(<p78u<p)7 L(p,0up) =

where V(@) = Ling = %903 + %@4 + ... is a potential. The Hamiltonian action is given by

(7% 4 030 Dip + m*9?) + V (), (1.7.36)

| —

Slr. 4] = / dx(np — H(m, ), H(mp) =

and, by construction, we have AH = 0. The equality of the two expressions for Z(J), the
phase space and the configuration space functional integrals, is based on the fact that the
integration over 7 is Gaussian. The explicit form for Z(.J) can be given as

20) = exp{—/di(l(SJ)}/Dcpexp{—/dx[( O+m )WMH
- exp{—h/di(iM)}exp{h/dxdy2J(x)Dc(x—y)J(y)}, (1.7.37)
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where D.(z —y) = (z|(O0 + m?2)~!y) is the free (causal) propagator. Obviously, contrary to
the Hamiltonian action eq. ( 1.7.36) the Lagrangian action eq. ( 1.7.35) is covariant. There-
fore, the latter is preferable if symmetry properties of the theory need to be formulated.

Example: Dirac field

Another standard example is the Dirac field ¢, whose Lagrangian action is given by
S[z/%i] = /deD(lbaE)a ED(#%E) = @(V}/Haﬂ - mﬁ/’ + Einta (1738)
where the coupling (e.g. to the Maxwell field) is given by

ﬁint = @7”1/}14“’ (1739)

with 1 being the spinor field, v — the Dirac matrices, and A* — the electromagnetic potential.
However, as is well known, the canonical quantization of Dirac fields is to be formulated in
terms of anticommutators instead of the commutators below. Consequently, in the path inte-
gral the classical fields 1, are anticommuting or Grassmann variables. (A short exposition
of functional integrals with Grassmann variables is given in Appendix C).

1.8 Constraints

The second possibility mentioned above is more complicated. In this case det |H;;| = 0 and
the equations ( 1.2.4), p; = OL/d¢’, are solvable with respect to ' only partially. That is,
eq.( 1.2.4) may give rise to some (linearly independent) relations involving no ¢*, which called
first stage or primary constraints; a system with constraints is called a singular system.

In addition, let us remark, that in this case the equations of motion

N\ i . oL 0%L .
Hij(¢,4)¢ = Ki(q,q) = J

d¢  0§iog !

cannot be solved uniquely. The solution of the Cauchy problem for the second order dif-
ferential equations of motion depends on arbitrary functions, thus demonstrating the gauge
freedom of the theory.

The constraints

ba(p,q) =0, a=1,..,r, (1.8.40)

are functions of ¢* and p;. They define the physical surface in the phase space of the system.
Let us consider a variation of the Hamiltonian H = p;¢* — L, i.e.

OL
oq*

§(pid' — L) = ¢'op; —

_ oL .
6q' + (pi - % ) Y (1.8.41)

If eq. ( 1.2.4) is applied, it follows from eq. ( 1.8.41) that the Hamiltonian can be expressed
in terms of ¢* and p;. Of course, this statement holds under the validity of the constraints,
Eq.( 1.8.40). Hence we should consider a generalized Hamiltonian,

H* =pi§' = L+ X ¢a = H+ \"¢q, (1.8.42)
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where the Lagrange multipliers A“ remain undetermined. The (modified) canonical equations
of motions may be formulated as

p={p,H*}, ¢={¢, H*} together with ¢“(p,q) = 0; (1.8.43)

of course, before calculating the Poisson bracket the constraints must be considered non-
vanishing. The time development of a quantity A is given by A = {A, H*}. Since the
constraints are supposed to hold for any ¢, ¢, = 0, consistency requires

{bo, H*} = {¢a, H} + V{0, 95} = 0. (1.8.44)

Part of Eqgs. ( 1.8.44) can be satisfied by an appropriate choice of A%, but the remainder may
contain new conditions, which are to be regarded as second-stage constraints. We should
therefore consider eq. ( 1.8.44) for these new constraints. Repeating this procedure up to
the L-th stage, we find no further secondary constraints, and obtain a set of independent
constraints Eq. ( 1.8.40) with a =1,..,s (r < s <n).

According to Dirac, a function f of the variables (p,q) is called a first-class function
if its commutator (the Poisson bracket) with any constraint is proportional to constraints
{f, ¢} ~ ¢. Accordingly, one introduces the notion of first-class constraints. Consequently,
any set of constraints ¢ for which the matrix || {¢, ¢} [||4=0 is nonsingular, will be referred
to as a set of second-class constraints. The number of second-class constraints is necessarily
even. This follows from the fact that a nonsingular antisymmetric matrix always has even
rank.

1.9 Second class theories

Let us first consider theories for which the antisymmetric matrix || {¢q, ¢g} || composed by
the Poisson brackets of all the constraints ¢,, is nonsingular,

Det || {¢a; 95} lllp=0 # O. (1.9.45)

In this case it is possible to solve eq. ( 1.8.44) for the Lagrangian multipliers. Then,
introducing for any functions F'(p, ¢) and G(p,q) a modification of the Poisson bracket,

{F7 G}D = {F7 G} - {Fa ¢a}{¢a7 (bﬁ}_l{(bﬁ? G}’ (1-9-46)
the so-called Dirac bracket, one represents the equations of motion in the form
p={p,H}p, ¢={q,H}p together with ¢“(p,q) =0, (1.9.47)

with the initial Hamiltonian H. The theory is quantized by using the same postulates (1) —
(4), with the Poisson bracket replaced by the Dirac bracket and, in addition, with the con-
straints required to hold (on the physical states).

This procedure can be implemented within the path integral formalism. Omitting all calcu-
lations, let us only give the final result for the generating functional of Green’s functions for
theories with second-class constraints

Z(J) = /Dqu Det'*{¢a, b3 }6(da) exp {;[SH(]D, q) + Jq]}. (1.9.48)

Here, the d-functional ensures that all the constraints (o = 1,...,s) are fulfilled, thereby
reducing the integration to the independent variables, whereas the Jacobi determinant results
from the corresponding change of variables.
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Example: massive vector field

As an example of a theory with second-class constraints, we consider the theory of a massive
vector field A*. This theory is described by the following action:

1 2
S(A) = /dm( — ZF””FW + T’;AMA“> = /dwﬁ(A#,é),,Au) (1.9.49)
where the field strenght F,, is given by
Fo =0,A4, —0,A,.

The canonical momenta are

Then for the Hamiltonian H we obtain

Lo 1o m? 2 2

Hence,
H*=H+ \P,.

Commuting the primary constraint ( 1.9.50) with the Hamiltonian H*, i.e. using the canonical
equations of motion ( 1.8.44), we find a secondary constraint

¢y = 0;P; —m2A° = 0. (1.9.52)

There are no further secondary constraints. Hence ¢ = (¢1,¢2) is the complete system of
constraints. The matrix composed by the constraints,

2
ool =( e T ) a0 (1953
is nonsingular in this case. Thus, we have a theory with second-class constraints.

Let us construct for this theory the generating functional of Green’s functions. Note that
the matrix ( 1.9.53) in this case does not depend on the fields, and therefore we need not
write the corresponding determinant in the functional integral ( 1.9.48). Then, the generating
functional has the form

7

Z = /DA”DP#cS(PO)é(aiPZ- —m2A%) exp {h

/dx(P#AM — H+ J;A)|,  (1.9.54)
where the Hamiltonian H is defined by Eq.( 1.9.51). We have introduced the sources J; only
to the fields A?, since the corresponding Green functions are sufficient to describe all physical
quantities of the theory.

Let us now perform some operations in the integral ( 1.9.54). In the Hamiltonian H, eq. (
1.9.51), we substitute the term —P;0;Ag by m?A%. This can be done, owing to the presence
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of the d-function of the secondary constraint in the integral ( 1.9.54). Furthermore, let us
introduce

5(0;P; —m?A%) = /DBeXp [— %/de(@iPi — m2A°)],
and then integrate over Py and A°. The result can be written as (being B replaced by A°):
[ Lo i 0 m? 2 L. i
Now, the integral over the momenta can be easily calculated. As a result, we obtain
2(J) = /DA exp {;(S(A) + 7,41 (1.9.55)

Here, for the sake of formal symmetry, we have introduced a source also to the field A°. From
( 1.9.55) one can observe the validity of the naive Feynman rules in perturbation calculations
of the Green functions for this model.

1.10 First class theories

We shall now consider theories for which the matrix ||[{¢, ¢}| is singular on the physical
surface,

det [{, #}lls=0 = 0, p = [¢] — rank|[{§, ¢} > O, (1.10.56)

where [¢] denotes, at any fixed space-time point z, the number of constraints ¢ (we assume
that [¢] does not depend on any z). In this case, the analysis of the classical theory is more
complicated than the one considered above. In short, the main results may be outlined as
follows [103]:

First, the theory possesses p first-class constraints. Among them, there should be p; # 0
primary first-class constraints. Second, the solution of the Hamiltonian equations of motion
essentially contains p; arbitary functions of time. In turn, the solutions of the Lagrangian
equations contain exactly p; arbitrary functions of time, equal to the number of primary
first-class constraints in the Hamiltonian formalism. Third, all the constraints {®} can be
divided into two groups, i.e.

Q= (45 ),

where ¢ are all first-class constraints and ¢ are all second-class constraints.

Of course, a quantization procedure analogous to the second class constraints does not
work for the first class ones because the Dirac bracket would not be well-defined. However, in-
troducing independent gauge functions x, as many as the number of the first class constraints,
makes a functional formulation of gauge theories possible. There is only one restriction on the
gauge functions; namely, it is necessary that the determinant of all the first-class constraints
¢ with all the gauges x shoul be non-vanishing:

Det{¢,x} # 0.
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In this case the generating functional of Green’s functions can be expressed in the form

Z(J) = /Dqu Detl/Q{go,<p}Det{x,¢}5(x)5(g0)5(¢)) exp <;[SH(p, q) + Jq]). (1.10.57)

Let us point to the formal equivalence with the quantization of second-class theories, if the
gauge functions are considered as a completion of the first-class constraints, ¢, according to
O’ = (¢, x; ¢) then we have

Det!/2{®', ®}6(@") = Det!/*{i, o} Det{x, 6}6(x)3(12)3(¢).

Example: free electromagnetic field

To give an illustrative example, we consider the theory of a free electromagnetic field A#, which
is described by the action

1
S(A) = /dm{ — 4FWFW}. (1.10.58)
From Eq.( 1.10.58) it follows that there is one primary constraint here,
o1 =Py=0. (1.10.59)

The Hamiltonians H and H™* are of the form

1 1
H = 5133 — P,0; Ay + Zka, H* = H + \P,. (1.10.60)

Commuting the constraint ( 1.10.59) with the Hamiltonian H*, we obtain
{H*,¢1} = O, P;.
Thus a second-stage constraint appears,
bo = 9;P; = 0. (1.10.61)

The commutator of the constraint ¢o with the Hamiltonian H* is equal to zero, which means
that no further constraints arise in this case. Clearly, we are dealing with a theory with
first-class constraints, since the constraints ¢, and ¢o commute with each other. Obviously,
this theory obtains from the former example in the limit m? = 0. Let us remind that P; = E;
are the components of the electric field, whereas B; = (1/2)¢;;1F ;i are the components of the
magnetic field, and that Py = 0 is a trivial constraint, whereas 0; F; = 0 is the Gauss law.

To construct the generating functional in this case, let us consider the following choice of
gauge functions:

x1 =40, x2 =04, (1.10.62)

leading to the non-covariant canonical, or radiation, gauge with Ay = 0 (temporal gauge) and
0;A; = 0 (Coulomb gauge). Notice that the matrix of the first-class constraints ¢ = (¢1, P2)
and gauge functions y = (x1, x2) has the form

ool =( g S )i



21

it does not depend either on the fields A* or on the momenta P,, and again the Jacobian is
simply a constant. Then, for the generating functional Z(J) we have

Z(J) = / DA"DPHcS(AO)5(P0)5(8iAi)5(8iPi)exp{;L / da [PHA“ -
—1P? + P0;Ag — 1F5 + JiAl} }

Next, integrating over A° and P, and then representing 9;P; in the form of a functional
integral,
5(81PZ) = /DAO exp <— ;’_L/dxAO&Pl),

Z(J) = / DA*DP;5(9;A;) exp {; / da [PiAi - %Pf — P0'Ag — %ka - Jz-Al} }

we obtain

Again, the integral over the momenta is Gaussian and can easily be calculated. As a final
result, we obtain the expression for Z in the form of a functional integral in configuration
space:

2(J) = / DA S, Ay) exp {; <S(A) + J,LA“> } (1.10.63)

where S(A) is the initial action ( 1.10.58). In the integral ( 1.10.63) we have introduced
the source Jy to the field A° for the sake of symmetry, although the corresponding Green
functions are not necessarily present in the calculation of the physical quantities.

It is useful to rewrite the integral ( 1.10.63) in the following form:

2(J) = / DAMDB exp {;_L (S(A) + By + JHA”> } (1.10.64)

by introducing an auxiliary scalar field B multiplying the gauge function x = 9;A;. Here,
owing to the d-function, we have the generating functional represented by the singular gauge.
It is often convenient to use a non-singular form of gauge in the functional integral for Green’s
functions:

Z(J) = /DA”DB exp {; (S(A) + By + %32 + J,LA“> } (1.10.65)

where « is a gauge parameter. It is interesting to observe that the same form of the generating
functional is obtained in the case of covariant gauges, as in the Feynman case. Then one has
to substitute into ( 1.10.64) the Lorentz gauge

X = 0, A", (1.10.66)
with the result

Z(J) = /DA”DB exp{%(S’(A) + BO, A" + %BQ + JNA“> } (1.10.67)

Integrating in ( 1.10.67) over the field B, we obtain the generating functional in the generalized
Feynman gauge:

Z(J) = /DA“ exp {; (S(A) — %(@LA“)Q + J#A”> } (1.10.68)
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1.11 Naive Feynman rules

The quantization of electrodynamics started in the late 1920’s, beginning from the proce-
dure of canonical quantization. Some gauges, e.g. the Lorentz gauge, could not be imposed
as operator identitis on the whole state space, but only on the subspace of physical states.
This resulted in the concept of Hilbert spaces with indefinite metric and a certain projection
operator onto the physical states — which reappeared afterwards in the case of more compli-
cated gauge theories as the BRST operator. In the mid 1940’s, the Feynman path integral
quantization of classical electrodynamics, circumvented this canonical approach, introducing
the diagrammatic rules for the computation of S—matrix elements directly in terms of the
effective action Seg. This effective action is obtained by adding an appropriate gauge part
Sg¢(A) to the action ( 1.10.58), for example, in the form

1 2
A) = =5 (9,47) 1.11.
S4(4) = = 5 (0 (1.11.69)
where « is the gauge parameter. Then the generating functional Z(J) for the quantized
electrodynamics has the form

Z(J) = /DAGXp{;;(SCﬁ'(A)‘i‘JA)}, (1.11.70)
where
Set(A) = S(A) + S,(A4). (1.11.71)

The interaction with (charged) spinor fields, e.g. electron-positron field, did not meet with
serious troubles: the generalization of the above canonical quantization method to the case of
anticommuting variables is straightforward. However, incorporating them into the path inte-
gral formalism led to intrioducing (classical) anticommuting variables (so-called Grassmann
variables), defining integrals over them, and replacing determinants in the functional integral
for Green’s functions by superdeterminats (for the reader’s convenience some properties to
be used in the rest of this review are given in Appendix B).

Until the early 1960’s the idea existed that the naive Feynman rules could be constructed
by using the functional integral over all fields of the initial theory with the action modified
by the gauge, if necessary. As has been illustrated by the specific examples, after integrating
over the momenta, the expression for the generating functional of Green’s functions, obtained
by (modified) canonical quantization, can be written in the form

20J) = /DqSexp{;(Seﬁ(qﬁ) +J¢)}7 (1.11.72)

where the set of integration fields ¢ includes both the initial fields of the theory and some
additional fields, like Nakanishi-Lautrup field, Faddeev—Popov ghost and antighost fields (see
the next chapter), meanwhile the effective action Ses is a non-degenerate functional of all
fields ¢.

It appears to be an attractive idea to construct the effective action directly from the action
S of the original classical singular (gauge) theory without having recourse to the procedure
of canonical quantization. Such an approach, referred to as Lagrangian quantization, has an
additional advantage — that the formalism can be manifestly covariant.



Chapter 2

Faddeev-Popov and BRST Quantization

2.1 Yang-Mills fields

In 1954 an important step in the theory of gauge fields was taken by C.N. Yang and R.L.
Mills [207]. They introduced the concept of non-abelian gauge fields A, and constructed the
action for these theories analogous to electrodynamics. !

A Yang-Mills field can be associated with any compact semi-simple Lie group G, i.e., a
compact group without (nontrivial) Abelian invariant subgroup. (For a short exposition of
terminology and definitions being relevant in the following, see Appendix A.) The number of
independent parameters £*,a = 1,...,n, which characterize an arbitrary element g(£) of this
group, i.e., the dimension of G, is denoted by n. Among the representations of this group and
of the corresponding Lie algebra Lie(G), there exists a distinguished representation by n x n
matrices, the regular or adjoint representation. Any element £ in the adjoint representation
M of the Lie algebra can be represented by a linear combination of the n skew-hermitian
generators T, = ad(X,), cf. Eq. ( A.0.17),

€=¢T,, with T =-T,,

and any element g € G of the Lie group is given by g(§) = exp{¢*T,}. The generators T, can
be normalized according to

tr (TaTb) = 5ab7 (211)

defining the Cartan metric of G, cf. Eq. ( A.0.18). In that case the group manifold is Euclidean
and, by convention, the group indices will be written as upper ones only. Then, the structure
constants f%°¢ of the Lie algebra may be chosen completely antisymmetric and the product
in the Lie algebra, i.e. the Lie bracket, is given by:

(T2, T = febeTe, (2.1.2)

The Yang-Mills field is given by a Lorentz vector A, (x) on Minkowski spacetime, x € My,
taking its values in Lie(G). It is convenient to consider A, (z) as a matrix in the adjoint

IThe idea of a non-abelian gauge theory with gauge group SU(2) has been formulated already by O. Klein
at a Conference in 1938 in Warsaw [138]

23
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representation of this algebra. In this case the field A, (z) is defined by its coefficients,
Au(x) = AL ()T,

with respect to the basis {T%} of the generators. The gauge transformations of the field A, (z)
are defined by the rule

Au(@) — A% (@) = g (@) Au(2)g(@) + g (2)9,9(2), (2.1.3)

where g(z) = exp (£%(x)T,) — at any value of z — is a matrix taking its values in the adjoint
representation of the group G. It is easy to see that these transformations compose a group,
which is called the group of gauge transformation or, in short, the gauge group, G =[], G,.?

It is often convenient to deal with the infinitesimal form of the gauge transformations. Let
the matrices g(x) differ infinitesimally from the unit matrix, i.e.,

g@)=1+&@)+... =1+ ()T + ...,

where £(x) belongs to the Lie algebra of the group G, and the ellipses indicate the terms
of second and higher order in the infinitesimal group parameters £*. Then the change of 4,
under that transformation will be

0Au () = 0ué(x) + [Au(x), §(x)] =: Du(A)E(x),
with the covariant derivative D,,(A) = 9, + [A,(z), .| and, in components,
5AZ _ a}ué’a + fabcAi)Lgc _ Dzbgb7 Dzb _ 6abaﬂ + faCbAfL'
One can easily check that
[D;La Du]g = [F/_wvf] with F,ul/ = auAu - aVA;L + [A,LMAU]

being the field strength tensor of the Yang-Mills field A,,. This generalizes the electromagnetic
field strengh F),, = 0,4, — 0,A,, with the electromagnetic potentials A, being the gauge
field related to the abelian group U(1). One can represent F,,, as

Fo =F%,T% where F%, =3,A% —9,A% + [ AL AL,

Notice that the tensor F,, transforms homogeneously under the gauge transformations (
2.1.3),
FJ :gilFlwga

nv

which implies that the classical action functional 3

1 1
S(A) = ~1 /dxtr (FF*) = fz/da: FL F (2.1.4)
is invariant under gauge transformations,

S(A9) = S(A).

2 A mathematical more adequate formalism uses the notion of a principle bundle P over the manifold My
whose fibres at each point € My are (identical copies of) the group G. The gauge field A, (x) defines a
connection of the cotangent bundle T* P, and the field strenght F},, () is the associated curvature. For an
introduction to that formulation of classical gauge theories, see, e.g. [159].

3Here, it should be mentioned that we already dropped the gauge coupling g of the Yang-Mills field which
usually appears in the covariant derivative and the field strenght through gf*¢ by including it into the gauge
field A,. Then the action functional should contain an additional factor 1/g? which, for simplicity, in the
following will be set equal to one.
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2.2 Orbits

By analogy with electrodynamics, one may try to quantize the theory under consideration in
the form of the Lagrangian path integral with the classical action S(A), Eq. ( 2.1.4), modified
by the gauge fixing action with some gauge parameter «,

Sef(A) = —i dx tr (8“14“)2 = —% dx (a“AZ) (8”A[‘f).

It is exactly like this that Feynman [83] analyzed in 1963 the problem of S-matrix unitarity
in Yang-Mills theories and also in Einstein gravity, thus discovering the non-unitarity of
the physical S-matrix in these theories. He also showed that the failure could be cured by
introducing so-called ‘ghost fields”. Therefore a natural question arises: How can a properly
defined functional Z(J) be constructed in configuration space for Yang-Mills theories? The
answer to this question was found in 1967 by L.D. Faddeev and V.N. Popov [79] and by B.S.
DeWitt [74].

Following the naive Feynman rules of quantization, one expects that the vacuum functional
may be expressed in the form of a functional integral over all field configurations,

i

(0]0) ~ /DA# exp { hS<A)} , (2.2.5)
where the integration measure DA, is required to be invariant under gauge transformations,
DA, = DAY,

The simplest (formal) Ansatz for the integration measure, satisfying this property, is

DA, = ] dA4().

Wya,

However, since the integration is taken over all possible configurations A,,, this implies mul-
tiple counting of physically equivalent configurations, i.e., those being equal up to a gauge
transformation.

Therefore, let us divide the configuration space of the gauge fields into equivalence classes
{A9%(z) : g(x) € G}, called orbits of the gauge group. Namely, an orbit of the group includes
all the field configuration which arise when all possible transformations g(x) of the gauge
group G are applied to a given initial field configuration A, (x). Obviously, the integrand of
the functional integral ( 2.2.5) is ill-defined — the action remains constant along any orbit
of the gauge group. Consequently, the integral is proportional to an infinite constant — the
volume IT,vol(G,) = vol(G) x My of the gauge group G.

2.3 Factoring out the volume of gauge group

Faddeev and Popov suggested a procedure of factoring out this infinite constant of the path
integral. The idea is to split the integration over the full configuration space into an inte-
gration over the equivalence classes of configurations {A‘ZL} and a further integration over the
configurations of any individual orbit. This corresponds to a change of ‘coordinates” from
{Au(z)} to {A%(z), g(x)}, i-e., to exactly one representant Af® of each orbit and the group
manifold (along the orbit).
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First, let Dg denote an invariant measure, e.g., the (continuous product of) Haar measure,
on the gauge group G,

Dg=D(gg'); Dg= Hdg
Furthermore, let us introduce a functional A[A,] as follows:

/Dg§ [A9]) (2.3.6)

Here, 0( f) represents the continuous product of the usual Dirac d-functions, [T, d(f(x)), one
corresponding to each space-time point. Concerning the functional x[A,], we assume that
the equation (with respect to g(z) € G)

x[4f] =

has exactly one solution, go, for any initial field A, = A7, e: unit of G. 4 Then, in the
configuration space {A,} the equation x[A] = 0 defines a hypersurface that intersects any
of the orbits exactly once. In other words, x[A%] = 0 defines a 'gauge’ by fixing a field A%°(z)
which represents the orbit. In general, the functional x[A4,] should be of the form x*(z, [A4,]).
In fact, to fix a gauge we need at each space-time point one equation for each group parameter
£".

Notice that A[A,] is invariant under gauge transformations. This can be demonstrated
by

AT /Dg 5x Agg /D 99") Agg /Dg 5 ]) ATHAL,

where we have used the invariance of the group measure Dg. In fact, A[A,] is a functional
on the space of orbits.

Now, our aim is to replace the integration over all field configurations by an integration
restricted to the hypersurface x[A4,] = 0. In that case each orbit would contribute with only
one field configuration, and we are left with an integration over physically distinct fields only.
This is achieved as follows. We start by inserting ( 2.3.6) into the path integral ( 2.2.5). Then
we change the order of integration, which implies

/Dg/DAH A [4,)5(x[AZ) exp {25(14)} .

An important observation is that the total expression under the integral [Dyg is, in fact,
independent of g. To demonstrate this, we use the gauge invariance of [DA,, A[A4,] and
S(A), replacing them by [DAY A[AF] and S(AY), respectively; the result,

7

[Pz 8 g dag) exo { san |

can be made manifestly g-independent by a change of notation: A7 — A,. Consequently,
the group integration [ Dg factorizes out producing an infinite constant: the volume of the
complete gauge group. We finally obtain

(/Dg) /DAH A [Au]é(x[AM})exp{;S(A)}.

4For non-abelian gauge theories this requirement cannot be fulfilled globally, i.e., there never exists a global
section of the bundle T* P which cuts every fibre only once thereby fixing one and only one representant of
each orbit [111]. However, this is not what is required for quantizing small fluctuations of the theory. It is
only necessary that the solution of Eq. ( 2.3.7) is unique in the neighbourhood of the classical extremals.
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2.4 Faddeev-Popov determinant

Next, we need to calculate A[A,]. By definition it holds 1 = fDxé(X[A-Z]). After formally
changing variables g «» x (which is possible at least if x depends linearly on A,,):

a7, = [ Dgs(xia) = [ Dx <Det5X(£jz]> 5(x[41]),
we obtain
A[A,] = Det <5X(£‘:’g‘]) . (2.4.7)

A[A,] is called the Faddeev-Popov determinant. It is the Jacobian of a ‘coordinate transfor-
mation” from x to g.

It is convenient to use the gauge invariance of A[A,] to choose A, such that it already
satisfies the gauge condition x[A,] = 0. Then in ( 2.4.7) we can take the constraint y[A%] = 0
at g = e, which simplifies practical calculations:

)

AJA,] = (Det (2.4.8)

g=e

In the vicinity of g = e we should only deal with the infinitesimal transformations: g(§) =
1+ &%T* (where £%(x) < 1). We can now rewrite ( 2.4.8) in a more explicit form, with all
relevant indices

ox“(x, [A5])

AlA,] = (Det 0

’ = DetM®(z,y).
£=0

We have to calculate the determinant of a matrix in both space-time and the group indices
M®(z,y). For the Lorentz covariant gauge

XAy = 0,A*(z) =0
we obtain
M™(w,y) = 0,D""5(x — ).

The generating functional of Green’s functions takes on the form,
a a Z a a
Z(J) = / DA, Det (8“D#b)5(8"A#) exp {h[S(A) + oA ]}. (2.4.9)

The same result ( 2.4.9) can be obtained (see, for example, [103]) by using the method of
canonical quantization (cf. Eq. ( 1.10.57) for the general expression in phase space).

2.5 Ghost and antighost fields

The standard method of dealing with the Faddeev-Popov determinant is to replace it by an
additional functional integration over auxiliary, mutually independent complex scalar fields
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C%(x) (ghost fields) and C(x) (antighost fields), which are Grassmann variables: ®

ab ~ i ~a g rabeb [ — e 7 ~a ab b
Det(@uD“ ) :/DCDCexp{ﬁC M*C } :/DCDCexp{ﬁ/dxdyC (x)M*(z,y)C (y)}

Introducing additional auxiliary fields B*(z) (Nakanishi-Lautrup fields), we can also represent
6(9,A"*) in the form of a functional integral,

5(9, A1) = / DB exp {;_LB“[)HA’“}

so that finally we obtain

J) = /’D(;Sexp {;(Seff((b) + JA¢A)}. (2.5.10)
In Eq.( 2.5.10) we have introduced the effective action,
Ser(9) = S(A) + BX" + 5 jf#c DHPC with X (x) = 9,AM(z),  (2.5.11)

and the entire set of dynamical fields in the Lagrangian formalism which constitute the so-
called extended configuration space of the Yang-Mills theory under consideration:

¢t = (A2, B, C*, C?), (2.5.12)

2.6 Faddeev-Popov action

For the sake of formal symmetry we have introduced also sources for the auxiliary fields
B, 0% C%in the integral ( 2.5.10). Furthermore, let us denote by £(¢) the Grassmann parity
and by gh(¢) the ghost number of a field ¢, which are given for the various quantities in
Yang—Mills theories as follows:

e(A}) =¢(B") =0, e(C*) =¢e(C*) = e(&*) =0, e(S) =0, (2.6.13)
gh(A}) = gh(B*) =0, gh(C") =1, (C“) =-1, gh(€*) =0, gh(S)=0. (2.6.14)

This finishes the Faddeev—Popov method to obtain an effective action, the Faddeev—Popov
action Sgp, for any Yang-Mills theory:

Sep(¢) = S(A) + B0, A" + C*9,D***C". (2.6.15)

Besides of the Lagrange multiplier field B which easily may be integrated out — leading to
the Landau gauge — the unphysical ghost and antighost fields C' and C occure. In the case
of electromagnetism these fields decouple since, because of the abelianess of the gauge group,
ie., fe¢ =0, the Faddeev—Popov determinant Detd, 0" is field independent and the ghost
field equation of motion, OC = 0, decouples from the gauge field A4,. In that case the ghost
and antighost fields also may be integrated out leading to

e = Yo

5Here, and in the following we use the convention of DeWitt [73], see also [75], where indices are assumed to
contain also the spacetime variables, if necessary, and summation over the indices then also include integration
over these continuous variables
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in the discussion of Chapter 1 the constant Faddeev-Popov determinant has been dropped!

For nonsingular gauges, like the Feynman gauge which obtains after addition of the term
(a/2)B? to Eq. ( 2.6.15), the Nakanishi-Lautrup field could be also integrated out, thus
leading to the following action

Sep(9) = S(A) — 5= (9,4"%)° + 09, DHCP. (2.6.16)

The action ( 2.6.15) or, likewise, the action ( 2.6.16) is the starting point to determine
the Feynman rules of Yang-Mills theories, in order to compute scattering amplitudes, decay
rates, and so on, for the physical field A,. Ghost and antighost fields occure in internal lines
only, but their contribution adds up such that the S-matrix comes out to be unitary.

Here, it should be remarked, that Yang-Mills theories may be quantized also by the
canonical formalism, leading to the same physical results — but manifest relativistic covariance
would be lost. There appear also no problems to include interactions with matter fields,
like Dirac or scalar fields, as is necessary in formulating Quantum Chromodynamics or the
Electroweak Standard Model (see below). — In addition, it should be mentioned that any
gauge fixing functional x[A,] works as long as it is local and linear in the fields. For the
non-covariant axial gauges, like x = n*A4,, n*: const., it is even possible to decouple the
(anti)ghost fields again — however, other complications are introduced instead.

As is well known from QED that, because of gauge symmetry, the Green’s functions, in
general, are not independent from each other. There occure relations between them which
are governed by some Ward identities, relating, e.g., the (3—point) vertex function and the
derivative of the (2-point) propagator. The same situation, but much more involved, also
occurs for nonabelian Yang—Mills theories. Furthermore, it has to be proven that after renor-
malization the quantized theory shows the same symmetries as the classical (effective) action.
Of course, the gauge invariance with respect to G is broken by the gauge fixing and ghost
terms, Sgr + Sgn, but there must be some relic of the original symmetry group G!

2.7 BRST symmetry and BRST cohomology

The next important step in the development of gauge theories was taken by C. Becchi, A.
Rouet and R. Stora [46] and also, independently, by I.V. Tyutin [195]. They discovered a
remarkable invariance of the action ( 2.6.15) under some nonlinear global supertransformations
in the extended configuration space, the so-called BRST-transformations:

oBSEp(¢) =0, (2.7.17)

with
OpAg = DEP(A)CPN,  0pC = =5 f™eCPCeA, (2.7.18)
opC® = B\, opB* =0, (2.7.19)

where A is a constant Grassmann parameter (¢(\) = 1). The first set of fields, the so-called
minimal pair, transforms nonlinear in the fields, whereas the second set of fields, the so-called
trivial pair, transforms linear. For the initial fields of the theory, A, (as well as possible matter
fields), the BRST-transformations are gauge transformations with gauge parameters £*(z) =
C*(z)A. Owing to this fact, the initial action S(A) is invariant under these transformations.
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Furthermore, the transformation rule of the ghost fields encodes the (global) symmetry group
G through their structure constants.
Let us now define an operator s acting on the fields ¢*:

opd? = (sp™)\. (2.7.20)

This operator is the generator of BRST-transformations in the Lagrangian formalism. One
can verify that it is nilpotent, i.e.,

52 =0. (2.7.21)
Indeed, 6
s’B* = 5(sB”) =
s°C% =s(sC”) = (SB“) =0,
s(3/

SQCa _ % bcCccb) fabcc«:fbdecdce _
_ 7%(facbfbde + fadbfbec + faebfbcd)cccdce _ 0,
ab
SZAZ _ (Dabe) 1Dab(fbcd0d0c) 5Ac (DCdcd)C —

1 ca a ae cd pe c ach pced ge
_ §f bdaﬂ(cdcb) +f db(aﬂcd)cb §f bfb dAp,CdC +f bf dAHCdCb
_ %(facbfbde + fadbfbec + faebfbcd)Aicdcc =0.
Here, we have used the equalities following from the Jacobi identity (cf. Eq. ( A.0.8))
fabCfcde + fadCfceb + faeCbed =0

computing (D% /6 AS)(Dg*C?) it must be observed that the sum over v implicitly contains
an integration over, say, y leading to [ dy (f**6(z — y)) D&% (y)C%(y)! In addition, we remark
that

Sut + Sgn = sU(¢)  with  WU(g) = C°9" A" (2.7.22)

holds. Because of the nilpotency of s this makes the proof of BRST invariance of Sgp quite
trivial. The same would hold for any other choice of the so-called gauge fermion ¥ of ghost
number gh(¥) = —1, also if its dependence on A would not be linear! (In Feynman gauge
the gauge fermion reads ¥(¢) = C’“(&“AZ + §B?)). Let us point also to another fact. If the
Nakanishi-Lautrup fields are integrated out from the action the BRST transformation of the
trivial pair reduces to the following single rule for the antighost C' only:

sC% = —Ix[A,]. (2.7.23)

However, then the BRST operator fails to be nilpotent when applied to C! On the other
hand, nilpotency of the BRST operator is a very essential ingredient for a consistent physical
interpretation of quantum gauge theories as will be shown now.

6Here, it should be kept in mind that the BRST operator s according to its definition, Eq. ( 2.7.20), acts
from the right, cf. [103, 108]. This has to be taken into account when its action on Grassmann odd variables
is to be considered! Warning: Some textbooks, e.g., [205, 168, 80| introduce s as (usual) left operation by
writing A in Eqgs. ( 2.7.18) and ( 2.7.19) also to the left!
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The physical content of the theory is given by the entire set of BRST-invariant functionals
®(¢) of ghost number zero, s®(¢) = 0, modulo the set of BRST-variations of any functional
U(¢) of ghost number -1, s¥(¢), which are invariant because of the nilpotence of s. Generally
speaking, physical observables as well as states are nontrivial cohomology classes of the BRST
operator. T Let us qualify this statement more explicitly.

From the BRST invariance of the FP action ( 2.6.15) it follows — as for any global symmetry
— the existence of a conserved Noether current

65
Jh= o
56

s¢p?  with 9,J4 =0,

where 8, X (¢) /564 denotes the right derivative of a functional X (¢). Its explicit form reads
“w

J]lSL — —Fal'w(ngCb) + Ba(D,uabOb) _ %fabc(auc’«a)cbcc’
= BDrCY — (9 B)C + L fe(9MCN)CPCE — 9, (FCY),  (2.7.24)

where, for the second line, the field equations of A, have been used. In general, the total
divergence does not contribute to the corresponding conserved charge, the BRST charge:

Qp = /d3ng with C%B =0.

The theory contains another conserved current JJ, the ghost current, and a conserved
charge Q¢, the ghost or FP charge, which is associated with the invariance of the FP-action
under the scale transformation

c—elce, C*— e 90,
where 6 is a constant Grassmann even parameter:
Jb = i(C*(DM*C?) — (0"C*)C*) with 0, JE =0,

Qc = / d*xJ¢  with Qe _,
dt
In exactly the same manner as the fields are supplemented with the usual charges correspond-
ing to some phase transformation, all the fields here can be supplemented with the (conserved)
ghost number gh(¢), Eq. ( 2.6.14), the eigenvalue of the ghost operator on the corresponding
field operator.
Furthermore, both currents are related:

JH = —sJl — 8, (F™ ). (2.7.25)

As is well known from Quantum Electrodynamics the full state space of the theory is
a Hilbert space V with indefinite metric: scalar photons have zero norm and longitudinal
ones may have negative norm. However, there exists a projection operator onto the physical
Hilbert space having positive definite metric [118, 52]. The same situation occurs for the
quantum states of non-abelian gauge theories which, in addition, suffer from the (virtual)

7In mathematical terms one says that ®, which is in the kernel of s, is a BRST-closed functional and that
U is a BRST-exact functional, since sV is in the image of s. This is completely analogous to the de Rham
cohomology of the (nilpotent) exteriour differential d, d?> = 0, in differential geometry where a form w of degree
p is called closed if dw = 0, and a form w is called exact if it can be written as w = dv with some form v of
degree p — 1. Because of this similarity between d and s the latter is also called an anti-derivation.
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appearance of ghost and antighost particles. In order to be able to determine the subspace of
physical states of the theory, Vpnys C V, it is necessary to study the irreducible representations
of the BRST and the FP charge in the full state space which, for the first time, has been
done by Kugo and Ojima [140]. This plays a crucial role in the formulation a unitary physical

S-matrix.
Both the BRST charge and the ghost charge, together with the fields ¢*, are to be
represented by corresponding operators. In fact, the ghost numbers are the eigenvalues of

iQc, e.g.,
[iQc,C)=C%  [iQc, €)=~ C, (2.7.26)

and the (nilpotent) BRST charge operator generates the BRST transformations of the field
operators,

s¢p? = [iQp. o)+, (2.7.27)

with the commutator and the anticommutator in the case of bosonic and fermionic fields,
respectively. Both charge operators are hermitian. They satisfy the following BRST algebra:

{Q5.Qp} = 2(Qp)*=0, (2.7.28)
[iQe, Q] = QB (2.7.29)
[Qo,Qc] = o. (2.7.30)

2.8 Physical state space

A physical state Vpnys is defined by the BRST charge
Qplp) =0,  V|p) € Vonys = ker Q5. (2.8.31)

Because of its nilpotence there exist only two types of representations of Q B, hamely, the
singlet states |s) and the doublet states (|p), |d)) being called parent (p) and daughter (d)
states:

Qpls) = 0,
Qplp)=1d) # 0,  Qpld) =0.

In addition it holds

(pld) = <¢|QBIP>=0,
(pl(@B)*|p) = 0.

Therefore, any physical state should be a singlet state modulo some daughter state,
p) = [s) +1d),

i.e., physical states are nontrivial cohomology classes of QB. In addition, genuine physical
states should have vanishing ghost number, i.e., it should hold

—

&

&
I

Qc|phys) = 0.
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States with nonvanishing ghost number occure pairwise with opposite ghost number N with
(N|—N) = 1 which also proves that states [¢))) = |[N)+A|—N), A complex, may have negative
norm (for Re \ negative). 8 In general the following state configurations are possible:

1. BRST singlet with N = 0 (genuine physical state),
2a. BRST singlet with N # 0 together with an FP conjugate d—state (unpaired singlet),
2b. FP conjugate pairs of BRST singlets with NV # 0 (singlet pair),

3. Two FP conjugate BRST doublet states with NV # 0 (quartet state).

This exhausts all the possible representations of the BRST algebra in indefinite inner product
spaces (for a comprehensive review, see [140, 158]).

2.9 AntiBRST symmetry

As it became obvious from the previous considerations ghost and antighost fields enter the
FP quantization not symmetrically — besides the fact that they could be renamed. However,
for the FP action ( 2.6.15) it was discovered by Curci and Ferrari [66] and, independently, by
Ojima [166] that in addition to BRST-symmetry there exists another global supersymmetry,
the so-called antiBRST symmetry, which also leaves the quantum Yang—Mills action invariant,
provided the gauge-fixing functional y is linear in the fields. These antiBRST-transformations
read

pAl = D(A)CPA, JpC® = 5 freChCeN, (2.9.32)
00 = (=B® + fueCPC)\, dpB* = —feCPBeA, (2.9.33)
where for the first pair of transformations C' and C are exchanged relative to Eqs. ( 2.7.18)

but for the second pair the transformations look more complicated than Eqgs. ( 2.7.19). The
antiBRST operator § acting on the fields ¢* as

opp” = (5p™)A.
satisfies, together with s, the following algebra:
s =s5455=5=0.

Later on, in Chapters 4, 5, 7 and 8, we make use of that possible extension of the formalism.

2.10 Zinn-Justin equation

The BRST symmetry of the effective action should be maintained also for the renormalized
Green’s functions of the theory. The formulation of that requirement in renormalized per-
turbation theory is not trivial since (most of) the BRST transformations are nonlinear thus
leading to serious problems in properly renormalizing products of operators being defined on
the same spacetime point. The way out has been given by Kluberg-Stern and Zuber [139] who

8The existence of pairs of states with conjugate imaginary eigenvalues iN and —iN of Q¢ is in accordance
with the indefinite metric of the state space.
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introduced (external) classical sources, later on called antifields ¢* by Batalin and Vilkovisky
[40], coupling to the nontrivial BRST transforms of the fields ¢. Therefore, instead of the FP
action ( 2.6.15) we introduce an extended action Sey

Sext (¢, ¢*) = Spp(d) + A%, DHPCP + CrB* + %c;; fabectee, (2.10.34)
with the set of antifields ¢%
¢4 = (Ahe, By, Cp, Cr) with e(¢h) = e(6?) +1,  gh(gh) = —1 — gh(¢™).

Obviously, in the present situation the introduction of the antifields B* and C* is not manda-
tory; however, for general gauge theories to be considered in the next chapter they occure
necessarily. Here, by definition, the antifields ¢* are BRST invariant sources of the BRST-
transforms of the fields ¢4:

_ §Sext
doh
Later on, in the same manner we introduce also antifields coupled to the antiBRST transforms

of the fields ¢ (cf. Chapter 4).
By construction, the extended action is invariant under the BRST-transformations

5Sext(¢7 ¢*) =0
which, equivalently, may be expressed by the Zinn-Justin equation:?

6Sext 5Sext _
3pA g%

Let us remind the reader that this equation is a shorthand notation of the following integrated
expression:

/dl‘ 6Sext 6Sext 6Sext 6Sext 6Sext 6Sext _
SAw(z) 5A% (x) | 6C(x) 6Cx(x) | 6C(z) 6Cx(z) [

ap

s¢p” s¢fy = 0.

(2.10.35)

For the first time, the property of the BRST invariance of the extended action Seyt, as well
as for the 1PI-vertex functional T, for gauge theories of Yang-Mills type in the form of Eq. (
2.10.35) was realized by J. Zinn-Justin in his lectures in 1975 [208]. Let us emphasize that
Eq. ( 2.10.35) is very general. It does not contain any information about the gauge group.
The special aspects of the theory are given only by the classical action Sy(A) and the gauge
fixing procedure a la Faddeev-Popov.

2.11 Slavnov—Taylor identity

The Zinn-Justin equation allows for a short derivation of the Ward identity of the BRST
symmetry in terms of the extended generating functional of Green’s functions Z(J, ¢*),

2007 = [ oo {1 (Suo0) 4 1407 )}

9From now on we use the convention that any derivation with respect to the fields — if not stated otherwise
— is understood as acting from the right, whereas any derivative with respect to the antifields acts — as usual
— from the left.
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with the evident property

Z(J,¢")

where Z(J) is given by Eq. (2.5.10) with an effective action written with an arbitrary (linear)
gauge function x(A). By virtue of Eq. ( 2.10.35) it follows immediatly

/‘¢&?§§§? p{'(wa¢¢>+JmM)}=o

which may be rewritten as

5Sext ] A _
oot si e {5 (Sme0) 4 100%) | =0

Taking into account the explicit form of Sext, Eq. ( 2.10.34), we obtain

6ZSext
397 094

¢*=0 = Z(‘])a

:O7

and, therefore, we have

0Sex
5¢ / ¢6¢At { < ext(¢¢)+JA¢A>}:0.
A

Supposing (as usual) that any integral over a total derivative vanishes as long as the expression
under the derivative vanishes at the boundary, [ D¢(5/5¢*) exp {%(Sext (o, ng*)—l—JA(;SA) } =
then, integrating in the last expression by parts, gives the Ward identity of BRST symmetry
in terms of the generating functional Z:
6Z(J,¢")
0%
For the generating functional of connected Green’s function, W(J, ¢*) = (h/i)In Z(J, ¢*),
the Ward identity resulting from ( 2.11.36) simply reads
IW(J, ¢*)
5%
For the generating functional of the 1PI-vertez functions being defined through the Leg-
endre transformation of W, 1° where the antifields are independent ‘spectators”,

F(¢a ¢*) = W(Ja (b*) - JAd)Av

Ja =0. (2.11.36)

Ja = 0. (2.11.37)

W(J,¢%)  0L(¢,¢") _ SW(J,¢") _ 0L(¢,¢")

A
= —J =
¢ 6Ja 5 A 5o St
the corresponding Ward identity has the form of the Zinn-Justin equation,
or 6T
= . 2.11.38
dpA oo ( )

This nonlinear identity is often refered to as the Slavnov—Taylor identity [191, 186]. It plays
a crucial role in the proof of the renormalizability of Yang-Mills type theories based on
the BRST-symmetry [208, 209]; for a comprehensive review based on the BRST-algebraic
approach, see, e.g., [168].

10Now, the functions ¢ which enter T' are classical C>°—functions like the (external) antifields ¢*.
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2.12 Renormalization

The vertex functional I' is the basic object to study renormalizability of a quantum field
theory. In general, it is a very complicated functional of the fields and antifields whose loop
expansion reads

T(6,¢") = %(6,0") + Y Tn (6, 9%), (2.12.39)

N=1

with ¥ = Sext (¢, ¢*) being the tree approximation. Proving renormalizability means to show,
order by order in perturbation theory, that the Slavnov-Taylor (ST) identity, Eq. ( 2.11.38),
together with the gauge fixing condition,

or
dBe(x)

=x"(4), (2.12.40)

and the ghost equation of motion,

or 4o or
§C(x) “5A;#(x)

=0, (2.12.41)

are satisfied; obviously, they hold in the tree approximation. The last equation shows that
I depends only on the combination A:H(I) = A% () + 0,C%(x); taking this for granted the
ghost equation of motion simply reads 6T'/§C*(x) = 0.

As long as the gauge function x depends on A, only linearly then, by applying the
quantum action principle [156, 157, 64, 141, 142], the gauge condition and the ghost equation
of motion may be proven to hold, i.e., any possible obstruction of the vertex functional can be
compensated, order by order, by adding corresponding conterterms into the vertex functional
I’ without disturbing its structure in terms of fields (and antifields). If the gauge condition
depends nonlinear on the fields one has to introduce additional sources to deal with this
situation, too.

However, also the nonlinear Slavnov-Taylor identity should not be broken by anomalous
terms. In order to formulate that condition let us introduce the following equivalent notations
for the action of the nonlinear Slavnov-Taylor operator S(-) on the vertex functional T' (cf. also
Chapter 3)

_ oF of
C0ptegn

Obviously, the ST operator has ghost number gh(S) = 1.
Absence of any obstruction means that, for any order A”, it should hold

S(D) (I, T). (2.12.42)

n

Z (Fn7 Fn—n’) =0.

n’=0

If, at order n, the ST identity would be broken by an integrated local polynomial in the fields
and antifields A(®, ®*) with gh(A) =1,

S(T) = KA+ O(h™F1),

then it has to be shown that this could be remedied by an appropriate counterterm of I". This
leads to the consideration of another cohomology problem. Namely, any possible breaking
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A has to satisfy some consistency condition. To show this let us introduce the linearized
Slavnov—Taylor operator,

or ¢ or o

= (S(ﬁﬁ@ + @5(#7 (2.12.43)
which identically obeys
BrS(T) =0. (2.12.44)
Furthermore, if the ST identity is fulfilled then Br is nilpotent, i.e.,
S(T)=0= (Br)>=0. (2.12.45)

Here, it should be mentioned that these statements are true not only for I' but also for
an arbitrary functional F'. Especially, the latter statement holds for the classical action X.
Therefore, because of ( 2.12.44), the consistency condition for A reads

BsA =0. (2.12.46)

Of course, this defines a cohomology problem for By in the sector of integrated local field
polynomials of ghost number one:

o If A = Bg A, then this cohomology is trivial and the vertex functional can be redefined
by subtracting the counterterm hA"™A;

e if however,
A=rA+BsA with rA+#BgA (2.12.47)
with nonvanishing r, then the Slavnov-Taylor identity is broken by the anomaly A,
S(T) =rh" A+ O(r™th), (2.12.48)
and the classical symmetry cannot be implemented at the quantum level.

Therefore, renormalizability means absence — or at least mutual compensation — of anomalies.

2.13 BRST quantization

The procedure described up to now extends the Faddeev-Popov-DeWitt quantization in so
far as it also works in cases where the (anti)ghost fields occure not only bilinear. Let us,
therefore, summarize the various components of that so-called BRST quantization:

e The first step consists in finding the most general classical action Seg being invariant un-
der the BRST transformations (possibly, also under further local symmetries like general
coordinate transformations as for general relativity) and allowing for a renormalizable
quantum action, i.e., the various terms of the Lagrangian should have dimensions not
exceeding the dimension of spacetime. In principle, this is equivalent of asking for the
most general classical solution (¢, ¢*) of the Zinn-Justin equation.

e The second step consists in proving absence of anomalies of the Slavnov—Taylor identity
— as well as of further Ward identities corresponding to additional symmetries — for the
renormalized vertex functional T'(¢, ¢*) thus ensuring preservation of the symmetry at
the quantum level.
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e Additionaly, the existence of a conserved, nilpotent BRST—charge operator @B and of an
(anti)ghost-free physical subspace should be proven consisting of states |phys) which are
annihilated by @B and have positive definite norm; furthermore, the S—matrix should
be proven to be unitary in that physical state space.

2.14 Further generalizations and special properties of FP
quantization

Now we give further generalization of the FP method in order to be able to investigate more
complicated gauge theories than pure Yang—Mills theories. Thereby, also we prepare the
ground for introducing the Batalin-Vilkovisky method of the next Chapter. In addition, we
give some aspects of the extended action related to the gauge fixing procedure.

(i) General conditions allowing for the application of FP quantization

At first we generalize to the case where Yang-Mills theories are coupled to some matter fields,
e.g., scalar or spinor fields. Thereby, we formulate the general conditions which should be
fulfilled in order to be able to apply the FP method. Let us start from some initial action
So(A) of the fields A® = {A%(x),¢"(z),9¥"(z),...}, with Grassmann parities e(A?) = ¢;,
being invariant under the gauge transformations (X = §X/§A?)

SA' = R (A)¢°, S(),i(A)Rg(A) =0,

where £ are arbitrary functions with Grassmann parities (%) = e,, and R? (A), e(R% (A)) =
€; + €, are generators of gauge transformations. For the Yang-Mills fields, using DeWitt’s
notation [75], the content of indices i and ais i = (z, i, a) and a = (x, a) and, correspondingly,
for the matter fields. The latter are assumed to transform homogeneously according to some
— but not necessarily the same — representation of the gauge group with group generators
(Xa)% obeying the same Lie bracket ( 2.1.2) as the generators in the adjoint representation,

e.g.,
" = (Xa)i® 09" = (Xa)ip®,
Then the algebra of the gauge generators R!, has the following form:
Rl J(A)RL(A) = (—1)%= Rl ((A)R}(A) = —RL(A)F" (2.14.49)

where F7,3 = —(—1)°**8F7g, are the structure constants — in the case of general gauge
theories, which will be considered starting with the next Chapter, they may depend upon the
fields A’. If, in addition, the generators R!, form a set of linear independent operators with
respect to {a}, then the algebra ( 2.14.49) allows for the application of the Faddeev-Popov
quantization to the theory under consideration.

Let us introduce the extended configuration space of the fields as follows:

gbA = (Ala Ba7 Caa éa)7
E(Ai) = &;, €(Ba) = €a, E(Ca) :g(ca) :€a+]_’
gh(AY) = gh(B®) =0, gh(C*) =1, gh(C*) = —1,
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where B are Nakanishi-Lautrup auxiliary fields , C* and C'® are the Faddeev-Popov ghost
and anti-ghost fields.
Let us define the total (effective) action of the theory according to the rule

Sett () = So(A) + C*Xa,i(A)R5(A)C” + xa(A)B* (2.14.50)

where xa, €(Xa) = €a, is some gauge functional lifting the degeneracy of the classical gauge
invariant action Sp(A). Then the generating functional of the Green functions can be repre-
sented in the form of a functional integral

Z(J) = /Dqﬁ exp {; (Seﬁ(¢) + JA¢A> } (2.14.51)
If, in addition, the following conditions
5 R
—1)FFP g, = (-1)5 =% = 2.14.52

are fulfilled then it is possible also to establish the gauge independence of the vacuum func-
tional Z(0) and of the S-matrix (see below). (Here and elsewhere the subscript "I" denotes
the left derivative with respect to a field.) For Yang-Mills theories considered above the rela-
tions ( 2.14.52) are valid due to the property of the antisymmetry of the structure constants
fabc.

The action ( 2.14.50) is invariant under the following BRST transformation

6BSeff(¢) = 07
with
SpA’ = RL(A)CN,  65C% = —1(—1)F F5,C7C), (2.14.53)
SpC = B\, SpB® =0, (2.14.54)

where ) is a constant Grassmann parameter (¢(A) = 1). One easily verifies the property of
nilpotency of the BRST-transformation as well as of the corresponding BRST operator.

(ii) Extended action and gauge fixing

As in the case of pure Yang-Mills theory it is useful to modify the action Seg(¢) in the
following way:

Sext (0, 6") = Sest (9) + AT RL(A)C™ = §CLF*3,CTC (=1)% + T3 B (2.14.55)

with the antifields ¢% = (A}, B, Cz, C*), &(¢%) = ea+1. By construction, that extended
action ( 2.14.55) is invariant under the BRST transformations,

0pSext (4, ¢") = 0, (2.14.56)
which, again, may be represented in the equivalent form of the Zinn-Justin equation

5Sext 6Sext _
3¢A ag%

(2.14.57)
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Egs. ( 2.14.56) and ( 2.14.57) follow from the gauge invariance of the initial action Sp(A).
Note also that one can express the BRST-transformations ( 2.14.53) and ( 2.14.54) by means
of Seyt in a unique form:

5Sext
A oo = 0.
5¢j(4 3 B¢A 0

Again as in the case of pure Yang-Mills theories one obtains the Ward identities for the
generating functionals of (connected) Green’s functions and 1PI-vertex functions in the same
manner with formally the same result.

Furthermore, using the extended action it is possible to describe the gauge fizing in a
unique way. To do this let us consider the action

Sppt =

S(¢,6") = So(A) + A; RL(A)C™ — LCLF*5,C7CP (~1)% + CLB°, (2.14.58)

i.e., replacing Seg by So(A) in Eq. ( 2.14.55) and omitting the gauge fixing and the ghost
actions. It is obvious that this action also satisfies Eq. ( 2.14.57)

85 468
— e = 2.14.
36700, ¢ (214:59)
as well as the boundary condition
S P*=0 — So(A>

The BRST-transformations are also expressed through S

08
050" = 5N 0p0n =0,
A

Now, let us introduce a functional ¥(¢), the gauge fixing fermion, by the rule

U(p) = éaXa (A).

Then the actions Seg, Eq. ( 2.14.50), and Sext, Eq. ( 2.14.55), may be expressed by S(¢, ¢*)
as follows

5 b
Sett(¢) = S(a% 9" = ;;) Sext(4) = S<¢>, " + 53) (2.14.60)

We emphasize once again that the Eq. ( 2.14.59) is of a very general form, which does
not contain explicit information about the initial gauge group. All the information about the
initial theory is contained, in fact, in the boundary condition (also including the field content).

(iii) Gauge independence of the vacuum functional

It follows from the definition of the effective action ( 2.14.50) that the functional Z(.J), Eq. (
2.14.51), depends on the gauge function x(A) or, likewise, on ¥(¢). Let us consider the
vacuum functionals of the theory Z, = Z(0) and Z, 15, corresponding to the gauges x.(A)
and x4 (A) + dxa(A), respectively. In the functional integral

Zytox = / D¢ exp {;_L <seﬁ(¢) + C¥6Xa,i(A)R5(A)CP + 6XQ(A)B(’> } (2.14.61)
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we make a change of variables being given by Eqgs. ( 2.14.53) and ( 2.14.54) with some
functional A = A(¢) instead of the constant Grassmann odd variable A. Of course, the
effective action is invariant under such a change of variables. There appear contributions
only from the integration measure, resulting in a corresponding Jacobian, and from the terms
containing dy. Restricting to first order in A(¢) and dx.(A) and rewriting the Jacobian
according to sDet M = exp(sTrM), with M4z = §(6¢*)/5p" we obtain

Zxvéx = /D¢> exp {; (Seﬁ(¢) + C%Xa,i(A)R5(A)CP + 6xa(A)B* +  (2.14.62)

, SA SA
+ihA RL(A)CY — ihg (—1)%tes Fo g, V0P 5o Hihss Ba) }

Choosing the functional A(¢) as

A= %C%XQ(A) :

it follows from ( 2.14.62) that the vacuum functional does not depend on the choice of the
gauge,

Zx+5x(0) = Zx<0) .

From this it is possible to prove gauge independence of the S—matrix [135] (see, Chapter 3).

2.15 Unitarity and admissible gauge generators

Considering the FP procedure as the method of quantization for gauge theories, one usually
says that this method can not be applied for theories with open gauge algebras (for the
corresponding definition, see below), for the case of reducible theories. But we would like
to mark that the FP-method is responsive to a choice of admissible generators of gauge
transformations (see [154]). Indeed, let us consider the theory with the action

S(.w) = [ do( 500000 — ) - V()

where @, w are real scalar fields. It is a gauge theory. Choosing the generators of gauge
transformations of fields ¢,w in the form R, = 0,R, = O+ ¢? (0p = 0, dw = (O + ¢?)¢)
and gauge as x = w = 0 we obtain the effective action

_ 1 _
S.07(6.0.C.ON) = [ da(3(000%0 — m2?) ~ V() +r+ O+ C),

where C,C are ghost fields, and ) is an auxiliary field introducing the gauge. It is obvious
that the unitarity of this theory is broken in the subspace of ¢. If one chooses for this theory
the gauge transformations in the form (0 = 0,dw = &) and uses the same gauge-fixing, then
the effective action is equal to

_ 1 _
S OO0 = [ do( 000" - m2?) V() + o+ CC).
so that the ghosts C', C and gauge field w are not dynamical, and do not give any contribution

to the dynamics of the fields ¢. Therefore, in this case the S-matrix coincides with the S-
matrix of real scalar field ( 1.7.35), and there is no unitarity problem.



Chapter 3

Batalin—Vilkovisky Method

In the middle of the 1970’s, supergravity theories were discovered [91, 70, 92]. Direct
application of the Faddeev-Popov answers ( 2.14.50), ( 2.14.51) leads in the case of these
theories to an incorrect result; namely, the violation of the physical S-matrix unitarity. The
reason lies in the structure of gauge transformations for these theories. In this case, the invari-
ance transformations for the initial action do not form a gauge group. The arising structure
coefficients may depend on the fields of the initial theory, and the gauge algebra of these
transformations may be opened by terms proportional to the equations of motion. Moreover,
attempts of covariant quantization of gauge theories with linearly-dependent generators of
gauge transformations result in the understanding of the fact that it is impossible to use the
Faddeev-Popov rules to construct a suitable quantum theory [193, 183, 121]. Therefore, the
quantization of gauge theories requires taking into account many new aspects (in comparison
with QED) such as open algebras, reducible generators and so on. It was realized how to
quantize them using different types of ghosts, antighosts, ghosts for ghosts (Nielsen, Kallosh
ghosts etc.) [76, 90, 162, 134, 163, 67, 93, 154].

A unique closed approach to the problem of covariant quantization summarized all these
attempts was proposed by Batalin and Vilkovisky [40, 41]. The Batalin-Vilkovisky (BV)
formalism gives the rules for the quantization of a general gauge theories.

3.1 General gauge theories

The starting point of the BV-method is a theory of fields A%i = 1,2,...,n, £(A%) = &
for which the initial classical action Sy(A) is assumed to have at least one stationary point
Ag = {45}

Soyi(A)le =0, (3].].)

and to be regular in the neighborhood of Ay. Equation ( 3.1.1) defines a surface X in space of
functions A°. Invariance of the action So(A) under the gauge transformations §A* = R? (A)£*
in the neighborhood of the stationary point is assumed:

Soi(ARL(A) =0, a=1,2,..,m, 0<m<n, (£ =ec,. (3.1.2)

Here £% are arbitrary functions of space-time coordinates , and R’ (A) (e(R:) = ¢; +¢,) are
generators of gauge transformations. We have also used DeWitt’s condensed notations [74],

42
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when any index includes all particular ones (space - time, index of internal group, Lorentz
index and so on). Summation over repeated indeces implies integration over continuos ones
and usual summation over discrete ones.

As an example, for the Yang-Mills theory of fields Aj,, we have

A= Aj(x),  RL(A) = DiY(A(@)d(x —y), i=(z,ma), a=(yb),

and so on.

It follows from the identities ( 3.1.2) (the Noether identities) that, first, the equations of
motion are not independent and, second, (some) propagators do not exist because the Hessian
matrix H;; = Sp;; of Sy is degenerate at any point on the stationary surface X:

So0.i(A)RY, ;(A) + Soji(A)RL(—1)%% =0 = So iRl |4, = 0.

The generators RY, are on shell zero-eigenvalue vectors of the Hessian matrix Sp;;. We
assume fulfilment of so-called regularity condition [41, 42, 43] which implys that the on-shell
degeneracy of the Hessian matrix is due to the only independent zero-eigenvalue vectors R?,.
There are two key consequences of the regularity condition:

(i) If a function F(A) of the fields A vanishes on-shell (Sp; = 0) then F must be a linear
combination of the equations of motion

F(A)|E =0= F(A) = SQJ'(A))\?:,
with some quantities A’ which may be functions of A%

(ii) Any solution to the Noether identities ( 3.1.2) is a gauge transformation, up to terms
proportional to the equations of motion

5071(14))\1 =0 )\ = R;(A))\Oé + S()J' (A)M” (A), (313)
where M" satisfies the condition

The second term R, ;, = Sp;M% in ( 3.1.3) is known as a trivial gauge transformation of the
initial action Sp(A), vanishing at the extremals of Sp(A) : R |s = 0.

Let
rankR! |x = r

be the rank of the gauge generators taken at the extremals.

If the condition 7 = m holds, then the generators R!, are linearly independent and the
theory under consideration belongs to the class of irreducible theories.

If 7 < m, then the generators R!, are linearly dependent. In that case the gauge theory
belongs to the class of reducible theories. Linear dependence of R!, implies that the matrix
R!, has at the extremals Sy ;j(A) = 0 zero-eigenvalue eigenvectors Z$ = Zg (A), such that

Ri A= S())jKZle, a1 = 1,...,m1 (314)

T o

and the number €., = 0,1 canbe found in such a way that ¢(Z3,) = €4 + €4,. Matrices Kgl
in ( 3.1.4) can be chosen to possess the property:

K = —(~1)"5 K.
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Let the rank of the matrix Zg, at the extremals be:
rankZg |s = 1.

If the condition r; = m; is satisfied, then the gauge theory is the first-stage reducible one.
In general case 71 < m1, the set Z3| is linearly dependent as itself, so that at the extremals
So,; = 0 there exists the set of zero-eigenvalue eigenvectors Z3! = ZJ1(A)

Zgl Zgzl = S07jLaj Qo = 1, .y Mo (315)

[e DR
and numbers e, = 0,1 such that £(Z5}) = €a, + €a,-
Let, in its turn:

rankZ3, s = ra.

If 7o = mo, them we deal, by the definition, with the second-stage reducible gauge theory.
In the general case the set Z{jz_l can be redundant, i.e., 7o < mgy and so on. In such a way
the sequence of reducibility equations arises:

28220 =80, L%, ag=1,...,mgs=1,.,L, (3.1.6)
where the following notations are introduced:

Zot =Ry, LijY =K, (3.1.7)
e(25:7") = €ay_y *Ea, s

rankZ5 "t =71y,

The stage L of reducibility is defined by the last value s for which r; = ms.

It should be noted here that for the given gauge theory the gauge generators R¢ as well
as the zero-eigen eigenvectors Zo ' are defined nonuniquely. Characteristic arbitrariness in
their definition can be described by the following relations:

Ry, REXJ + So,;Yy, Yol = —(-1)75Y]",
ngj*l = Zg:*ngZ + SQJEgj’lj, s=1,..,L,

where the matrices X7, Dgz are inversible.

The set of gauge generators {R%} ( 3.1.2), eigenvectors {Za:"'} ( 3.1.6) and structure
functions {La>™>"} ( 3.1.6) defines the structure of gauge algebra on the first level.

The structure of gauge algebra on the second level can be found by studying the com-
mutator of gauge transformations and some consequences from the relations ( 3.1.2) and (
3.1.6). We assume that the set {R’ (A)} is complete. Consider the commutator of two gauge

transformations [0, §2] A" = &, (82 A%) — 65(6, A") with gauge parameters €2, £5. It leads to
.61 = (Rl = (107250 R ) €065

Since this commutator is also a gauge symmetry of action we have after factoring out the
gauge parameters £{, 55 the Noether identities

So.i (RZJRZ; - (—1)%€BRg,jRg) =0.
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Therefore as a consequence of the condition of completeness, one can prove that the algebra
of generators has the following general form ([203, 42, 43]):

RY, (AVR)(A) — (—1)° R, (A)RL(A) = =R} (A)F15(4) — Soj (A)MY(4),  (3.1.8)

where F;’B(A) are structure functions depending, in general, on the fields A* with the following
properties of symmetry F;(A) = —(=1)%*Fj (A) and M};(A) satisfies the conditions
MU,(4) = —(=1)%= M (A) = —(~1)%= M, (4).

If MZVJB(A) = 0, then the theory is called a gauge theory with a closed gauge algebra.
If MJ5(A) # 0, then the gauge algebra is called open. In this case due to the symmetry
properties of M_};(A), the quantities R (A) = So,;(A)M}3(A) are symmetry (trivial)

af,triv «
generators of the initial action Sy(A), vanishing at the extremals of Sy(A):

R(i)zﬁ,triv (A) |SO,i:0 = 07

but they are not connected with an additional degeneration of Sy(A) because rank of the
Hessian matrix, describing of degeneration of initial action, is defined at the extremals Sy ; =
0.

If M;jﬁ(A) =0, and F; does not depend on the fields, the gauge transformations form
a gauge group and ( 3.1.8) reduces to ( 2.14.49) and define a Lie algebra (for details, see
Appendix A).

For irreducible theories the structure of gauge algebra on the second level is defiend by the
set of structure functions {F);} and matrices {M7;} in Eq. ( 3.1.8). For reducible theories
the existence of relations among the Z5~' ( 3.1.6) leads to the appearance of new structure
functions. Let us demonstrate this point for a first-stage reducible gauge theory. To this end
let us multiply the relation ( 3.1.8) by the eigenvector Z? . We obtain

(Rix,jR]ﬁ — (=1)" R} ;R], + RO F 5 + SO,jM;]ﬁ) Z8, =0. (3.1.9)
First, note that relations ( 3.1.4) allows us to express RZ;Zgl as a term proportional to the
equations of motion. Second, by differentiating Eqgs. ( 3.1.4) and ( 3.1.2) with respect to A
one obtains that

R%’jzgl(_l)aj(aﬁ+sal) + R%Zi’j - So,le,ljl(—l)Ej(E'ﬁE“l) + SO,lKgl,jv (3.1.10)
So,ji R, (=1)71%% + SRy, ; =0, (3.1.11)

Then multiplying Eqs. ( 3.1.10) by RY, using the Noether identities ( 3.1.2) and relations (
3.1.11), we find

()R RLZE, = (—1)Ft RYZE R) + So (R KL (—1)5% — KiJ Rl (<1)%en ),

a“ay a1,] ai,l

Returning with this result into ( 3.1.9) one can obtained the relations

Ry(=1)%2 Z[, RY, = FILZ3,) = So3Yila
where all terms proportional to the equation of motion have been collected into ngl. Taking
into account the completeness of the set of eigenvectors Zg the general solution to this
equation
(1) 2zl RI, —FP 7] =—Z] P, — So0;Q% (3.1.12)

ai,j ay“oay aja aja
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defines a new gauge-structure relation similar to Eq. ( 3.1.8). Therefore two new structure
functions P2, and Q2 arise to complete definition of the structure of gauge algebra for the
first-stage reducible theory on the second level.

To define the structure of gauge algebra on the third level one has to consider the Jacobi
identity for gauge transformations and some consequences from gauge-structure relations of
previous levels. Thus for irreducible theories one has to consider the Jacobi identity for
commutators of gauge transformations

[61, [02, 03] A + cycl.perm.(1,2,3) = 0,
and to find
(R Dl s+ So kZa56)§1£2 & + cycl.perm.(1,2,3) = 0, (3.1.13)

where we have defined

Dlgs = (=1)=(F],F§ + Fz Rj) + cycl.perm.(e, 3,9),
Ziks = (—1)8a€6(Mg’i,Fg§+MaﬁjRJ (— 1)516&3’;,ng{;+

+(—1)E’“(Ea+5i)fo,j Bé) + cycl.perm.(a, 8, 9)
with the following graded-antisymmetric properties
Dlﬁé *(*USQMDEWS =—(- 1)6“[’5D7557
Ziky = —(C1)A 2Ly = (<1 Ly = —(—1) 2y,

Because of the linear independence of the generators R and their completeness Eq.(
3.1.13) has the following solution

D] 55 = S0k Qs (3.1.14)

with the properties of graded antisymmetry

Qa,@(; = ( )sangms—_( )EQB‘SQ(M@

Eafs = Ea€pB t €aly + ERES.

Using this solution Eq. ( 3.1.13) can be presented in the form
So.k (Zékﬁé + (-1 )‘5’°(5”'57)112Z Qaﬁé) €e0es + eycl.perm.(1,2,3) = 0.

Due to the completeness of gauge generators Rf, the general solution of this equation is of
the form

Zzﬂ(; T (- )Ek(Ei""E’Y)RiQZé%J (- )EkszkQ s = SOJM;’%, (3.1.15)
where Mlﬁé obeys graded antisymmetry in i, j, k and «a, 3,9

My = ()M, = — ()M,

Mgy = (=177 My = —(=1)%7 MG,



47

For irreducible theories the functions QZZ 5 and M(Zxkﬁ% define the structure of gauge algebra
on the third level. In its turn Eq. ( 3.1.15) can be considered as a new gauge-structure
relations on this level. In case of reducible theories new structure functions arise additionaly
on the third level. Here we are going to demonstrate this fact for a first-stage reducible gauge
theory. The eigenvectors Z$' lead to modification of the solution of the Jacobi identity (
3.1.13). Instead of Eq. ( 3.1.14), we have

Dl g5+ 22, FShs = So.xQL5s (3.1.16)
and therefore the Jacobi identity can be rewritten in the form
Sou (2 + (~P A RLQUs + KIE s ) 616565 + cyelperm.(1,2,3) = 0
with K/ defined in ( 3.1.4). The general solution is

Z(iylz% + (_1)6k(€i+8~,)Ri{Ql26 _ (_l)EkEsz Zj@ﬁ + Kéélegﬁlé = So,jM(ikﬁj&. (3117)
Eq. ( 3.1.17) can be considered as a new gauge-structure relation. Functions QZJ;,&, Mé’gg
and Fgéé define for the first-stage reducible theory the structure of gauge algebra on the
third level. And so on. In general the structure of gauge algebra looks like a set of infinite
number of structure functions which define infinite number of gauge-structure relations. It is
remarkable fact that all these relations can be collected within the BV-method in a solution
of classical master equation.
The gauge theories whose generators satisfy Eq.( 3.1.8) are called general gauge theories.

Example: Yang-Mills theory

Let us consider some examples of gauge theories from the point of view of general definitions
(3.1.4), (3.1.5), ( 3.1.6), ( 3.1.8).
For Yang-Mills theory we have the set of linear independent generators R!, = Dzb and
the gauge algebra ( 3.1.8) with
ng@(A) =0, Flz= fes(z —y)o(y — 2)0(x — 2).
By definition the Yang-Mills theory belongs to the class of irreducible one with closed gauge
algebra.

Example: W3 gravity

Next example is model of W3 gravity as an example of an irreducible theory with an open
algebra and structure functions Fgﬁ dependind on fields. The classical action for W35 gravity
is [128, 199]

1,,= 1 1
So(¢, h, B) = /d%[26¢8¢ - 5h(a¢)2 — §B(6¢)3 . (3.1.18)
The fields A® = (¢, h, B) are bosonic ones defined in a two-dimensional space with coordinates,

r = (2,%), so that 9 = 0,,0 = 0.
The equations of motion read

% = —00¢ + Ohd¢ + O*¢h + (04)*0B + 2009*¢$ B,
9% _ _Liggez 0% _ _Ligus
5h 2(&/5) 5B 3(8¢) . (3.1.19)
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The action ( 3.1.18) is invariant under the gauge transformations

56 = (90)c+ (96)°)

§h = e — hde+ (0¢)*((0B)X — BON),

§B = (0B)e—2Bde+ O\ — hoX + 2(0h)\ (3.1.20)
with the bosonic parametres £ = (¢, \) and the following identification of gauge generators
R

Ry = (9¢, (99)*),

Rl = (0—ho+0h, (9¢)°((0B)— B9)),

R} = (0B-2Bo, 0-—ho+20h). (3.1.21)
The generators ( 3.1.21) are linearly independent.
Alrebra of gauge transformations ( 3.1.20) has the form
[01,00]¢ = —0¢e12) — (909)*(eN)1.2) + (99)*(N)(2.1) — 2(89)°A(12),
[01,0)h = —(0—hd+ Oh)eqr 2) — (06)*((0B) — BI)(eN)(1,2)
+(99)*((0B) — BO)(eN)2,1)
—(0¢)*[0 — hd + 30h + 200B + 40*¢B]A\(1 2),
[51, 52]3 = (8 - 2Ba)€(1 2) — ((9 ho + 23}1)(6)\)(172)
[(a¢) 0B — 48¢82¢B 2(0¢)*BOI\(1,2) (3.1.22)

where we have used the notations
€1,2) = (61862 - (861)62), (6)\)(1’2) = (618)\2 - 2(861)/\2), )\(1’2) = ()\18)\2 - (8)\1))\2)

Taking into account general structure of gauge algebra ( 3.1.8) and definitions of gauge
generators ( 3.1.21) for W3 model, it follows from ( 3.1.22) possible definitions of structure
functions Fyfy, F3, F&:

€(1,2) = Flieieo, (N (1,2) = Fleihs, (eN)(2,1) = —Fea).

or, equivalently,

Fy = 6z —y1)0:0(x —y2) — 6(z — 2)0:0(z — ),
F3 = 6(z—y1)0:0(z — y2) — 20(x — y2)00(x — y1),
Fy = —(6(x = 12)0:0(x — y1) — 26(x — y1)0u6(x — 112)).

These structure functions do not depend on fields. Then from Eq. ( 3.1.22) for [d1, J2]¢ we
can suggest the following Ansatz for the remainder

050
oh

050

5B O MIP AN

2(0¢)°M\12) = R} FgsM Ao + RYFH Ao + —2 Mgy Mo +

From ( 3.1.19) and ( 3.1.21) we can parametrize F%27F§2,M§2h,M¢B

F212>\1)‘2 = a1(8¢)2>\(12), F222)\1)\2:a2(8¢)/\(12),
M2¢2h>\1/\2 = 2/31(5¢))\(12)7 MéﬁzB/\l/\2:3ﬁ2/\(12)
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or
By = 06?80 — )00 — )~ 6o — 1)0udla - ) ).
Fyy = a(99) (5(30 —y1)0z0(x — y2) — 6(x — y2) 026 (2 — y1)>,
Mg = 261006 — ) (30— 10800 - 1) 0l - 1),3(e - 1)),
M3 = 3B5(z —y) <5(y —12)0y0(y — y1) — 8(y — y1)0y6(z — y2)> (3.1.23)
Here ay, as, 31, B2 are constant parameters which satisfy the equation
o +ag— 1 —Pa=2.
Returning with these results to the remainders in [d1, d2]h and [01,d2)B we can put that

(0¢)?[0 — hO + 30h + 20¢0B + 40°¢ BlA\(12) = (R?ng + RhF3, +

850 . he . 080
B0 M2 T 5

(06)°0B — 4066°9B — 206 BON 12y = (REFh + REFS +

5S, 5S,
+—>MEk + 5—(;

MEF ) A,

- MQB2¢))\1/\2.

Using representation for M3
MPP X As = MA(12) (3.1.24)

with some operator M, definitions ( 3.1.23) and Eq. ( 3.1.24) we find the following relations
to define explicitly the gauge algebra for the W3 gravity

08
ar=1, ay =0, B1+pP=-1, (6¢)2M = 65257; (3.1.25)
If 55 # 0 then we have a realization of the algebra with non-analitical (with respect to field
¢) matrix M2, Under requirement of analiticity (32 = 0) we find (within Ansatz suggested
) simple realization of the gauge algebra of W3 gravity with gauge generators R?, ( 3.1.21),
non-vanishing structure functions F.) 5

Fly = 6(x—1y1)0:0(x — y2) — 6(z — y2)0:0(x — y1),
F3 = 0z —11)0:0(x — y2) — 20(x — y2)00(x — 1),
Fy = (99) (5(90 —1)020(x — y2) — 0(x — y2) 0, 0(x — y1)> (3.1.26)

and non-vanishing matrices M,

Mgy = —2(06)5(z —y) (5(y —Y2)0y0(y —y1) — 0(y — y1)0y0(y — yz)) (3.1.27)
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depending on the field ¢. Namely this realization of gauge algebra has been used in [71, 198]
to construct solution to the classical master equation.

Notice in general for given set of generators {R’} gauge structure functions of higher
levels are defined non-uniquely. The best (economic) way to study this point is connected
with consideration of different solutions to the classical master equation corresponding to
boundary conditions with both fixed classical action Sy(A) and set of gauge generators { k¢, }.
Later we will discuss these peculiarities using as an example of the Wj5 gravity.

Example: Freedman-Townsend model

Let us consider the Freedman-Townsend model as an example of an reducible theory in d = 4.
The theory of a non-abelian antisymmetric field Bf,, suggested by Freedman and Townsend

[90], is described (in the first order formalism) by the action
Sa(AP. B ) = [ d* L ywoopp o o L g gvn
o(AL,BE) = [ d°z 1€ Fr,Bh, + iA“A , (3.1.28)

where A7, is a vector field with the strength F?, = 9, A} — 0, A7, + fP9" A} A} and the coupling
constant being absorbed into the structure coefficients fP?"; the Levi-Civita tensor e***7 is
normalized as €23 = 1. Eliminating the auxiliary gauge field AP through its field equations
leads to the more complicated action of the second order formalism.

The action ( 3.1.28) is invariant under the gauge transformations

AP =0, 6B, = DPIgl — DPIEt = RPY, €% (3.1.29)

where £ are arbitrary parameters, and DE? is the covariant derivative with potential Al
(DPd = 6790, + fPTIAT,).
The gauge transformations ( 3.1.29) form an abelian algebra (in Eq. ( 3.1.8) F; =

0, M;Jﬁ = 0) with the generators RIJ , possessing at the extremals of the action ( 3.1.28) the
zero-eigenvectors Zh4 = D7 (see ( 3.1.4))

550 .
=20 KU =e,,05fP, 3.1.30
5B;57 (o731 EM 5f ( )

i = (pvlia V)v Jj= (qvavﬂ)a ap =T,

T rqo T
R;ZVQZ “ = E/“’Oéﬁfp /

which, in their turn, are linearly independent. According to the accepted terminology, the
model ( 3.1.28), ( 3.1.29) and ( 3.1.30) is an abelian gauge theory of first stage reducibility.

3.2 Rules of BV quantization

The procedure of the BV-quantization for general gauge theories in question involves the
following steps.

Configuration space

The total configuration space ¢4 is introduced. For irreducible theories the space ¢* includes
the ghost and antighost fields C* and C* and the auxiliary (Nakanishi-Lautrup) fields B®

¢* = (4%, BY, €%, C%), (™) =ea, (3.2.31)
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with the following distribution of the Grassmann parity and ghost number
(A =¢;, e(BY) =e4, e(C%) =e(C%) =e4+1,
gh(A") = gh(B*) =0, gh(C*) =1, gh(C%)=—1.

We see that as in the case of Yang-Mills type theories, for irreducible gauge theories in the
BV-formalism the total configuration space is constructed by extending the fields A* with the
set of Nakanishi—Lautrup fields, ghost and antighost fields, with respect to the number of the
gauge functions {¢*}. For reducible theories the space ¢* has more complicated structure
[41] and contains main chains of the ghost C¢, antighost C'¢ and auxiliary Bg fields as
well as pyramids of the ghost for ghost C?(jL ) and auxiliary Bg‘(jl ) fields (C5° = C*, Cp° =
C* By® = B in ( 3.2.31))

$A = (Ai; B, O, 09,5 = 0,1, Ly BY, ), C% s =1, Lng = 17...75)(3.2.32)

s(ns)?

with the properties

g(AY) €4,
e(B) = (eq+s)mod2, s=0,1,..,L,
5(B?(;S)) = (q, +s)mod2,s=1,...,L, ns=1,...,s,
e(C?) = e(C*)=(eq, +s5+1)mod2,s=0,1,.... L,
E(Cs‘(sns)) = (€q,+s+1)mod2, s=1,...,L, ns=1,..,s,
gh(A") = 0,
gh(Bys) = —s, s=0,1,...,L;
gh(B?(SnS)) = s—2ns—1), s=1,...L, ns=1,...;s;
gh(C?) = —gh(C%)=(s+1),s=0,1,...,L
gh(C;l(';S)) = s+1—-2n,,s=1,...,.L, ng=1,..,s. (3.2.33)

In comparison with original proposal of Ref. [41] we have slightly (for simplicity and unifor-
mity) changed notation of auxiliary fields and pyramids of fields. In particular, 75,, = B%=.
As an example for a second-stage reducible theory the following identification for the pyramids
of fields exists:

Clal = C’il(ll)7 C2042 = C20‘(21), 02042 = 03(22)7
m* = Bf‘(ll), Ty 2 = Bg(zl), Moy = Bg‘é).

Antifields

To each field ¢* ( of the total configuration space) one introduces corresponding antifield ¢*

oy = (A;f‘, B, Ch , Cls=0,1,..L; B (3.2.34)

sas? sag s(ns)as?

;"(ns)as,s =1,..,L,ns =1, ...,s)
The statistics of ¢% is opposite to the statistics of the corresponding fields ¢*
e(dh) =ea+1
and ghost numbers of fields and corresponding antifields are connected by the rule

gh(¢4) = —1 — gh(¢™).
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Antibracket

On the space of the fields ¢* and antifields ¢ one defines an odd symplectic structure (, )
called the antibracket

oF 6G
F,G)= — — — (F & G) (=1)EWM+FDE@+D), 3.2.35
(F.G)= 5oz 53— (F = @) (1) (32:35)
The derivatives with respect to fields are understood as right ones and those with respect to
sources as left ones (see, Appendix C). One can easely verify that the following properties
of the antibracket follow from the definition ( 3.2.35)
(1) Grassmann parity

e(F,GQ)) = e(F) +¢(G) +1=¢((G, F)) (3.2.36)
(2) Generalized antisymmetry
(F,G) = —(G, F)(=1)EI+D(E@+1) (3.2.37)
(3) Leibniz rule
(F,GH) = (F,G)H + (F, H)G(—1)=(@=H), (3.2.38)
(4) Generalized Jacobi identity
((F,G), H)(—1)EE+DEETD 4 cycle(F, G, H) = 0. (3.2.39)

One can readily verify that the antibracket ( 3.2.35) is invariant under the anticanonical
transformation of variables ¢, ¢* with the generating functional X = X (¢, ¢*), e(X) = 1:

_6X(s,07) . 6X(,0")
= e P = — . (3.2.40)

dopA
This property of the odd symplectic structure ( 3.2.35) on the space of ¢, ¢* is a conterpart
to the invariance property of the even simplectic structure (the Poisson bracket) under a
canonical transformation of canonical variables (p, ¢) (for further discussions of non-trivial
relations between the Poisson bracket and the antibracket, see [18, 30]). For the first time, the
importance of anticanonical transformations ( 3.2.40) in the formulation of the BV-method
was realized in [202] (for further discussions, see [42, 153, 194, 200, 109]).

¢/A

A -operator

The nilpotent generating operator A is introduced,
6 0
oA 0y’
The operator ( 3.2.41) is not well-defined on local functionals because for any local functional S
AS ~ §(0), and one is faced with the so-called "problem of 6(0)". The usual way ’to solve’ this
problem is to use the dimensional regularization [155] when the corresponding singularity ~
4(0) is equal to zero. Quite recently, a new calculus for local variational differential operators
in local quantum field theory has been proposed by Shahverdiev, Tyutin and Voronov [179],
where 0(0) does not arise at all. We will always suppose that our all formal manipulations
with operators like A can be supported by suitable regularization scheme. Note that acting

by A on the product of two functionals F' and G can reproduce the antibracket:

A[F -G = (AF) -G+ F - (AG)(=1)*F) + (F,G)(—1)=").

A= (1)
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3.3 Quantum master equation

The quantum master equation (QME) is defined as

%(5, S) = ihAS (3.3.41)
or, equivalently,
Aexp{;S} =0, (3.3.42)
where S = S(¢, ¢*) is a bosonic functional satisfying the boundary condition
Sler=r=0 = So(A). (3.3.43)

The bosonic functional S is the basic object of the BV-quantization. Note, the classical part
(h=0) of QME ( 3.3.41) formally coinsides with the Zinn-Justin equation ( 2.14.57).

3.4 Generating functional of Green’s functions

The generating functional of Green’s functions Z(J) is defined as

20) = [ asexp{ i5.s10) + 140}
Serr(@) = S(¢, 0" =¥ /6¢). (3.4.44)

Here, ¥ = ¥(¢) is a fermionic gauge functional, and Ja (¢(Ja) = €4) are the usual external
sources to the fields ¢4.

Note [202], that the gauge-fixing procedure ( 3.4.44) in the BV-quantization can be de-
scribed in terms of anticanonical transformation of the variables ¢, ¢* ( 3.2.40) in S(¢, ¢*)
with the generating functional X

X(¢,¢") = ¢50™ + V(¢).

3.5 BRST symmetry

To discuss some features of the BV-quantization, it is convenient to rewrite the expression
for the generating functional Z(J) in the equivalent form

27) = [ avasrser - owjso)exp { 115006 + 1401}

= / dpdd*d exp {; [S(¢, ) + (% — W /5™ )N + JA¢A] } (3.5.45)

where we have introduced the auxiliary (Nakanishi-Lautrup) fields A, e(A) =4 + 1.
Note, first of all, that the integrand in ( 3.5.45) for J4 = 0 is invariant under the following

global transformations:

08

A’

It is very important to realize that the existence of this symmetry is the consequence of

the fact that the bosonic functional S satisfies the generating equation ( 3.3.41). These
transformations represent the BRST-transformations in the space of variables ¢, ¢*, .

St =Ny, 0o =p a4 =o.
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3.6 Gauge-independence of the S-matrix

The symmetry of the vacuum functional Z(0) under the BRST transformations permits es-
tablishing the independence of the S matrix from the choice of gauge in the BV-quantization.
Indeed, suppose Zy = Z(0). We shall change the gauge ¥ — ¥ + §U. In the functional
integral for Zy sy we make the change of variables, choosing for p :

i
= ——0W.
H="%
After simple algebraic calculations we find that

Zyrow = Zy. (3.6.46)

Here we need to refer to the equivalence theorem proved by Kallosh and Tyutin [135]. Accord-
ing to this theorem if one has two theories with generating functionals of Green’s functions
Z(J) and Z (J) of the form

2) = [avesn {3150+ 11071},

20) = [dves{3150) +a6* + O]}

with some functions f“(¢$) being the regular functions with respect to ¢, then one can claim
that the S-matrices for these theories coincide. Equality ( 3.6.46) means the gauge indepen-

dence of the vacuum functional within the BV-method. Due to the equivalence theorem the
same is valid for the S-matrix.

3.7 Ward identity

Now, we shall proceed with the derivation of the Ward identity, which is a consequence of
the BRST-symmetry. To do this, consider the extended generating functional of the Green
functions

20,67 = [ avexp {31506, + a6}, (3.7.47)

where

Sea:t(¢a ¢)*) = S(¢7 ¢* + 6\P/6¢) (3748)

From the above definition it follows that

Z(J,¢7)

¢*=0 = Z('])v

where Z(.J) has been defined in ( 3.7.47).
Note, first of all, that the action Sext ( 3.7.48) satisfy the QME ( 3.3.42). Indeed, the
equality holds

exp{ S0 0 p = exol[2, ALY exp { 500, )} (3.7.49
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where S(¢, ¢*) is a solution of the master equation ( 3.3.42) and ¥ = ¥(¢). Then

or 4

and the operator exp{[¥, Al].} acts as the translation operator with respect to ¢%. Note
that

[Aa [\Ijv A]+]7 =0, (3751)

and therefore
A exp { hSCXt} =0, (3.7.52)

where we have used the notation ( 3.7.48).
Taking into account that Sey satisfies the QME ( 3.3.42) and the fact that the integration
n ( 3.7.47) is performed over ¢, we have the evident relations

0 - /d¢exp{iJA¢A}Aexp{ Cxt<¢¢>)}

= (-1) 5¢A /dd)exp{ JA¢A}5¢ZA exp{;sext(¢,¢*)}~

Integrating by parts in the last integral, one finds that the theory in question satisfies the
equality

0Z
Ja
Loy
This is the Ward identity written for the extended generating functional of Green’s functions.

Introducing the generating functional of connected Green’s functions W = W(J, ¢*) (£ =
exp{(i/)W}), the identity ( 3.7.53) can be presented in the form

=0. (3.7.53)

W
3¢

Let us introduce, in a standard manner, through the Legendre transformation of W, the
generating functional of the vertex functions I' = I'(¢, ¢*)

Ja

= 0. (3.7.54)

N “ 5W or
F(¢7 ¢ ) = W(J7¢ ) - JA¢A7 (bA W = _JA~
Rewriting the Ward identity ( 3.7.54) for the generating functional of the vertex functions,
we obtain the unique form

(I,T) = 0. (3.7.55)

Sometimes it is useful to present the Ward identities ( 3.7.53), ( 3.7.54), ( 3.7.55) in an
equivalent form. To do this, let us introduce the odd nilpotent operator V:

Y 2
V= JA&Z5 VZ=0. (3.7.56)



56

Then we obtain the following representation of ( 3.7.53), ( 3.7.54)
VZ=0, VW=0.
The Ward identity for I' can be presented in the form
B(I)-T =0,
where we have used the notation B(T") for the so-called Slavnov- Taylor operator:

The operator B(T') ( 3.7.57) obeys the property of nilpotency B(I')? = 0 due to ( 3.7.55) and
can be considered as the Legendre transformation of V.

Among the issues related to the method in question, we shall consider only the problems
of gauge dependence of Green’s functions, the existence theorem for generating equation, and
renormalizability.

B(T) = =T, ") (3.7.57)

3.8 Gauge dependence of Green’s functions

It is well-known that Green’s functions in gauge theories depend on the choice of gauge
[132, 74, 161, 117, 95, 55, 151, 152, 192, 150, 14]. From the gauge-independence of the S-
matrix (see 3.6.46) it follows that the gauge dependence of Green’s functions in gauge theories
must be of a special character. To study the character of this dependence, let us consider an
infinitesimal variation of the gauge functional ¥(¢) — ¥(¢) + 0¥ (¢). Then the variation of

expq{(i/h)Sext } reads

5<exp{;Sext}> = [0P, A]; exp {;S’ext} = A ¥ exp {;Sext} (3.8.58)

because in the case, when ¥ and 6% depend on the variables ¢ only, the operator [0¥, Al
commutes with [¥, Al;.
Next, the corresponding variation of the functional Z(J, ¢*) has the form

SZ(J, %) = / do exp{ JA¢A}A5\P exp{ extw,qs)}

= (=1 5<Z5A /dfb exp{ Jag }5¢A ov eXp{;Sext(¢7 ¢*)}
. 6 N
= _;(S(Z)ZJA/dd)d\Ij eXp{h[Sext(QSa ¢*)+JA¢A:|}

Therefore

§Z = —fJA

i T *

where we have introduced the operator 5 according to

h o
U =60
w=ow (5.
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and have used the definition ( 3.7.56) In terms of the generating functional W = W(J, ¢*)
of connected Green’s functions

§Z = % 5wexp{;w},

and we have
5(60)
oy

Here, we have taken into account the Ward identity for W ( 3.7.54) and have used the notation
(0W) for vacuum expectation of the operator ¥

(6T) = 60 (‘W + “) :

W = —J4 = —V(5D). (3.8.60)

5 " idd
The variation of the generating functional of vertex functions I' = I'(¢, ¢*) obtains

o0 [(5(00)) 66 5,((0T))
5F‘5¢A< 565 60 60 )

where we have used the equality

5
0%

0
J 004

§¢B

_l’_
5 *
¢ 9

L3
B
J5¢

¢*

and also introduced the notations

(6)) = 5w <¢A + z‘h(G”)AB‘”) 7

opB
7" 5l 5F " _1\AB A
G =— | — G Gpc = 05.
(s =537 (57 ) (€% Gne = 2
We can see that, at the extremals, the functional I' does not depend on the gauge
or =0. (3.8.61)
L=0

There are other points connected with this fact. Consider the equalities

5B 5 [ oW
Ja = il
Aser,  Theer, (wB) ’

) W oW 1) oW
2 (s —0=22 4 (-1)Rd LA
6JB<“‘6¢>2> s, T U agg <6JB>

8T §({oW)) ., 00 5,((60))
T = gga s V5 sem
6T 5((07))  &i{(6V)) ST

st 0¢y opP oy

Therefore,
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The last equation has the form
5T = (T, ((§W))) = B(T) - ((§F)). (3.8.62)

We can see that the variation of the functional I" under a small change of gauge may be
expressed in the form of anticanonical transformation ( 3.2.40) of the fields and antifields
with the generating function X = X (¢, ¢*) = ¢* ¢ + ((6¥))

5((60))
S

5((00))

64 =t S =6

3.9 Gauge fixing procedure

Note that there exists a freedom in the choice of a gauge fixing procedure applied to obtain
a well-defined generating functional of Green’s functions in the BV-method. To do this, let
us consider the following vacuum functional [20]

20 = 2x = [ dods exp { 150,67 + X(0,67)}
where both boson functionals S and X satisfy the QME of the BV-scheme
AeXP{ S(¢, 0" )} =0, Aexp{ X(¢, 0" )}

In [20], it was shown that Zx = Tx/ for any X' satisfyiing the QME. Indeed, taking into
account that two solutions of the QME can be presented in the form of a maximal deformation
37, 38]

exp {;_LX’} = exp[A, ¥]4 exp {;X}

with a fermionic functional ¥, we have for an infinitesimal transformation

5(eXp {;X}) — (A U], exp {;X}

d¢d¢ exp{ }A\Il+exp{7'iX}
dgbdgzﬁ { p{ }A\I/exp{hX}Jrexp{;S}\IlAexp{;XH
= dqi)qu exp { }A\If exp { hX}

Integrating by parts twice in the last functional integral, we obtain

Zxr —Lx = /d(ﬁd(b*(AeXp{;S})\Ifexp{;X} =0.

One can also find in [97] an alternative approach to generalize gauge fixing procedure
within BV-method.

Then,

ZX’ — ZX
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3.10 Existence theorem

The question of existence of solution of Eq. ( 3.3.41) satisfying the boundary condition (
3.3.43) is principal in the construction of BV-formalism [203, 42, 43]. We restrict ourselfs to
the proof of the existence of solutions of the equation

(S,8) =0. (3.10.63)

with the boundary condition ( 3.3.43). Note that, for local S, AS is proportional to 4(0),
and, using the dimensional regularization [6(0) = 0], Eq. ( 3.3.41) becomes ( 3.10.63).
The solution of Eq. ( 3.10.63) will be sought in the special form

S(¢7 ¢*) = S((bminv (b;knm) + é: Bas + C«S(ns)oés ?(;ls)
where the minimal set of $ and ¢* is defined as

A= (AL C% s =0,1,..,L,) @i a=(A5C5 , s=0,1,..,L).  (3.10.64)

In the minimal sector ( 3.10.65), the solution Sp.in = S(dmin, ¢

" in) Will be sought in the
form of a power series of fields C“

Smin = So(A) + Y Sn, Su~ (O

with €(S,) =0, gh(S,) =0.
In what follows we consider (for simplicity) proof the existance theorem for an irreducible
theory when the minimal configuration space of fields and antifields has the form

min (Al Ca) d);knzn A~ (A;ka C;) (31065)

Let us consider the first approximation S;. The most general form of the functional S
meeting the above-mentioned requirements is

Sy = A7ALC®

where A, are some unknown matrices depending on the fields A°. Next, we require that
the functional So(A) + S; satisfies Eq. ( 3.10.63) to first order. This leads to the following
equation for A :

SoiALC™ = 0. (3.10.66)

From Eq. ( 3.10.66) it follows that A? can be identified with the generators of the gauge
transformations

AL, =R.. (3.10.67)

Suppose now that we have constructed the functional S "l where

min?

S — So(A) + ZS;“
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which satisfies ( 3.10.63) up to nth order:
(Shl.sil) =0, k=12 0. (3.10.68)

In Eq. ( 3.10.68) and hereafter ( , ); denotes the kth order in powers of fields C*. For the
(n + 1)th approximation S, 11 of Syin, we have

WSpi1 = Frpi. (3.10.69)

The operator W in Eq. ( 3.10.69) is nilpotent and is given by

5 5
W =Sy~ + AR

2 __
S "3 W2 =0. (3.10.70)

The operator W ( 3.10.70) can be considered as lower approximation in power series of fields
C® to the Slavnov-Taylor operator B(T') ( 3.7.57). The functionals F,; in Egs. ( 3.10.69)
are constructed from Sy, k < n, by the rule

Fop1= 7% (S’[ﬂ"’ S’[E">n+1 '

From Eq. ( 3.10.70) it follows that for Eq. ( 3.10.69) to be compatible it is necessary that
the relation

WE, 1 =0 (3.10.71)

holds. It is not difficult to prove that the relation ( 3.10.71) does hold. To this end one needs
to consider the identity (Syin, (Smin, Smin)) = 0 in the (n + 1)th approximation. We take
into account that by virtue of Egs.( 3.10.68) and the lowest approximation for the expression
(Smin, Smin) is (n 4+ 1)th order, which is equal to WS, 11 — F,,11. Then in the (n 4+ 1)th
approximation the identity (Smin, (Smin, Smin)) = 0 becomes

W(W5n+1 - Fn+1) =0,

and therefore the relation ( 3.10.71) holds.
Further proof of the existence theorem rests on the following lemma.
Lemma: Any regular solution of the equation

WX =0 (3.10.72)
vanishing for Sp; = ¢}, 4 = 0 has the form
X=WY

with some functional Y. In other words, cohomologies of W on space of solutions ( 3.10.72)
vanishing for Sy ; = ¢ .. 4 = 0 are trivial.

Proof: The proof is based on the possibility of reducing the operator W to the ‘standard‘
form, i.e., to that of the operators G;6/P;, where both the set of G; and P; are functionally
independent.

The reduction of the operator W to the standard form is realized in several steps. First,
from the initial variables A’ we go over, using a nonsingular change, to the variables At

’

A= A(A) - A= ANA) = (o™, %), i=(m,aq). (3.10.73)
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Here, the initial classical action does not depend on the gauge fields n® explicitly:
So(A) = So(A(4')) = S5(A) = So(%) (3.10.74)

Given this, the gauge invariance condition ( 3.1.2) becomes

So.i(A)RL(A) = S) (A )NIRL(A(A") = S, ,(A)RI(A") =0, (3.10.75)
where
’ - : SA"I(A)
1 A 1 / (] —
Ra(A)_NijJ(A(A ))a N](A)_ 6AJ

With allowance made for Eq. ( 3.10.74), the identity ( 3.10.75) can now be rewritten as
SoRA(A") = Sy, RI"(A) = 0. (3.10.76)

(03

From Eq. ( 3.10.76) we conclude that R.™(A’) can be only trivial generators for the action
So():

A = Sp AT (A), AR™ = —(~1) AL
The generators R,/(A’) can be represented in the form
R/of = (S(/),nAznv Rg)v

where R is a nondegenerate matrix.
In addition to the changes ( 3.10.73), we also make the following antifield transformations:

A = A5NTY] cr = Op(RTYE, (3.10.77)
where we have introduced the notation:
v = A (g =
As a result of the changes ( 3.10.73) and ( 3.10.77) the operator W — W',
W' = Jm% + (A5 + A;’ijZL”(R*I)g)%, T = Som (3.10.78)
m B
In the operator W’ ( 3.10.78), we make the change of variables
An = An, AT = AL+ AL T AM(RTYE, oF = o (3.10.79)
and W' — W', where
W' = T 0 o 0 (3.10.80)

say e So

The operator W is already of the ’standard’ form. We shall now construct an operator Q"
such that

W//Q// + Q//W// _ N”, (Q//)2 —0. (3_10_81)
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The solution of Eqs. ( 3.10.81) does exist. For example, for the operator Q" one can
choose

) o6
Q" = Az T +c A (3.10.82)

Then for operator N in Egs. ( 3.10.80) we deduce

// 6 * 5 * 6
‘7”7/ .,7 m 5A*// +Aa 5A*u Ca 60*” : (31083)

By direct verification, we make sure that the equalities
W//N// — N//w/l QIIN/I — N//QI/ (3 10 84)

do hold. In Egs. ( 3.10.80) - ( 3.10.84) we now make transformations inverse to ( 3.10.73), (
3.10.77) and ( 3.10.79), obtaining

WQ+QW =N, @Q*=0, WN=NW, QN =NQ, (3.10.85)
where the operator W is given by the expression ( 3.10.70) and the operators ¢ and N have
the form

1) )

0
= A} P! nLi 5, N =250
Q i J(SSOJ +Ca i 6A*7 SO ](SS +¢Amzn5¢Amln

(3.10.86)

In Egs. ( 3.10.86) we have used the notation

Pi=(N"YHi NP L = (RGN

J m='j

with the following properties
PP/ =P, LYP!=0.

Now let us consider the solution of Eq. ( 3.10.72). We shall act upon Eq. ( 3.10.72)
from the left by the operator @ ( 3.10.86) and take into account Eqs. ( 3.10.85). Then with
allowance made for the fact that on the solutions N > 0, we have

X =W(N'TX),

which proves the validity of Lemma concerning solutions of Eq. ( 3.10.72).

We now return to the solution of Egs. ( 3.10.69). Since gh(F,+1) = 1 and n > 0, it follows
that Fj,41 = 0 for So; = ¢},;,, 4 = 0, and therefore, by virtue of the Lemma, the solution of
( 3.10.71) can be represented in the form

n+1 WXn+1

Choosing S,+1 = X,+1, we find that Eq. ( 3.10.63) is already satisfied to within (n + 1)th-
order terms. Then by induction we conclude the proof of existence of solutions of Eq. (
3.10.63). Note that for S,,11 we could take the functional

Sn+1 =Xp1 + WY1 (31087)

and, as before, Eq. ( 3.10.63) would be satisfied to within terms of (n + 1)th order. On the
basis of the Lemma, it is not difficult to show, given conditions ( 3.3.43) and ( 3.10.67), that
the arbitrariness ( 3.10.87) in the choice of the (n + 1)th approximation is unique.
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Solution to CME for W3-gravity

Often for practice it is sufficient to know solutions to the classical master equation up to
second order in ghost fields C. For irreducible gauge theories one obtains

S(¢, ¢*) = So(A)+ AfR,C* — *CiFZ,aCﬁCO‘( 1)
1 * A% A g0T « eatEj * DA
+54] ASM2,CP0%(—1)* + CiB (3.10.88)

where F;’ﬁ and M;Jﬁ are the structure functions of gauge algebra on the second level ( 3.1.8).
The action for Yang-Mills type theories ( 2.14.49), (??) exactly belongs to this class (
3.10.88) of solutions to the classical master equation with M” =
Closed solution in the form ( 3.10.88) can be also constructed [129, 199, 71, 198] for
the W3 gravity ( 3.1.18) with non-trivial structure functions F; ( 3.1.26), M” (13.1.27)

(A" = (¢, h,B), C* = (c,1), B* = (u,v)):
S = So+5+ /d% [ (Dc c+ AL (04)?) + 1" (0l ¢ + 20c 1) + 2¢*h* Ol | 5] 10.89)

where the initial classical action Sy is defined in ( 3.1.18), the action S; defined by the set of
gauge generators of the model is the first order contribution to the classical master equation

/d2 (9 ¢+ (96)21) +

+h*(Dc —h Oc + Oh ¢+ (0¢)*(0B 1 — B dl)) +
+B*(B ¢ — 2B dc+ 0l — h 9l + 20h 1)), (3.10.90)

and we omitted trivial contributions of the form C* B (see ( 3.10.88)).
It was pointed out in [199] existence of arbitraryness in choosing of gauge structure func-
tions F 5, M/, for the W3 gravity. It was shown by constructing of the action

S =S+ /d2 ‘e et (1— )l L (96)2) + 1" (L c + 20¢ 1) +

+2a h* (Oh* — Oh* h)OL | — 2ah* (3B* OB + 2B 9B*)0l | +
+2(1 + a)¢*h* AL 1 d4). (3.10.91)

with the help of anticanonical transformations ( 3.2.40) in action ( 3.10.89) when generating
functional of these transformations was choosen in the form

X(¢, ¢*) = E(¢, ¢") —2ah"c" 0L,

where « is a free parameter and E(¢, ¢*) is the generating functional of identical anticanonical
transformations. The action ( 3.10.91) satisfies the classical master equation with both the
same boundary condition and the set of gauge generators { R} but it corresponds to another
set of gauge structure functions Fgg

Fli = 8@ —y1)0:0(z —y2) — d(x — y2)0:0(x — y1),
F3 = 6(z —y1)0:6(x — y2) — 26(x — y2)0:6(x — y1),

Fh = (1-a)@6) (6<x )0 — ) — 3 — y2) a3 yl>)
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and non-vanishing matrices M;J/B
Mgy = —%r+w®@ax—w(&y—wmw@—yn—6@—yn@&x—m0,
M = —aldy — 0y + (9, — 0u)h(2)]d(z — v) (6(95 —y2)0:0(x —y1) —

—&x—mﬂwu—mo,

MyB 2a[30B — 2B0,|6(x — y) <6($ —Y2)0,0(x —y1) — 0(x — y1)0,0(x — y2)>

depending on the fields ¢, h, B.

Moreover it should be definitely stressed that arbitrariness described in ( 3.10.91) and
preserved the closed form of solutions in ghost fields ¢, [ is not unique.

Making use anticanonical transformations with the generating functional X

X(¢, ¢°) = E(¢, ¢*) + 6820"h*B*(0¢) 20l I,
we obtain the action written in closed form
S=5+5 + /dzx[c*(ac c+ 0l (0¢)%) +1*(9l ¢+ 20c 1)

—632 h*B*(0¢) " 2(—00¢ + Oh 06 + 0%¢ h + (04)? OB + 206 9*¢ Bl |
—3B20*B* Ol 1+ 2(1 + B2)*h*L | O +
+12B20*h* B*(0¢) 201 1 O], (3.10.92)

and being solution to the classical master equation corresponding to realization of gauge
algebra on the second level with non-analitical gauge structure functions described in ( 3.1.23),
( 3.1.24), ( 3.1.24), ( 3.1.25). It follows from ( 3.10.92) that in the case of non-analitical
realization of gauge algebra on the second order it needs to complicate structure of gauge
algebra by adding gauge structure functions of the third level.

Solution to CME for Freedman-Townsend model

For first-stage reducible gauge theories the action up to second order in ghost fields reads

) 1
S(¢.0") = So(A)+A;R,C*+C;, (ZglC‘“ -3 350507(—1)6w>

1. 1 ..
A4 <2K§10“1(—1)51‘ + 4Mfgcﬂca(—1)€a+fj> +
+O(§1Pg1lacﬁlca(_1)€a + OgA;k alacalca( )55+5a +
+C'*Ba + C* B, (3.10.93)

where structure functions PO‘1 W ala ( 3.1.14) define the gauge algebra on the second order.
For the Freedman- Townsend model ( 3.1.28) the action constructed by the rule ( 3.10.93)

1
4 vpo
/ dz { LETEL B, + S AL AP 4
+B*PHV qucq DlquCg) + C*PNDﬁqc’f +

+§B*WB*Wg,wﬁ fPUCT 4 G BP - CiBY (3.10.94)
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gives the exact solution to the classical master equation.

3.11 BRST-invariant renormalization

Now let us consider the problem of renormalizability within of the BV formalism following
[202], where this problem was first solved (for further discussions see [204, 8, 9, 109, 12]).
It is well-known that quantum field theory contains divergences. Indeed, while the boson
functional S = S(¢, ¢*) ( 3.5.45) as well as Seypt = Sext(P, ¢*) ( 3.7.48) satisfies the master
equation ( 3.3.41) and does not contain divergences, the equation for the functional T’

exp{ (¢>¢)} / d¢’exp{;[semt(¢>+¢l¢*> 5Fg§f)¢f"]}

does contain divergences.
It will be proved that the BRST-symmetry is retained by renormalization. This means
that the renormalized action Sg and the effective action I'g satisfy the same equations

1 )
5(537 Sr) =ihASg, (I'r, I'r)=0

as the corresponding nonrenormalized quantities S (here and elsewhere we drop the index ext)
and T". Our proof is based on the standard assumption of the existence of a regularization
respecting the Ward identities. Moreover, the proof is given within the framework of loop
expansion.

Let us accordingly represent S and I' in the form

S=Y _h"Smy = So) + hSa) + O(h?),

L=+ k(D) +T) + O(?) = Sy + ALY, + T + O),
where F(fll)n F;ll)n + S(1)- The functional S() satisfies the equation
(S0, S) =0
while the S(,) satisfies the following linear equation:

Besides, I' dlzl and Fgclm denote the divergent and finite parts of the one-loop approximation
for T".
The functional FEIQJ determines the counterterms of the one-loop renormalized action Sig:

Sip =S5 —hr)
and satisfies the equation (because of ( 3.7.55))

(S T4)) = 0.
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Let us consider
1 .
5(5112, Sir) — thAS g =

1 ) 1 1 1 1 . 1
- §(S> S) —ihAS — R(S, ngiz;) + §h2(rglz‘2n Ft(ii)) + Zh2AF£im)J =

v

1 . )
e (2@5;,3}, r®) 4iar® — (Su), r;;p) )

We find that S;g satisfies the master equation
1 .
5(513, S1R) — thAS1gp = leEg + O(h3)

up to certain terms Fo

1
By = 5(Tgidy Taia) + AT = (S, Tai)

of the second order in .
Let us construct the effective action I'y g with the help of the action S;g. This functional
is finite in the one-loop approximation and satisfies the equation

1
§(F1R, T'ig) = W°Es + O(R?).
Represent I'; g in the form
Pip = S+RCG, ++0 (0, +T7,) +0(h°) =

The divergent part ngt)m of the two - loop approximation for I'1 g determines the two - loop

renormalization for Ssp
Sar = Sip — WT,,
and satisfies the equation
(S T10i,) = Ea.
Let us now consider
5 (S2n. Sam) — ihASy =
= %(5% Sig) — ihAS1R — K2 (S1m, T),,) +ikPATE, =
= (O, T%) + AT, = (S, TR) — (ST ) + O() =
= h*E3 + O(h?).
We find that Syg satisfies the master equation up to terms Fj

1 2 . 2 1
E3 = (Ft(iizﬂ F§,§w) + ZAF&,()M - (S(2)7F¢(1i2;) - (S(l)’rg,?jw)
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of the third order in A. Then the corresponding effective action I'sr generated by Sag is finite
in the two - loop approximation

1 2 3 3
Ier = S+ hfgw)n + h2rg,}m + hg(rg,()iw + Fg,])”in) + O(h4) =
= S(O) + hfgclzzz + th‘fJ)’in + hg(]‘—‘g:)c)lw + f‘g’])”in) + O(h4)

and satisfies the equation

1
5(FQR, Tor) = B3 Es + O(hY)

up to certain terms Fs3 of the third order in 7.
Applying the induction method we establish that the totally renormalized action Sgr

Sp=8->_m"T . (3.11.95)
n=1
satisfies the QME ( 3.3.41) exactly:
1
5 (SR, Sr) = ihASk, (3.11.96)

while the renormalized effective action I'g is finite in each order of A powers:
e Nmgap) S pnp(n)
Tp=S+Y T\ =50+ > BT i (3.11.97)
n=1 n=1

and satisfies the identity

(T'r, T'r)=0. (3.11.98)
Here, we have denoted by ng)l 4ip and Fi@l fin the divergent and finite parts, respectively,
of the n - loop approximation for the effective action which is finite in (n-1)th approximation
and is constructed from the action S,_1)g.

Thus, we have established the fact that the renormalized action Sk and the effective action
T'r satisfy the master equation and the Ward identity, respectively.

We have thus presented the general features of the BV-quantization, constructed, in fact,
as an explicit realization of the BRST-invariance principle and have showed how this principle
can be effectively used in solving different problems within the BV-formalism.

Of course, we did not discuss all questions related to this method. Among them we would
like to note the problem of unitarity of the S-matrix [140, 158, 183, 184, 154, 185, 105, 15],
the problem of anomalies [30, 72, 29, 17, 60, 107, 7], the quantization problem of reducible
theories [41], the cohomological aspects [122, 85, 86, 13, 16, 11, 124, 189, 190], the locality
problem [125, 106, 13, 168], gauge and global symmetries [178, 4, 5, 61, 7], the geometry of the
method [206, 175, 176, 177, 136, 137], the formulation and generalizations of the method in
genegal coordinates [36, 37, 38, 20, 186], the equivalence of the Lagrangian (BV) and Hamil-
tonian (Batalin-Fradkin-Vilkovisky [88, 39, 87, 23, 24]) quantizations [78, 115, 116, 171, 164],
the construction of quantum antibrackets [31, 32, 33], the properties of general gauge theories
with external and composite fields [148, 19, 149, 81, 82], and so on.



Chapter 4

Sp(2)-Covariant Quantization

We have already seen that there is an example of gauge theory for which the quan-
tum action is invariant not only under BRST-transformations but also under the antiBRST-
transformations [66, 166]. A natural desire arises to find a quantization method based on the
principle of BRST and antiBRST symmetry for general gauge theories. For a long time the
opinion has existed that this is possible only for gauge theories with closed algebra and with
structure coefficients independent of the fields (for example see [131, 187]).

Recently the quantization method based on the principle of BRST-antiBRST- symmetry
has been suggested for general gauge theories [25, 26, 27] (for alternative approaches see
[127, 68, 69, 51, 190]).

4.1 Configuration space

To construct the Sp(2)-quantization for general gauge theory described by the initial classical
action Sp(A) of fields A?, it is necessary to introduce the total configuration space ¢*, which
coinsides, in fact, with the total configuration space in the BV formalism ( 3.2.32), but there
is difference in arrangement of the ghost and antighost fields:

¢t = (A7, Blavas gelaoas g — 0 L:a; =1,2),  e(¢?) =ea. (4.1.1)

Auxiliary fields B*1%1"% and ghost fields C®l%@ are symmetric Sp(2) tensors of corre-
sponding ranks. The following values of the Grassmann parity are ascribed to these fields:

E(Ba‘al"'(ls) Ca, + s (mod?),
((CO ) =z, s+ 1 (mod2), s =0, L

together with the following values of the ghost number:

S

gh(B®) =0, gh(B* %) =Y "(3 - 2ay),
s/'=1

S

gh(C®1oo %) = 3 (3 — 2a,).

s'=0

To each field ¢ of the total configuration space one introduces three sets of antifields
O €(@%,) = €a+ 1 and ¢4,e(ps) = ca. We know the meaning of antifields in the

68
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BV-approach. They are sources of BRST transformations. In the extended BRST alge-
bra, there are three kinds of transformations; namely, BRST-transformations, antiBRST-
transformations and mixed transformations. The antifields ¢, form Sp(2) doublets with re-
spect to the index a and can be treated as sources of BRST- and antiBRST-transformations,
while ¢4 are sources of combined transformation.

4.2 Extended antibrackets

a

On the space of fields ¢ and antifields ¢*, one defines odd symplectic structures ( , )¢,
called the extended antibrackets

_ SF 4G
T oA 6o,
As usually the derivatives with respect to fields are understood as acting from the right and

those with respect to antifields, as acting from the left.
The extended antibrackets ( 4.2.2) have the following properties:

e(F,G)*) =¢e(F)+e(Q) + 1,

(F,G)* — (F & @) (—1)EW+DEG+D), (4.2.2)

(F,G)* = —(G, F)*(—1)EE+DE@+)
(F,GH)* = (F,G)"H + (F, H)*G(—1)*(@<"),
((F, G){a’H)b}(,l)(s(F)H)(e(H)H) + cycl.perm.(F, G, H) = 0, (4.2.3)

where curly brackets denote symmetrization with respect to the indices a,b of the Sp(2)
group:

Alapbt = gapb | Bb ge,

The last relations in ( 4.2.3) are the graded Jacobi identities for the extended antibrackets.
In particular, for any bosonic functional S, €(S) = 0, one can establish that

((S,9){e, 8)% = 0.

4.3 Operators V¢, A“

In addition the operators V¢, A% are introduced

)
Ve = g% g, —, 4.3.4
™ Oy 5 (4.3.4)
)
A = (1) ——— 4.3.5
where £ is the antisymmetric tensor for raising and lowering Sp(2)-indeces
gab — _(‘,_:ba7 612 -1 Eab = _Eab'

It can be readily established that the algebra of the operators ( 4.3.4), ( 4.3.5) has the
form
AfeAlY =,
Aleyt g yleaty — .
vieytt — . (4.3.6)
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The action of the operators A% ( 4.3.5) on a product of functionals F' and G gives
AYF-G) = (AF) -G+ F - (AG) (1)) 4+ (F, G)2(—1)=F) (4.3.7)

while the action of the operators V* ( 4.3.4) upon the extended antibrackets is given by the
relations

VYF,G)Y = (VOF, G)b — (-1)*F)(Fveg)’ —

gab (OF 0G _ 0G OF _ jyemye@rn)) |
664 6ha I bpa

Therefore only the symmetrized form of V¢ acting on the extended antibracket observes the
Leibniz rule

VieE )Y = (vier G)Y — (—1)2F) (R vieg)bh (4.3.8)

For any bosonic functional S we have
1
5v{a(s, 9% = (viag, §)bh.
It is advantageous to introduce an operator A®
~ i
A% = A® _ye
+ h
with the properties

Ate AP = 0. (4.3.9)

4.4 Extended quantum master equations

For a boson functional S = S(¢, $*, ¢), we introduce extended quantum master equations

1

5(5, S)*+ VS =ihA®S (4.4.10)
with the boundary condition

S = So(A), (4.4.11)

¢*=h=h=0

where Sp(A) is the initial classical action. An equation similar to the extended action arises
in the Yang - Mills theory invariant under the BRST - anti BRST symmetry. Indeed, let s,
S be the generators of BRST - antiBRST transformations in the Yang - Mills theory. The
algebra of the operators has the form

s? =5 =s5+3=0. (4.4.12)
Let S(¢) be an action invariant under the BRST and antiBRST transformations

sS(¢) =0, 55(¢)=0
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Consider the extended action Sy = Sert(0, 0%, @)
Seat = S(¢) + ¢, 50" + ¢74,50" + Passo™.
In terms of S, the property of invariance of S(¢) has the form
$S(¢) = Sear — 971,550 =0, 3S(¢) =3Sest — @7y, 550" =0

or, equivalently,

6Semt A * 5Semt 6Sewt 5Sezt * 6Sewt

s + — =0, — +Pa,—— =0,
ARy 568 365, 4 G0
5Sext — A 5Sext 5Sezt 5Semt 55612&

spf — ¢, —<t —, — ¢t =t — . 4.4.13
561 T 508 50n, M oo (4419)

We have exactly the Lh.s. of the extended quantum master equations.

The generating equation for the bosonic functional S is a set of two equations. It should
be verified that these equations are compatible. The simplest way to establish this fact is to
rewrite the extended master equations in an equivalent form of linear differential equations

A% exp {;LS} =0. (4.4.14)

Due to the properties of the operators A® ( 4.3.9), we immediately establish the compatibility
of the equations.

4.5 Gauge fixing

The action S is gauge-degenerate. To lift the degeneracy, we should introduce a gauge. We
denote the action modified by gauge as Se,¢ = Sert (6, ¢*, ¢). The gauge should be introduced
S0 as, first, to lift the generacy in ¢ and, second, to retain the extended master equation, which
provides the invariance properties of the theory for Se;;. To meet these conditions, the gauge
is introduced as

exp {;Sm} — exp {fihTA(F)} exp {;s} (4.5.15)

where I' = F'(¢) is a bosonic functional fixing a gauge in the theory. The explicit form of the
operator T'(F) is

o 6F § ih & F 4§

T(F)= — — + —¢, . 4.5.16
)= 567 50 27553, 507007 o, 10

Due to the properties of the operators A%, it is not difficult to check the equality
A% exp {—th(F)} = exp {—th(F)} A°. (4.5.17)

Therefore, the action S.,; satisfies the extended master equations

A exp {;Sm} = 0. (4.5.18)
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4.6 Generating functional of Green’s functions

We next define the generating functional Z(J) of Green’s functions by the rule

2(1) = [ dvep {;[seﬁw) n JAqu}} , (46.19)
where

Seﬁ = Sewt(¢7 ¢*a d;)

It can be represented in the form

o —d—0- (4.6.20)

Z(J) = /d¢ do* do dX dn® exp {;_L (S(¢, ¢*,6) + Pl +

- oF 1 6°F
_ M Zg mAe Bb A 4.6.21
+<¢"“ 6¢A> 2" SarsgnT Ay (462
where we have introduced a set of auxiliary fields 7%, \4

() =ex+1, e\ =¢a.

4.7 Extended BRST symmetry

An important property of the integrand for J4 = 0 is its invariance under the following global
transformations (which, for its part , is a consequence of the extended master equation for
Sewt)

. oS - o .
5" =g, ¢, = Hagoa 09a=¢ *pa b,
571_140. = 7€abAA’u,b7 5AA = 0’ (4.7.22)

where i, is an Sp(2) doublet of constant anticommuting Grassmann parameters. These
transformations realize the extended BRST transformations in the space of the variables ¢,
¢*, ¢, m and .

4.8 Gauge independence of vacuum functional

The existence of these transformations enables one to establish the independence of the vac-
uum functional from the choice of gauge. Indeed, suppose Zr = Z(0). We shall change the
gauge F' — F + AF. In the functional integral for Zp,Ar we make the above-mentioned
change of variables with the parameters chosen as

N
Ma—zhgab6¢Aﬂ .

(4.8.23)

Then we find
Zp = Zpiar (4.8.24)

and therefore the S-matrix is gauge-independent.
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4.9 Ward identities

Let us now derive the Ward identities, which follow from the fact that the boson functional

S(o, ¢*, ¢) satisfies the extended master equations. To do this, we introduce the extended
generating functional of Green’s functions

* i *
Z(J, d) ,QS) = /d¢ exp {h[Sext(aﬁ, Qsa, (b) + JA¢A]} . (4925)
From this definition it follows that
Z(J, 0", 0)|gr—g—0 = Z(J) (4.9.26)
where Z(.J) has been introduced above (294), (296).

We have,
/d¢ exXp {;JA¢A} A® exp {;Sezt(gba ¢*7 (;_5)} =0.

Integrating by parts, under the assumption that the integrated expression vanishes, we can
write this equality as

G'Z(J,¢",¢) =0, (4.9.27)

where

o = <JA —~ gabgzsgb(m‘;), ol =o. (4.9.28)

0¢%hq

Eqgs. ( 4.9.27) are the Ward identities for the generating functional of Green’s functions. For

the generating functional W(J, ¢*, ¢) of connected Green’s functions we have
BW(I, 6%, 6) =0, (4.9.20)

Finally, for the generating functional of vertex functions
E * L (SW
D(¢,0", ) = W(J.¢",9) — Jag”, ¢" = —
0Ja
we obtain the Ward idntities

1

@D+ VT =0 (4.9.30)

in the form of the classical part of the extended quantum master equations.

4.10 Extended BRST invariant renormalizability

In the same manner as in the case of gauge theories considered in the BV-method, here also
one can prove the preservation of the extended BRST-symmetry under renormalization within
the usual assumptions on perturbation theory as well as on a regularization respecting the
Ward identities [27]. If

1 1
5(S:S)" + VS = ihA"S, S(D.D)*+ VT =0 (4.10.31)
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then
1 1
5(53, SR)a + V4Sgr = ihA®Sg, 5(1—‘1%1—‘3)@ + VT g =0. (41032)

We shall consider two questions concerning the method of extended BRST quantization;
namely, the physical unitarity [146], the gauge dependence of the generating functional of
Green’s functions [143, 149] and the explicit solutions for irreducible closed gauge theories
[25].

4.11 Physical unitarity

One of the most important issues of the Lagrangian quantization of gauge theories is the
unitarity problem. This long-standing problem was first explicitly formulated by Feynman
[83]. For the Yang—Mills type theories, it was efficiently analyzed in Ref. [140] by Kugo and
Ojima in the framework of a formalism discovered by them and based on the study of the
physical subspace Vphys of the total state vector space V with indefinite inner product < | >
(note that vector spaces having indefinite inner product are also commonly referred to as
vector spaces with indefinite metric).

The subspace Vpnys = {|phys >} is specified by the operator OBrsT (QLRST = QBRST)

Qgrst|phys >=0 (4.11.33)

being the generator of the BRST symmetry transformations and possessing an important
nilpotency property

Q3 rst = 0. (4.11.34)

In the Yang—Mills type theories, the nilpotency of the operator QBRST follows immediately
from the nilpotency of the BRST transformations.

Even though in arbitrary gauge theories the algebra of the BRST transformations is
generally open (off-shell), one can still prove (on the assumption of the absence of anomalies)
that within such theories, for the corresponding operator Qprs the nilpotency property holds
[154]. Thus, one can assume that the Noether charge operator QBRST in the BV quantization
scheme satisfies Eq. ( 4.11.34) and that the Kugo—Ojima formalism, discovered for the Yang—
Mills type theories, applies to the analysis of the unitarity problem for general gauge theories
(see also Ref. [105]).

In discussing the property ( 4.11.34), it is important to bear in mind that the widespread
opinion that the nilpotency of the operator QrrsT guarantees the unitarity of a theory (see,
for example, Ref. [63]) proves to be incorrect [154], and that a more accurate examination
of physicality conditions fulfillment ensuring the unitarity of a theory is then required. To
this end, we shall now recall the main results of analysis of the unitarity problem within the
framework of the formalism proposed by Kugo and Ojima.

In Ref. [140] it was shown that if a theory satisfies the following conditions (physicality
criteria) for the Hamiltonian H and the physical subspace Vphys in the total state vector space
V with indefinite inner product < | >

(i) hermiticity of the Hamiltonian H = H' (or (pseudo-)unitarity of the total
S-matrix STS = SST = 1),
(ii) invariance of Vpnys under the time development
(or Svphys = Silvphys = Vphys) (PhC)



75

(iii) positive semi-definiteness of inner product < | > in
Vnys (Vphys 2 [¢ > < 9[yp >2>0),

then the physical S-matrix Spnys is consistently defined in a Hilbert space Hpnys equipped
with positive definite inner product (the probabilistic interpretation of the quantum theory
thus secured). Namely, Hphys can be identified with a (completed) quotient space

Vonys/Vo 2 [® >, |® >=[® > +Vy, |® >€ Vonys
of Vpnys with respect to the zero-norm subspace Vg
Vo = {|X >€ Vphys < X|X >= 0}7 Vphys 4 VO;

where positive definite inner product in Vpnys/Vo is defined by < DU >=< ®|¥ >. Given
this, for the physical S-matrix in Hppys

Hynys = Vohys/Vo, Sphys|® >= S|® >
the unitarity property holds

T — T
Sphyssphys - PhySSphys =1

In this connection, note first of all that the subsidiary condition ( 4.11.33) ensures, on the
assumption of hermiticity of the Hamiltonian, the fulfillment of the condition (PhC), (ii)
of invariance of Vppys under the time development ( ;ifﬁys = Vo). In [140], the analysis
of the condition (PhC), (iii) for an arbitrary theory ( 4.11.34) was based on the study of
represeptation of the algebra of the operator QBRST and the ghost charge operator iQC
([Qe, H] = 0) . )
[iQc, @BRsT] = BRST

(the other commutators trivially vanish) in the one-particle subspace of the total Fock space
V.

The one-particle subspace of the theory generally consists of the so-called BRST-singlets
and quartets [140]. By definition, the BRST-singlets are introduced as state vectors |k, N >
(ch|k;, N >= NJ|k, N >) from the physical subspace V,nys which cannot be represented in
the form |k, N >= QBRST|* > for any state |« >. Here, k stands for all the quantum numbers
(except the ghost one) which specify the state. At that, the BRST-singlets that belong to
the subspace of positive-definite norm (which implies N = 0) are called genuine ones and
identified with physical states. (In this connection, note that the condition N = 0 alone
does not provide in a general case the poisitive-defineteness of the subspace of BRST-singlet
states [186, 80].) Meanwhile, all BRST-singlets with N # 0 possess zero norm and form pairs
(|k,—N >, |k, N >) with non-vanishing inner product

<k,—Nl|k,N >=1.

It should be pointed out that the presence of singlet pairs neccesarily leads to negative norm
states in the physical subspace [140]. Finally, the states (|k, N >, |[k,—N >, |k, N +1 >,
|k, —(N + 1) >) such that

k,N +1>= Qprstlk, N >, |k, —N >= Qprsrlk, —(N +1) >,

<k, —(N+ 1)k, N+1>=<k,~NkN >=1
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form a quartet. The states complexes just described (i.e. the BRST-singlets and quartets)
obviously form representations of the algebra of operators QBRST, iQC, while the one-particle
subspace is representable as a direct sum of these subspaces [165] (different complexes being
orthogonal to one another).

The study of Ref. [140] discovered a general mechanism, called the quartet one, by virtue
of which (provided that BRST-singlets in the theory are all genuine ones) any state that
belongs to the physical subspace Vpnys of the total Fock space and contains quartet particles
has vanishing norm.

Thus, the requirement [140] that all BRST-singlets of the theory possess positive-definite
norm (and, consequently, that singlet pairs be absent), providing the positive semi-definiteness
(1.3), (iii) of inner product < | > in Vpnys, is a condition of the physical S-matrix unitarity
in the Hilbert space Hpnys = Vphys/Vo-

Algebra of quantum extended BRST transformations

Here we shall discuss the algebraic properties of extended BRST symmetry transformations
and prove the existence of operators required for the unitarity conditions analysis. To this
end we now bring to mind the key points of this method.

Note first of all that the quantization involves introducing a complete set of fields ¢ and
the set of the corresponding antifields ¢%, (a=1, 2), ¢4 (the doublets of antifields ¢*, play
the role of sources of the BRST and antiBRST transformations while the antifields ¢ 4 are the
sources of the mixed BRST and antiBRST transformations). The specific structure of config-
uration space of the fields ¢ (including the initial classical fields, the ghosts, the antighosts
and the Lagrangian multipliers) is determined by the properties of original classical theory,
i.e. by the linear dependence (reducible theories) or independence (irreducible theories) of
generators of gauge transformations. Namely, the studies of Refs. [25, 26] have shown that
the fields ¢* form components of irreducible completely symmetric Sp(2)-tensors.

The scheme developed in [25, 26, 27] explicitly possesses the extended BRST symmetry
which, in terms of the generating functional of vertex functions T' = I'(¢, ¢¥, ¢) (extended
effective action), implies the following Ward identities

1
i(I‘, D*+ver =o. (4.11.35)
The study of [27] proved the fact that the renormalized extended effective action satisfies the
identities of the same form. In particular, Eq. ( 4.11.35), considered at ¢%, = ¢4 = 0, results
in the invariance of the effective action I' = I'(¢)

r=r

$5=¢=0 (4.11.36)

of the fields ¢ under the following transformations

T
007,

St fas (4.11.37)

¢5=¢=0

where p, is an Sp(2)-doublet of constant anticommuting infinitesimal parameters (we shall
refer to Eq. ( 4.11.37) as quantum extended BRST symmetry transformations). Namely,

AN _ _eabgs T
5¢A 6¢T4a Mo = —€ Ab

oT = —
¢3=¢=0 004

e = 0. (4.11.38)
br=¢=0
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By virtue of Eq. ( 4.11.35), one readily finds that the algebra of the symmetry transformations
(4.11.37), ( 4.11.38) is open off-shell

S1yd@2¢? — d@dne’ =
a 2
(L1 o0 82T

— 1) {alt 4.11.39
06% 007,00%a |, _;_, (1){ak(2)b} ( )

a

(here, the symbol { } denotes the symmetrization with respect to the Sp(2) indices: A{**} =
Aab +Aba)_

In this connection, note that the study of Ref. [154] investigated the properties of the
symmetry transformations d, which form an open algebra

8a(0p4") — 65(0ad") = f156,4" + Al (4.11.40)

within the Lagrangian formulation of an arbitrary non-degenerate theory. Here, ¢* are config-
uration space variables, fgﬂ are some structure coefficients (depending generally on ¢') and
Agﬁ are some functions vanishing on-shell. In Ref. [154] it was shown, on the assumption
of the absence of anomalies, that within the quantum theory constructed in accordance with
the Dirac procedure, the following relations hold

[Qa: HI =0, [Qa, Qs] = f15Q~, (4.11.41)

where H is the Hamiltonian operator and Q, are the Noether charge operators generating,
on the quantum level, the symmetry transformations d,,.

The comparison of Eq. ( 4.11.39) with Eqs. ( 4.11.40), ( 4.11.41) yields the algebra of
the operators of Hamiltonian H and Noether charges Q(l) = Q’m(l)a, Q(Q) = Q“,u(g)a corre-
sponding to the transformations ¢y, o2y ( 4.11.41), ( 4.11.39)

Qa2 H =0, [Qu), Qz]=0. (4.11.42)

By virtue of the arbitrariness of parameters ji(1yq, f(2)a, Eq. ( 4.11.42) implies the relations

[Qa7 FI] = Oa [Qa7 Qb}‘f‘ = 0.
Hence it follows that within a general gauge theory (the anomalies out of account) there exists
a doublet of nilpotent anticommuting operators Q“ generating the quantum transformations
of the extended BRST symmetry.
Representation of the algebra of Q%, Q¢
Let us consider the representation of algebra
Q. Q"4 =0, [iQc,Q" = —(-1)Q" (4.11.43)

of the operators L= (Q“, Qc) in the one-particle subspace V() of the total Fock space V
with indefinite inner product < | >

VD c YD 9|1 >=< LIT|® >, [T >, [& >c VD,
(4.11.44)

Q1) =—(-1)Q" (Qc)' = Qc.
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We shall demonstrate it here that the space V(1) of representation of the algebra ( 4.11.43) is
generally a direct sum

v = @Pvd, Ly v, vV =0, n#n, (4.11.45)
n

where subspaces Vr(ll) include the following one-particle state complexes

(i) genuine BRST-antiBRST-singlets (physical particles),

(ii) pairs of BRST-antiBRST-singlets,

(iii) BRST-quartets,

(iv) antiBRST-quartets, (OPSC)

(v) BRST-antiBRST-quartets,

(vi) BRST-antiBRST-sextets,

(vii) BRST-antiBRST-octets.
Here, each of the state complexes (OPSC), (i)-(v), (vii) is itself a representation of the algebra
( 4.11.43). Note in this connection that even though the variety of all the state complexes
(OPSC), (vi) is by construction invariant under the action of the operators L, an arbitrary
state complex (OPSC), (vi) is not necessarily a representation of the algebra ( 4.11.43).

BRST-antiBRST-quartets
In order to construct the basis of representation explicitly, note that for an arbitrary state
|® >, one of the following conditions holds

1 A A
5sabQ“(.Qb|cI>> £ 0, (4.11.46)
1 A A
5sabQ“Q”|<I>> = 0. (4.11.47)

If a state (¢, n) >€ v (ch|¢(k7N) >= N|¢x,n) >) satisfies the condition ( 4.11.46), then,
by virtue of Eq. ( 4.11.43), there exists a set of linearly independent states

. 1 .
bk, vy >, Qb ny >, §5aanQb|¢(k,N) >, (4.11.48)

which form the basis of a four-dimensional representation of the algebra ( 4.11.43). Given
this, owing to the properties ( 4.11.43), ( 4.11.45), the states

. 1 A .
Q" P, Ny >, §5aanQb|¢(k,N) >

have vanishing norm, in particular, |k, N >= %sabQ“QbW(kW) >
< k,Nlk,N >= 0. (4.11.49)

In accordance with Ref. [140], for an arbitrary one-particle zero-norm ( 4.11.49) state |k, N >,
there exists some (generally not unique) one-particle state |k, —N > such that

< k,—N|k,N >=1 (4.11.50)

(by virtue of Eq. ( 4.11.44), any states |k, N >, |k’, N’ > can only have a non-vanishing inner
product < k', N'|k, N > when N = —N’). Given this, it is clear that the states |k, N >,
|k, —N > (1 4.11.49), ( 4.11.50) are linearly independent, and hence can be treated as basis
state vectors in the subspace V1),
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One readily establishes the fact that for any |k, N > ( 4.11.49), the arbitrariness in a
choice of the corresponding state |k, —N > ( 4.11.50), in any subspace containing these
vectors, can always be lifted by an appropriate choice of the basis. In fact, in the subspace of
linearly independent states (|k, —N >, {|l, =N >}) with the properties < k, —N|k, N >=<
l,—N|k,N >= 1, it is always possible to choose a basis (|k,—N >, {|l,—N >=|I,-N >
—|k,—N >}) such that < [,—Nk, N >=0.

Note, owing to Egs. ( 4.11.49), ( 4.11.50), that the basis in the subspace of states | >=
{l{l,N >, 1 # k}, < k, N|¥ >= 0 can always be chosen so as < k, —N|I, N >= 0. Indeed, in
order to go over from the basis states |k, N >, {|I, N >}

<k,N|k,N >=0, <k,—N|k,N >=1,

<k,N|l,N >=0, <k,—N|l,N>=1, VI

to an equivalent linearly independent set |k, N >, {|I, N >}

<k,N|k,N >=0, <k,—N|k,N >=1,
<k,N|I,N>=0, <k,—NI|l,N >=0, VI
it is sufficient, for example, to identify
|k,N >=|k,N >, |I,N >=|l,N > —|k,N >, VI

Thus, by means of an appropriate choice of the basis in an arbitrary subspace containing
a pair |k, N >, |[k,—N > ( 4.11.49), ( 4.11.50), these states can always be made orthogonal
to the remaining basis state vectors.

From Eqs. ( 4.11.49), ( 4.11.50) and the hermiticity assignment ( 4.11.44) it follows that
there exists a set of four states

_ - 1 a A
|k, —N) > QD (k,—N) >, §5aanQb|¢(k,—N) >, (4.11.51)

which are also linearly independent and form the basis of a representation of the algebra (
4.11.43). Here, ¢, _ny > is a state ( 4.11.46) chosen from the condition

%Eab < G| QQ P,y >= 1. (4.11.52)
By virtue of Eq. ( 4.11.52), the state vectors |pa >= (|¢1 >, |p2 >) satisfying the normaliza-
tion < ¢1|Q'¢ >=< $2|Q%¢ >= 1 that corresponds to the zero-norm states Q%|¢ > can be
chosen in the form |¢, >= 4, (Q")T]¢ >.

For a more detailed analysis of the states ( 4.11.46), ( 4.11.51), ( 4.11.52), we first suppose
that some state |¢(x vy > ( 4.11.43) satisfies the condition

1 A A
§€ab < (Z5(k7N)|QaQb|d)(k7N) >7'é 0. (4.11.53)

Then, owing to Eq. (4.11.53), there exists such a # 0 that the corresponding state |¢, —n) >
( 4.11.52) can be identified as

Gk, ) >= aldn) > - (4.11.54)
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Hence it is clear that NV = 0, and that the representation subspaces corresponding to the
vector sets ( 4.11.46), ( 4.11.52) coincide. For a set of basis vectors we choose, say, ( 4.11.46),

ie. (|pr,n=0) >= [k,0>)
~ 1 A~
|k,0 >, Q*k,0 >, 5gaanQbUc,o>. (4.11.55)

Given this, owing to Eq. ( 4.11.54), the relation holds

%fw<kmeQﬂho>=1. (4.11.56)

By virtue of Eq. ( 4.11.56), the set of states ( 4.11.55) can be represented in the form of both
a BRST-quartet ((Q')" = Q')

|k,0 >, [k,0>, |k, 1>, |k, —1>,

|k, 1>=QYk, 0>, |k,0>=Q'k —1>, (4.11.57)

< k,0k,0 >=<k,—1|k,1 >=1
(choosing for |k, —1 >= —a@Q?|k,0 >), and an antiBRST-quartet ((iQ?)" = iQ?)

|k70>7 |m >, |k7_1 >, |kal >,
lk,—1 >=iQ%k,0>, [k,0>=1iQ%k,1>, (4.11.58)

<E,0/k,0>=<k,—1|k, 1 >=1

(choosing for |k, 1 >= —ia*Q'|k,0 >).

By construction, the variety of linear combinations of the vectors ( 4.11.55), ( 4.11.56)
constitute a subspace (of states |¥ >), which has non-degenerate inner product (V|¥ > 0,
3|¥’ >: < U|W’ >+ 0) and is invariant under the action of the operators L.

In what follows, we shall consider the states ( 4.11.55), ( 4.11.56) (provided they do exist
in a specific theory) as part of the basis state vectors in Yy,

Eqgs. ( 4.11.57), ( 4.11.58) imply, with allowance for Eqs. ( 4.11.43), ( 4.11.44), that the
whole set (|k,0 >, |k,0 >, [k, —1 >, |k, 1 >) of states ( 4.11.55), ( 4.11.56) form two mutually
orthogonal pair of state vectors ( 4.11.49), ( 4.11.50)

(|k,0 >, |k,0>), <Fk,0k0>=1 <k0[k0>=0,

(Jk, =1 >, |k, 1>), <k,—1lk,1>=1, <k,—1|k,—1>=0, <k, 1]k, 1>=0,
< k,0lk,—1 >=<k,0/k,1 >=0, <k,0k,~1>=<k,0/k,1>=0.

Owing to the above considered properties of states ( 4.11.49), ( 4.11.50), there can always
be chosen such a basis in V() that either pair (|k,0 >, [k,0 >), (|k, —1 >, |k, 1 >) of basis
vectors ( 4.11.55), ( 4.11.56) in the subspace of states |¥ > is orthogonal to the remaining
basis state vectors. Then, from the condition < ¥|® >= 0 (|® > is an arbitrary state not
representable as a linear combination of the state vectors ( 4.11.55), ( 4.11.56)) it follows that
the states |® >

< U|L® >=< L1U|d >=0
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also form a subspace of the representation of algebra of the operators L.

Repeating the above treatment with respect to the pointed out states |® >, one can
subsequently single out all the basis state complexes ( 4.11.55), ( 4.11.56), which we shall
further call BRST-antiBRST-quartets (OPSC), (v).

Clearly, the BRST-antiBRST-quartet complexes ( 4.11.55), ( 4.11.56) exhaust all the
states ( 4.11.53) (i.e. the condition ( 4.11.53) cannot be met by any linear combination of
the remaining basis vectors). By construction, any two BRST—antiBRST-quartets have no
elements in common. At the same time, the BRST-antiBRST-quartets are all chosen to be
orthogonal both to one another and to the remaining basis states, which, as shown above,
thus form a subspase of the representation of algebra of the operators L.

BRST-antiBRST-octets

Turning ourselves to the analysis of state vectors |® > not representable as linear com-
binations of the above considered BRST-antiBRST-quartet states ( 4.11.53), we shall first
of all proceed with the treatment of states ( 4.11.46) (or ( 4.11.52)), which are, of course,
generally not restricted to the states ( 4.11.53) only.

To this end, we observe that, by construction, any pair (|¢ax, ) >, |q_5(k7_N) >) of state
vectors ( 4.11.52) which belong to the subspace of states |® > under consideration satisfies
(as all the states |® > do) the conditions

< e |Q Q% dkny >=0, < - n)|Q Q" bk, —n) >= 0. (4.11.59)

We shall now demonstrate, with Eq. ( 4.11.59) taken into account, that the states of the
whole set ( 4.11.48), ( 4.11.51), ( 4.11.52) turn out to be linearly independent. Let us assume
the reverse. Indeed, if among the numbers (5, B, 5, 7, Ya, 7) there is a non-zero one, and

if (|o@,n) >= |0 >, |g,—n) >= [0 >)

Bl > +8.Q% ¢ > +§5aanQb|¢ > 496 > +71.Q% ¢ > +gsabQ“le($ >=0,

then, owing to Eq. ( 4.11.43), hence follows the condition (for some « # 0)

QA a 1
EgaanQb‘qb(k,N) >= §5aanQb|¢(k,fN) >,

obviously contradicting Eq. ( 4.11.59). In order to prove the above relation, suffice it to note
that if 6 =~ = (8, = v, = 0, then from the condition 3 # 0 it follows that 4 # 0 (reversely,
540=p3# 0) with o = $5~1; in the case 3 = v = 0 the condition Ja : 3, # 0 implies
Ya # 0 (similarly, v, # 0 = 3, # 0), here @ = 3,7, (no summation); finally, if 3 # 0 (or,
equivalently, v # 0), we have a = 7y~ L.

By construction, the set of linearly independent states ( 4.11.48), ( 4.11.51), ( 4.11.52)
form the basis of a representation subspace with non-degenerate inner product and can be
considered as both a pair of BRST-quartets

(o) >, —Q Q% de—n) >, Qwen) >, —Q%br—n) >),

(4.11.60)
(1,—n) > —Q'Q*|dk.n) >, QD@ —n) >, QD N) >)
and a pair of antiBRST-quartets
(log.ny > Q*QY bk, —n) >, 1Q%| by >, —iQ bk, ) >),
(4.11.61)

(Ioek,—n) > Q2Q1\¢(k,zv) >, Z'QA2|<Z_5(1~37—1\1) >, —iél\cb(k,zv) >).
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Note that, without the loss of generality, one can assume

< G-y b, vy >= 0,

since if there does exist such a # 0 that

< Pe—) Do) >= a,

then one can choose a basis in the subspace ( 4.11.48) so as
/ a| 1 YaAb| 1/
19" e,y >0 QD () > 5EabQ"Q 19 (k) >

1 o ]
€ab < Ak, —N)|Q Qb|¢l(k,N) >=1, <ow,-ml¢ gn) >=0,

where |¢)’(k’N) >= 0F1|(j>(k7N) >—%€abQ“Qb|¢>(k7N) >. Hence, with Eqgs. (14.11.43), ( 4.11.44),
( 4.11.52), ( 4.11.59) taken into account, it follows that the states ( 4.11.60) (or ( 4.11.61))
are representable as four mutually orthogonal pairs of states ( 4.11.49), ( 4.11.50)

(IPk, Ny > —Q1Q2|¢3(k,71v) >), (Q1|¢(/c,N) >, —Q2|Qg(k771v) >),
(ph—ny > —Q Q% Py >)s (Q bk, —ny > —Q% bk vy >),

and can therefore, when identified with elements of the basis in V(1) be made orthogonal
to the remaining basis state vectors (in the subspace of states |® > under consideration) by
means of an appropriate choice of the latter.

Using the reasoning similar to the given above, one can subsequently single out all the
state complexes ( 4.11.48), ( 4.11.51), ( 4.11.52), ( 4.11.59), which we shall refer to as BRST-
antiBRST-octets (OPSC), (vii), in such a way that different BRST-antiBRST-octets be cho-
sen mutually orthogonal and having no elements in common.

Thus, with allowance for Eqs. ( 4.11.48)—( 4.11.61), we have described the structure of
representations containing the state vectors ( 4.11.46).

BRST-antiBRST-sextets

Consider now the states |® > V(!) not representable as linear combinations of states (
4.11.48), (4.11.51), ( 4.11.55) (i.e. those which do not belong to BRST-antiBRST-quartets or
octets) and make use of a choice of the basis in V! for which every state |® > is orthogonal
to all the state vectors ( 4.11.48), (4.11.51), ( 4.11.55), and which thus ensures the invariance
of subspace of the pointed out states |® > under the action of the operators L.

From the previous treatment it follows immediately that the states |® > under consider-
ation satisfy the condition ( 4.11.47) (all the states ( 4.11.46) are by construction exhausted
by BRST-antiBRST-quartet and octet state vectors).

Given this, the following conditions generally hold |® >= {[¢, n) >}

Ja: Q%N >#0, (4.11.62)
Va: Q%N >=0. (4.11.63)

Let us first turn ourselves to the states of the form ( 4.11.62). For such states the condition
is valid (|* > implies arbitrary one-particle states)

|y >7# Q7 >, (4.11.64)
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since otherwise the states [¢(; ) > under consideration would be some linear combinations
of the states ( 4.11.48). An arbitrary state [¢(, ) > ( 4.11.47), ( 4.11.62), ( 4.11.64), in its
turn, satisfies one of the three conditions

() Qo) >#0, Q) >#0,
(i) Q'ow, Ny ># 0, Q|dy,n) >=0, (TC)

(ii)) Q'pwk.n) >=0, Q*dpr.n) >#0.
If a state |p(x,n) > satisfies the condition (TC), (i), then, by virtue of Eq. ( 4.11.43), there
exist linearly independent states

ok, N) >, Qa|¢(k,N) >, (4.11.65)

which form the basis of a three-dimensional representation of the algebra ( 4.11.43). At the
same time, the states Q%|¢ > (we omit, for the sake of brevity, the notations of quantum
numbers) have vanishing norm

<Q'9|Q'¢ >=< Q*¢|Q%¢ >=0.

From the above relations it follows, with allowance made for Eqgs. ( 4.11.44), ( 4.11.49), (
4.11.50), that there exist three linearly independent states

[ %(Q“)T\% >, (4.11.66)

where the states |¢, >7€@“|* >, chosen without the loss of generality as eigenvectors for the
ghost charge operator iQ¢, satisfy the normalization conditions

< ¢y|Q"¢ >= 0 (4.11.67)

(the relations iQc|ba >= —(N — (-1)%)[¢o > immediately ensure the validity of the condi-
tions < ¢2|Q'p >=< ¢1|Q?*¢ >= 0); at the same time, by virtue of Eqs. ( 4.11.44), ( 4.11.47),
( 4.11.67), we have

L < (@) a6 >=1.
(4.11.68)
< (Qb)T¢b|Qa¢a >= O, < ¢a|¢ >=0

(the inequality < ¢4|¢ >7# 0 leads one to the condition Ja : N = N — (—1)® and, therefore,
does not hold for any N).

Let us show, with Egs. ( 4.11.43), ( 4.11.44) taken into account, that the states of the
whole set ( 4.11.65), ( 4.11.66)

. 1 .
(6>, Q6> [¢a >, 5(Q")|6a > (4.11.69)
are linearly independent. Indeed, assuming the reverse, i.e.
Bl6 > +6.Q%6 > +7"1¢a > +2(Q)[é0 >=0

(the numbers (3, B4, 7%, 7) not all vanishing), one arrives, by virtue of Eq. ( 4.11.47) and
the normalization conditions ( 4.11.67), at the relation

Ja: < (Q) ¢ >=a® #£0
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representable as
BA0&3a: 4° 40, a® = (—1)y*/B,
5:’7:0a ,Y#O@Ha ﬁa#oa aa:_,)//ﬁa-
If we now suppose, for example, that a = 1, then, owing to Eq. ( 4.11.67) (< Q1q§1|¢ >=1),
the eigenvalues of the ghost charge operator iQ¢ that correspond to the states Q!|¢ > and
Q1 > ~a .
iQolQ ¢ >= (N +1)|Q ¢ >,
iQolQ'¢1 >= —N|[Q" ¢y >
must coincide, i.e. N +1 = —N. In the case a = 2 we similarly have N — 1 = —N and find
that neither condition can be satisfied for an integer N. In what follows, we shall refer to the
states ( 4.11.69), ( 4.11.67) as a BRST-antiBRST-sextet (OPSC), (vi). .

Owing to Egs. (4.11.67), (4.11.68), the bases ( 4.11.65), ( 4.11.66) (|¢ >, Q*|¢ >) = |e; >,
(I¢a >, 3(Q")T|¢pa >) = |fi > are dual with respect to each other < file; >= §;;. Hence
follows the non-degeneracy of bilinear form < | > defined on the pair X = {|e; >},
Y = {|fi >} of state spaces corresponding to the vector sets ( 4.11.65), ( 4.11.66). This

fact implies that in the space Y exists the (unique) representation E”fl- >= (IA/T)l-j|fj >,
LT = ((Q™)T, QL) of the algebra ( 4.11.43) conjugate to the representation Lle; >= (L);jle; >
defined in X, i.e. (ET)M = (IA/); Namely,

(@) 19w >= 555(@) 6. >,
(4.11.70)

(@)NQ") [y >=0
(for the ghost charge operator ch, the basis states of the subspace Y are by construction

eigenvectors, i.e. Qvgm >= QTC|fi >).

Note that an arbitrary BRST-antiBRST-sextet ( 4.11.69), ( 4.11.67) is generally not
invariant under the action of the operators L. Indeed, if Va: Q%¢1 ># 0, (< $1Q%¢ >=1,
Va: Q%¢ ># 0, |¢p >= |k, N >), then the state |¢; >= |k, —(N 4 1) > gives rise to some
BRST-antiBRST-sextet, which does not coincide with the given set ( 4.11.69), ( 4.11.67) (for
example, it is clear that the state Q2|k, —(N + 1) >= |k, —(N + 2) ># 0 does not belong
to the initial state vectors ( 4.11.69), ( 4.11.67)); and if Va: Q% ¢y ># 0, (< ¢2|Q%¢ >= 1,
|pg >= |k, —(N — 1) >), we similarly have Q|k, —(N — 1) >= |k, —(N — 2) ># 0 and find
that there is another BRST—antiBRST-sextet associated with the state |¢po >, which also
differs from ( 4.11.69), ( 4.11.67).

Repeating the above considerations, we come to the variety of states that belong to all
the BRST-antiBRST-sextets thus associated with the given set ( 4.11.69), ( 4.11.67). By
construction, the linear combinations of these states form a subspace invariant under the
action of the operators L and having non-degenerate inner product. The basis states of
subspace concerned can in a general case be chosen as BRST- (or antiBRST-) quartets and
singlets and thus made orthogonal to the remaining basis state vectors (in the subspace of
states |® > under consideration) by means of their appropriate choice.

Note that if the set of state vectors ( 4.11.66) is invariant under the action of the oper-

ators Q% (i.e. (QM)|f; >= (Q*)'|f; >), the states ( 4.11.69), ( 4.11.67), ( 4.11.70) can be
represented in the form of a BRST-quartet

|¢ >, Q1|¢1 >, Q1|¢ >, |¢1 >,
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<Q'¢1ld >=< ¢1|Q'¢ >=1
and a pair of BRST-singlets (Q%[¢ >, |¢2 >)

< ¢2|Q2¢ >=1,
(4.11.71)
Q'Q%¢ >=Q"[d2 >=0, |¢o ># Q'+ >, Q% ># Q[ >,
as well as in the form of an antiBRST-quartet ((Q")f|¢1 >= (Q?)f|p2 >)
6>, —QIg2 >, Q¢ >, il >,
<ia)iQd >= — < Q*polpp >=1
and a pair of antiBRST-singlets (Q'|¢ >, |¢1 >)
< ¢1|Q1¢ >=1,
(4.11.72)

Q*Q ) >= Q%1 >=0, |¢1 ># Q¥ >, |Q*¢ ># Q*|x > .

Let us consider the two-dimentional subspace of states |¥ >= {|k, N >, |k,—N >}
being linear combinations of vectors of the BRST-singlet pair ( 4.11.71) (Q3|¢ >= |k, N >,
|2 >= |k, —N >). There are two alternatives to be studied separately. First supposing that
N # 0, we, as is well-known [140], have unphysical particles leading to negative norm states.
If we now turn to the case N = 0, then from the non-degeneracy ( 4.11.71) of inner product
in the space under consideration, it follows, by virtue of |k,0 ># 0, < k,0]k,0 >= 0, that
there exists [140] a state [ >= B|k,0 > +v|k,0 >, B # 0 (clearly, iQCW >= 0) having
negative norm < 9|¢) > < 0. Moreover, this implies that in the subspace of states |¥ > there
can always be chosen such a basis (|k,0 >, |k,0 >= |k,0 >+alk,0 >) that

<kA,/O|k:,0 >=1, <kA,6\k—,v0>< 0.

Quite similar considerations show that the antiBRST-singlet pair ( 4.11.72), too, always
implies negative norm states and cannot evidently be treated as physical states (not for
N =0).

Let us show that any representation subspace (of states |® >) having non-degenerate
inner product and including a BRST—antiBRST-sextet complex always contains a BRST-
or an antiBRST-singlet pair. Assuming the reverse, we single out, in the subspace under
consideration, some states of the form

|k, N >, Ya: Q%k,N >#0,

lk,—~N +1>, <k,—N+1]|Q%*k,N >=1

(such states |k, N >, |k, —N + 1 > must exist, since we consider a subspace containing some
BRST-antiBRST-sextet). The above state |k, —N + 1 > satisfies the condition

Q'k, —N +1>#0,
since we would otherwise deal with a BRST-singlet pair (|k, —N + 1 >, Q2|k, N >)

(Jk, =N +1>, Q*|k,N >) # Q'+ >, Q'k,~N+1>=0, Q*'Q*k,N >=0,
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<k,—N +1|Q?k,N >=1,

and hence there exists a state |k, N — 2 > such that
<k,N—=2|Q'k,—N +1>=1.

Then, making allowance for the fact that the condition Q2|k,N — 2 >= 0 leads to an
antiBRST-singlet pair

(|k, N —2 >, Qk, —N + 1 >) # Q*|* >,

we have .
Va: Q%k,N —2>#0.

By repetition of the above treatment, we find that for any integer n > 0, there exist some
states of the form R
|k, N —2n >, Va: Q°k,N —2n >#0,

lk,—N +2n+1> <k —N+2n+1|Q%*k, N —2n >=1,
Q'k,—N 4+ 2n+1 >0,
and then for any integer L > 0, there exists such a state |k, N ># 0, N > L+ 1 that

Q'k,N >= |k, N +1 >#0.

Since the one-particle subspace V(1) of an arbitrary L-stage reducible gauge theory is restricted
to the states |k, N >, |[N| < L + 1, the above inequality |k, N +1 ># 0, N > L+ 1 does
not hold, and therefore the assumption of the absence of a BRST- (antiBRST-) singlet pair
proves to be incorrect.

The above considerations imply that the variety of states that belong to the BRST-
antiBRST-sextet complexes contain all the states (TC), (i); at the same time, the sextet
representations ( 4.11.69), ( 4.11.70) generally include part of the states (TC), (ii), (iii), that
is to say

(|¢1 >7 ‘(;52 >) 7é Qa‘* >a
(4.11.73)

Qo1 >= —Q%|p2 >#0, Q*|p1 >= Q'[p2 >= 0.
Reversely, any states ( 4.11.73) belong to a BRST-antiBRST-sextet

6>, QYo >, Q% >, |d1 >, |¢2 >, Q¢ >= —Q%|¢2 >, (4.11.74)

where |¢ > is chosen from the relations

< Q'1]¢p >= — < Qo) >= 1.

BRST- and antiBRST-quartets

The above treatment implies that for the further analysis of representations of the algebra
( 4.11.43) which contain the state vectors specified by the conditions ( 4.11.47), ( 4.11.62), (
4.11.64), (TC), (ii), (iii) it is sufficient to confine ourselves to the states not repreresentable
as linear combinations of BRST-antiBRST-sextet vectors. These states are without the loss
of generality all orthogonal to the representation subspace containing the variety of BRST—
antiBRST-sextet complexes and, therefore, belong to a subspace that is invariant under the
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action of the operators L and does not contain any BRST-antiBRST-sextet elements. For
the states

|6 ># Q% >, Q¢ ># 0, Q%p >=0, (4.11.75)
6 ># Q"% >, Q°16 >#0, Q"¢ >=0 (4.11.76)
under consideration, the following supplementary conditions hold
Q6 ># Q°|x >, (4.11.77)
Q%6 ># Qx> . (4.11.78)

Let us show that the violation of Eq. ( 4.11.77), for instance, leads one to a contradiction.
In fact, |* > is, by definition, not representable as a linear combination of BRST—antiBRST-
sextet states, and, consequently, the relation Q1|¢ >= Q2|* > is only possible when |x >
belongs to the states ( 4.11.76), i.e. without the loss of generality, one has

Qo >=—Q%b > .

From the above relation it follows, by virtue of Egs. ( 4.11.73)—( 4.11.76), that the states
(|¢ >, |6 >, Q"¢ >= —Q?|¢ >) belong to some BRST-antiBRST-sextet ( 4.11.74). The
inequality ( 4.11.78) is proved in a similar way. Eqs. ( 4.11.77), ( 4.11.78) imply, in particular,
that the representation subspaces ( 4.11.75) and ( 4.11.76) respectively cannot be transformed
into each another by the action of the operators L.

By repetition of the given above reasoning with respect to Eqs. ( 4.11.75)—( 4.11.78), we
find that the state complexes of the form (4.11.75), ( 4.11.77) constitute some BRST-quartets
(OPSC), (iii)

6>, ¢ >, Qo> Q' >,

< ¢|Q ¢ >=< Q'¢'|¢p >=1, (4.11.79)
1 >= (¢ >, |¢' >),
Q@ >=0, [ ># Q°|x >, Q'@ ># Q%+ >

(¢ > ( 4.11.79) is orthogonal to all the BRST-antiBRST-sextet states and, in particular,
to any state | >: Va, Q%|¢p ># 0; hence, |¢' > also satisfies Egs. ( 4.11.75), ( 4.11.77)),
representable as well in the form of two mutually orthogonal pair of antiBRST-singlets

(lp >, Q"¢ >), (|¢' >, Q"¢ >), (4.11.80)

which we shall, as usual, identify with some basis state vectors, making them orthogonal to
the remaining elements of the basis. Similarly, the states ( 4.11.76), ( 4.11.78), also considered
as basis state vectors, constitute some antiBRST-quartets (3.4), (iv)

16>, ¢ >, iQ?%¢ >, iQ*|¢ >,

< ¢'iQ%*¢ >=< iQ*¢'|p >= 1, (4.11.81)
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@ >= (16>, ¢’ >),
Q'@ >=0, [® ># Q%% >, Q*[® ># Q'+ >
and BRST-singlet pairs
(16 >, iQ%d' >), (I >, iQ*|¢>), (4.11.82)

orthogonal both to one another and to the rest of the basis states. By construction, the
state complexes ( 4.11.79) and ( 4.11.81) form bases of some representation subspaces with
non-degenerate inner product.

Thus, with allowance for Eqs. ( 4.11.65)—( 4.11.72), ( 4.11.75)—( 4.11.82), we have de-
scribed the structure of representations containing states of the form ( 4.11.47), ( 4.11.62), (
4.11.64).

BRST-antiBRST-singlets

Finally, we turn to the states |® > that do not belong to the representation subspace consti-
tuted by the above considered BRST—antiBRST-quartets, sextets, octets and state complexes
(4.11.75)—( 4.11.78) (the subspace of states |® > is without the loss of generality orthogonal
to all the state complexes just mentioned and is therefore invariant under the action of the
operators f/) One readily finds that these restrictions can only be met by the states

| >= {|¢.n) >} # Qx>

of the form ( 4.11.72) Va : Q%|® >= 0. Proceeding along the lines similar to the above
presented ones, we firstly single out the states |® >= (¢, —n) >, [¢@,n) >, N #0)

< - PNy >= 1, < O, — )| Dk —N) >=< S, N)| P, vy >=0 (4.11.83)
and the states |® >= (|¢y, >, |¢r >, N = 0)
< ng|¢k >=1, < ¢k|¢k >=0, ,< éﬂ(lgk >< 0 (4.11.84)

which we shall call BRST-antiBRST-singlet pairs (OPSC), (ii).

Taking into account that the state vectors ( 4.11.84) contain all the zero-norm states
D >, iQC|® >= 0 under consideration, one readily establishes the fact that the subspace
of the remaining states (if any) must possess definite inner product. Indeed, assuming the
reverse, i.e. that there exist at least two states |k >, |k > with the properties < k|k >= 1,
< k|k >= —1, we can easily find such « # 0 that |l >= alk > +|k >, < |l >=0.

In this connection, to have a physically meaningful theory, we require that the subspace
of the remaining states be positive definite and identify these states with physical particles
| > (genuine BRST-antiBRST-singlets (OPSC), (i))

< Grlor >=1, Q%lox >=0, |gr ># Qx> . (4.11.85)

At the same time, it is clear that the state complexes ( 4.11.83), ( 4.11.84) and ( 4.11.85) are
orthogonal to each other.

Thus, taking Eqs. ( 4.11.48)—( 4.11.85) into account, we have in a general case described
the structure (OPSC) of the one-particle state subspace V(1) 5 Vfll), (Vfll) 1 VS), n#n')as
a space of the representation LV C V, L = (Qa, zQC) of algebra ( 4.11.43) of the generators
Qa of extended BRST symmetry transformations and the ghost charge operator ch. By
construction, indefinite inner product < | > is non-degenerate in each subspace V,(Ll) (see the
normalization conditions ( 4.11.52), ( 4.11.67), ( 4.11.79), ( 4.11.81), ( 4.11.83), ( 4.11.84), (
4.11.85)), while they themselves have no elements in common ( ) N Vf;) =0, n#n') and
form a direct sum ( 4.11.45) of representation subspaces.
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Physical unitarity conditions

We now consider, with allowance for Eqs. ( 4.11.45), (OPSC), ( 4.11.48)—( 4.11.85), the
conditions of the physical S-matrix unitarity in the Hilbert space Hpnhys = Vpnys/Vo, where
the physical subspace Vphys 3 |phys > is specified by the Sp(2)-covariant subsidiary condition

Q% phys >=0 (4.11.86)

(which, clearly, ensures the invariance of V,uys under the time development). By virtue of
Eq. ( 4.11.86), the structure of Vppnys has the form

—_pl 2
Vphys - Vphys ﬂ Vphysv

where

1 Aly,l _
V D Vohys: @ Vopnys =0,

2 27,2 _
VO Ve @V =0.

In particular, for the zero-norm subspace Vy C V we have

Vo=Vi[ V5.
(4.11.87)

1 1 2 2
Vo € Vpnys: Yo C Vphys-

The analysis of representations ( 4.11.45), (OPSC), ( 4.11.48)—( 4.11.85) on the basis of
the quartet mechanism [140] shows that if BRST- and antiBRST-singlet pairs are absent in
the theory, then, firstly, the remaining BRST—antiBRST-singlets have positive-definite norm,
and, secondly, the state vectors from Vs containing particles of BRST—antiBRST-quartets
(OPSC), (v) and octets (OPSC), (vii) (i.e. state complexes simultaneously representable
as BRST- ( 4.11.57), ( 4.11.60) and antiBRST- ( 4.11.58), ( 4.11.61) quartets) belong to
the zero-norm subspace Vy ( 4.11.87). At the same time, the state complexes (OPSC), (ii),
(iii), (iv), (vi) generally contain BRST- (antiBRST-) singlet pairs ( 4.11.71), ( 4.11.72), (
4.11.80), ( 4.11.82), ( 4.11.83), ( 4.11.84). In this connection, the unitarity conditions (pro-
viding positive semi-defineteness of < | > in Vuys) of physical S-matrix in Hppys is, within
the suggested approach, the requirement of absence of the pointed out state complexes, i.e.
BRST-antiBRST-singlet pairs (OPSC), (ii), BRST-quartets (OPSC), (iii) (antiBRST-singlet
pairs (4.11.80)), antiBRST-quartets (OPSC), (iv) (BRST-singlet pairs ( 4.11.82)) and BRST-
antiBRST-sextets (OPSC), (vi).

4.12 Gauge dependence of Green’s functions
First, consider an infinitesimal variation of the gauge functional F — F 4 §F. It leads to a

small variation of the action S.,;. This variation can be represented in terms of the functional
§F depending only on the fields ¢4, in the form

) ( exp {;Smt}> = —ihT((SF) exp {;Sem}
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Then we have

§Z(J, 9%, ¢) = %gab/cwexp {;JA¢A}A“AI)6F exp {;Sewt}.

Performing two subsequent integration by parts in the above integral, we obtain

52(J,6%,8) = %hsababaa@zu, 0", d), (4.12.88)
where
—~ Lo
F=6F-— ). 4.12.
<z’ 6J> (4.12.89)

Therefore, the variation of the generating functional W of connected Green’s functions
has the form

SW = %aab@b@“<(5/l\7), (4.12.90)
where
(R W
(6F) = oF (MJ + M)

is the vacuum expectation value of the operator SF.
For the generating functional of vertex functions I' = T'(¢, ¢*, ¢) this results in

0T = %sab B® B ((5F)), (4.12.91)
where

5 o0 6 or 4§ s

BUI) = (0) + V= Soa st + (S s o + Ve, BUBY =0, (412.92)
Aa Aa
((0F)) = 6F (), ¢*=o" + m(r"‘l)“%, (4.12.93)
- & [ or

T HACC " ep = 68, (I)ap = Mﬁ (W) . (4.12.94)

The gauge dependence of T" can also be presented in the form [143]
* 7 61_‘ A * 7 * Aa * 7
5F(¢a¢ a¢) = WG (¢a¢ 7¢) + (bAaD (¢7¢ a(b) (41295)

with some functionals G4 and DA
We can see that the generating functional of vertices, calculated on its extremals 0T /§¢p4 =
0 does not depend on the gauge on the surface ¢%, = 0.
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4.13 Irreducible gauge theories with a closed algebra

To illustrate the formalism, we consider irreducible gauge theories of so-called rank 1 with a
closed algebra. Such theories are characterized by the fact that in the algebra of generators
we have M/, = 0, and the solution of any equation of the form R{X® =0is X“ =0. The
majority of theories discussed in the literature belong to the indicated class (Yang - Mills,
gravity, supergravity with auxiliary fields, ets.). From the viewpoint of extended BRST
quantization, for all these theories the solution of extended master equantion exists as a
linear functional in the antifields ¢, and ¢

S(¢, ¢*, @) = So(A) + ¢5, X" + paY* (4.13.96)

where X4 (e(X4%) = g(¢%,)) and Y4 (e(Y4) = e(¢4)) are functionals of the fields ¢ and
have the sense of extended BRST- and mixed BRST-transformations respectively.

Substituting the functional ( 4.13.96) into the extended master equations, we obtain a
system of equations for finding X“4¢ and Y 4:

650(A)

Aa __
Sor X1 =0

5XAa 5xAb
XBb +

Ba
3¢F sop =0

1 5XA“XBb

YA = e 0t
25 5 4B

YA 5. ~0
B -
Let
X (Xia’ Xém7 Xaab)7 YA <Y17 Y2 ’ YS(m)'
Then we obtain for solutions to the above equations
X%a _ Ri Caa
1
X5 = —iF BfCe — (-7 @ oy RS+ F2 Fg)C%CPeCey,
aa a « 1 (67 a
X3 b = —¢ bB — 5(—1)66}757071)0[1‘ s

i pa 1 i j aa
= RoB® + 5 (=17 R, jRyC7 C e,
Y3 =0, Y3¥ = -2X3.
and the closed form of action S = S(¢, »*, $) for any irreducible gauge theory of rank 1 with

a closed algebra and initial action SO(A)

S = So(A)+ AL R C — fB . BPCY — (4.13.97)

aa”yf

L R} + FS, Fgs)COCPeC ey, — e C,, B —

1 . 1 . .
—5 (=17 CL, b F5,CPCP* + AR B + 5(-1)%,41-}3;’].3;,0550%@ +

_1)EBBZ(1( 'y,Bj

+CaaFS3BC + +6( 1)°0 Coa(2FS j R} + FS, Fg5)COCP* Ch e .
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Note that the existence of solutions of the extended classical master equations
1
5(5, S)+VesS=0

(for both irreducible and reducible gauge theories!) in the form ( 4.13.96) can be expressed
in terms of global symmetries of action S [99]. Indeed, let us introduce the set of operators
s*(S)

oS o
6¢%, 094
It is not very difficult to find the algebra of these operators

{s%(5),s" ()} =0

and to see that the action S is invariant under the following global supertransformations
(extended BRST transformations):

s9(S) = (=1)°4 +ve (4.13.98)

S a * n ab ;x a Iy
5¢A = _(5(25* Ha = —S (S)¢Aﬂaa 6¢Aa =0, 5¢A = Ma€ b¢Ab = UaS (S)¢A
Aa
Therefore, the operators s*(S) should be considered as the symmetry operators of S

s?(S)S = 0.
Now, we shall show that in the class of gauges F'(¢) depending only on the initial fields
Ai
F(¢) = F(A)
the generating functional is reduced to the standard FP result. Indeed, the integration over

variables ¢4, ¢%,, A and 749 is trivial and yields

i 1 o O2F i, OF . B
Z(J) :/d(bexp{h {SO(A)—2€,11)X1 5Ai5AjX1 + 5AZ.Y1 + Jad ]}

Taking into account the explicit expressions for X{* and Yy, we come to

SF _, 1 . O2F
Vi e Xie T~ xIb
SAITT T Qfeb R AT A
oF . 1 oF . . S2F o
"R B + —(—1)5 Rl R+ —— RIRL(—1)fiEitee) | ofbgaag
s B+ 5 (70 (Ml Tt T s A e s (27 Fab
If we introduce the functions
5F
Xo = 5aifla

and identify C*! = O and C*? = C®, then the functional integral can finally be written as
20 = [ dvexs {;[So(m O XaiRCP + Yo B + JAqu]} S (41399)

Eq. (4.13.99) is the standard FP result for gauge theories with closed algebra when the gauge
is introduced by means of the functional Y.

In the end of this Chapter we would like to list some problems considered in connection
with the Sp(2)-covariant quantization. A geometric interpretation of the scheme was given
in [123, 110, 201]. Reformulations based on the Schwinger-Dyson extended symmetry were
presented in [68, 69]. Geometry underlying the Sp(2) method was studied in [160]. Quantum
Sp(2) antibrackets were introduced and studied in [34].



Chapter 5

Triplectic Quantization

In the Sp(2) covariant approach one introduces a configuration space of fields ¢ ( 4.1.1).
In addition one needs to introduce to each ¢ three kinds of antifields: Sp(2)-doublet ¢%,a =
1,2 and Sp(2)-singlet ¢4. These three kinds of antifields are involved in the Sp(2)-method in
a nonsymmetrical way. While the antifields ¢% , are anticanonically conjugate with respect
to the antibrackets ( 4.2.2), the antifields ¢4 have no corresponding conjugated fields. We
have seen that in order to present a gauge fixing procedure of the Sp(2)-formalism in the
form of a functional integral ( 4.6.21) explicitly, one needs to make use of auxiliary fields 74¢
to parametrize the differential operator containing the gauge functional F.

The main idea of the triplectic quantization proposed by Batalin, Marnelius and Semikha-
tov [28, 35, 29] was to consider fields 7% as anticanonical partners to the antifields ¢4 in the
usual sense.

5.1 Configuration space and extended antibrackets

The starting point of triplectic quantization is the configuration space of fields ¢4, €(¢?) = €4
which coincides with configuration space of Sp(2) - method. Then to each of ¢ one introduces
a pair of antifields ¢%,, a = 1,2 with opposite statistics e(¢%,) = €4 +1. Next one introduces
a set of pairs of fields 74?, €(74%) = €4 + 1. On the space of variables introduced above one
defines an extended antibrackets by the rule

OF 0G| ap OF G
36A 5t | OmAb Gg,

(F,G)* = < ) —(F & @) (—1)EE+FDEG)+H), (5.1.1)

The extended antibrackets have the properties which formally coincide with properties of
extended antibrackets within the Sp(2) formalism ( 4.2.3).

5.2 Operators V* A

The operators V, A® are introduced

o _ 1 ab 4 L_ _1)€a Aai
14 —2<€ (bAbé(zA ( 1) ™ 5¢A 5 (522)
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o0 9 )
A% = (—1)A— —  (—1)Fatlead 22— 2.
TV e, YT e, (23
It can be readily established that the algebra of operators ( 5.2.2), ( 5.2.3) has the form
vieytt — o, Aleabt =, (5.2.4)
AVP L VPAL = . (5.2.5)

The action of the operators A% (( 5.2.3)) on a product of functionals F' and G gives
AY(F-G) = (A°F)- G+ F - (A°G)(=1)°F) 4 (F, G)*(—1)=). (5.2.6)

Eq.( 5.2.6) may be considered as an alternative definition of the extended antibracket ( 5.1.1).
The action of the operators V¢ ( 5.2.2) upon the extended antibrackets is given by the relations

VYF,G) = (V'F, Q) — (—=1)*F)(F,ve@)’. (5.2.7)

Note that definition of the operators V¢ ( 5.2.2) differs from the Sp(2) one (see Eq.( 4.3.4)).
As a consequence, formulas ( 5.2.5) and ( 5.2.7) are valid without symmetrizazion in the
indices a and b in comparison with the Sp(2) formalism (see, ( 4.3.6), ( 4.3.8)).

It is usefully to introduce an operator A®
A = A"+ %va (5.2.8)
with the properties
Ate AP = . (5.2.9)

5.3 Vacuum functional

The vacuum functional in this approach is defined by the rule

Z(0) = /d¢dq§*dwdg5dA exp {;(S + X)} (5.3.10)
where boson functional S = S(¢, ¢*, 7, ¢; h) satisfies the following master equations
A% exp {;s} =0. (5.3.11)
or, equivalently,
%(S, S)¢ 4+ VS = ihA°S, (5.3.12)

and boson functional X = X (¢, ¢*,T, ¢, \; h) is a hypergauge fixing action depending on new
variables A\, €(A\) = e4 and satisfing the following quantum equations:
1
2
which differs from Eq.( 5.3.12) by the opposite sign of the V-term. It is expected that the
classical part of the gauge fixing functional has the form

X|peo = GAN + KY (5.3.14)

(X, X)* — VX = ihA°X, (5.3.13)

where G 4 and Y are functions and K is the differential operator

K =en VeV, (5.3.15)
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5.4 Extended BRST symmetry

The vacuum functional ( 5.3.10) possesses an important property of invariance under the
following global transformations

0S 0X
5 A _ (_ 4 + 7_(_Aa) s
¢ 50 | 50, g
. oS 0X
004 = Ha (W CW)
- w( 0S5 0X .
dpa = [aE b<67rAb W+¢Ab>v
oS 0X
orit = e“b<— ——|-—> a
0pa  0pa a
A =0, (5.4.16)

where i, is an Sp(2) doublet of constant anticommuting Grassmann parameters. These
transformations realize in the triplectic quantization the extended BRST transformations in
the space of the variables ¢, ¢*, ¢, 7® and .

The transformations ( 5.4.16) can be presented in condensed notation

6G = (G, =S+ X)*tta + 21,V G, (5.4.17)

where G denotes the complete set of variables.

5.5 Gauge independence

If we consider the transformations ( 5.4.16) with p, dependind on G and A it is not difficult
to obtain the following representation for vacuum functional

Z(0) = /d¢d¢*d7rd5d)\ exp {; [S + X —ih(pia, S)* + ih(pta, X)* + 2ihV“ua] } (5.5.18)
Let us make an additional change of variables in the integral ( 5.5.18)

5G = %(g, SF,)e. (5.5.19)

This change gives

Z(0) = / dpde* drdpd) exp {;[S + X — ih(pta, S)* + ih(pe, X)* +
2RV g + %(S, SF)" + %(X, SF,)" — ihA“éFa]} (5.5.20)
If we identify
6F,(G) = 2hua(g, A) (5.5.21)

T

then we have

Z(0) = /d¢d¢*d7rdq3d)\ exp {; [S + X+ 5X} } (5.5.22)
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where notation has been introduced
0X = (X, 6F,)* — V4F, — ihA“6F,. (5.5.23)
One can now check (for detailes, see [28])
(X, 6X)* = VX =ihA*SX (5.5.24)

provided d Fy, is chosen to have the following form
6F, = eab{(X, §Y )P —VbsYy — ihAb(SY}. (5.5.25)

On the other hand, any small admissible variation of hypergauge fixing action 6X in Eq.(
5.3.10) has to satisfy Eqgs.( 5.5.24). It means that one can compensate for a variation of
hypergauge fixing action in vacuum functional by suitable choice of 6F, in ( 5.5.19) (or §Y
in ( 5.5.25)). Therefore vacuum functional ( 5.3.10) does not depend on the gauge.

5.6 Modified triplectic quantization

Notice that the essential original point of the triplectic quantization consists in dividing the
entire task of constructing the quantum effective action into the following two steps: first,
the construction of the quantum action S, and second the construction of the corresponding
gauge-fixing functional. Either problem is solved by means of an appropriate master equation.

Despite considering these new ideas as very promising, as to their concrete realization there
exists [96] a different, modified scheme of the triplectic quantuzation, which — especially from
some geometrical viewpoint — changes the meaning of the latter. Namely, remaining in the
same configuration space of fields, and accepting the idea of a separate treatment of the two
above mentioned actions, one proposes to change both systems of master equations by using
a new set of two Sp(2)-doublets of generating operators: V* and U®. Such a modification is
inspired by the experience of the superfield formulation of the Sp(2) method [144] (see Chapter
7), in which the above operators acquire the geometrical interpretation of the generators of
(super)transformations in a superspace spanned by fields and anti—fields. In this approach,
the first master equation, determining the quantum action S is defined by means of the
operators V¢, whereas the other master equation determining the gauge fixing functional X,
is defined by means of the operators U®. As in the original triplectic quantization, we may
expect that the generating functional of Green’s functions does not depend on the choice
of gauge. It is important to emphasize that within the modified triplectic quantization the
entire information contained in the initial classical action of the theory is conveyed to the
quantum effective action via the corresponding boundary conditions. At the same time,
the classical action obeys the first modified master equation in complete analogy with all
previously known schemes of Lagrangian quantization. The original triplectic quantization
gives no explicit relation to the initial classical action. If one assumes that such a classical
action occurs, as usual, in the boundary condition to the solution of the master equation
(with vanishing auxiliary fields and quantum corrections), then this classical action does not
obey the master equation.

Using the same definitions of the extended antibrackets ( 5.1.1) and the operators A? (
5.2.3), let us introduce the following set of operators V' and U%:

a ab i 4
\% = £ b¢Ab% y (5626)
Ue = (_1)EA+17TAai . (5627)

5A
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Notice that the operators V¢ in Eq.( 5.6.26) differ from the corresponding operators of the
triplectic quantization ( 5.2.2), they coincide, at the same time, with the operators applied
in the framework of the Sp(2) method ( 4.3.4). The use of the operators U® in Eq.( 5.6.27)
exhibits an essentially new feature as compared to both the Sp(2) method and the triplectic
quantization in its original version [28].

One easily establishes the following algebra of the operators ( 5.2.3), ( 5.6.26), ( 5.6.27):

AtrAP =,

vieyth =,

Aleytt pyleatt — o,

uleytt = o, (5.6.28)

Aleght 4 gleatt = o,
VUt + UV =0,
A"VP+VPAY + AU+ UPA" = 0.
The action of the operators A% ( 5.2.3) on the product of any two functionals F', G is given

by Eq.( 5.2.6). The action of each of the operators A% V% and U* ( 5.2.3), ( 5.6.26) and (
5.6.27) on the extended antibrackets is given by the rule (D® = (A%, V* U®))

DlY(F,a)" = (DY*F,G)% — (F, D1eG)PH (—1)=, (5.6.29)

It is also useful to introduce the operators

A® = A% %va, (5.6.30)
A® = A°— %U“. (5.6.31)
From Egs.( 5.6.28) it follows that the algebra of these operators has the form
AleAbY = o,
AfeAYY =0, (5.6.32)

AleAYY 1 AlAY =,

Let us denote by S = S(¢,¢*,7,$) the quantum action, corresponding to the initial
classical theory with the action Sy, and defined as a solution of the following master equations:

1
=(S,8)" + VS = ihA®S, 5.6.33
2

with the standard boundary condition

S|¢*:(£:h:0 - SO. (5634)
Eq.( 5.6.33) can be represented in the equivalent form
A%exp {;s} =0. (5.6.35)

Let us further define the vacuum functional as the following functional integral:

Ix = /d¢dq§*d7r de d) exp {; (S+X+ ¢f4a7rAa)} 7 (5.6.36)
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where X = X (¢, ¢*, 7, ¢, ) is a bosonic functional depending also on the new variables \4,
€(A) = €4, which serve as gauge-fixing parameters. We require that the functional X satisfies
the following master equation:

1
i(X,X)a —U*X =ihA*X, (5.6.37)
or, equivalently,
A%exp {;X} = 0. (5.6.38)

Notice that the generating equations determining the quantum action S in Eq.( 5.6.33) (or (
5.6.35)) and the gauge-fixing functional X in Eq.( 5.6.37) (or ( 5.6.38)) differ—along with the
vacuum functional Z in Eq.( 5.6.36)—from the corresponding definitions ( 5.3.12), ( 5.3.13),
( 5.3.10).

One can easily obtain the simplest solution of Eq. ( 5.6.37) (or Eq. ( 5.6.38)) determining
the gauge-fixing functional X

7 oF A 1 arrb
X - <¢A - W) )\ - igabU U F -
,y OF \ya 1 a0 OF  p
= <¢A - 6¢A> AT — ieabﬂ— 5¢A5¢BW 5 (5639)

where F' = F(¢) is a bosonic functional depending only on the fields ¢“. As a straightforward
exercise, one makes sure that the functional X in Eq.( 5.6.39) does satisfy Eq.( 5.6.37). If
we further demand that the quantum action S does not depend on the fields 74, then the
functional ( 5.6.36) with the gauge functional X in ( 5.6.39) becomes exactly the vacuum
functional of the Sp(2) quantization scheme (see ( 4.6.21).

Let us consider a number of properties inherent in the present scheme of triplectic quan-
tization, i.e. modified according to Eq.( 5.6.33)—( 5.6.38). In the first place, the vacuum
functional ( 5.6.36) is invariant under the following transformations:

6G = (G, =S+ X)"pa + pa(V* +U")G, (5.6.40)

where 1, is an Sp(2) doublet of constant anticommuting parameters, and G stands for any of
the variables ¢, ¢*, 7, . Eq.( 5.6.40) defines the transformations of extended BRST symme-
try, realized on the space of the variables ¢, ¢*, m, ¢. In the particular case, corresponding
to the gauge-fixing boson chosen as in Eq.( 5.6.39), we have

St = — ((Sii - WAG) fas (5.6.41)
0he = Ia <$4 + &b(fé;BAB + ;(1)5A6bc7TBb(W§:;§6¢C7TCC>, (5.6.42)
onfe = gab (;qi - )\A) L, (5.6.43)

5pa = pac™ <£jb + ¢*Ab) + ua(wfgww&. (5.6.44)

Consider now the question of gauge dependence in the case of the vacuum functional Z,
Eq.( 5.6.36). Any admissible variation §X should satisfy the equations

(X,6X)* — U*SX = ihA“5X. (5.6.45)
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It is convenient to consider an Sp(2) doublet of operators $%(X), defined by the rule
(X,F)* = §%X) - F, (5.6.46)
and possessing the properties

§la(x)$0 (x) = §la (;(X, X)b}) , (5.6.47)

which follow from the generalized Jacobi identities for extended antibrackets. Eq.( 5.6.45)
can be, consequently, represented in the form

Q*(X)6X =0, (5.6.48)

where we have introduced an Sp(2) doublet of operators Qa, defined by the rule

Q“(X) = S%(X) — ihA®, (5.6.49)

With allowance for Eq.( 5.6.37) the operators Q“ form a set of nilpotent anticommuting
operators, i.e.

Ql*(x)Q"(X) =o. (5.6.50)

By virtue of Eq.( 5.6.50), any bosonic functional of the form
1 ~ ~
56X = 5sabQ“(X)Q”(X)(W, (5.6.51)

with an arbitrary bosonic functional §Y’, is a solution of Eq.( 5.6.47). Moreover, by analogy
with the theorems proved in [27], one establishes the fact that any solution of Eq.( 5.6.47)—
vanishing when all the variables in 6 X are equal to zero—has the form ( 5.6.51), with a certain
bosonic functional §Y. In the particular case of the gauge functional X ( 5.6.39), its variation
0X can be easily represented in the form of Eq.( 5.6.51), i.e.

OOF) a1 44 8°(6F)

— Scab 5¢A6¢Bﬂ—

O0X =554 2

BY _ —%gabQ“(X)Qb(X)éF (5.6.52)

with §Y = —0F.

Let us denote by Zx = Z the value of the vacuum functional ( 5.6.36) corresponding to
the gauge condition chosen as a functional X.

In the vacuum functional Zx sx we first make the change of variables ( 5.6.40), with
Lo = 1a(G, A), and then, accompanying it with a subsequent change of variables

0G = (G,6Y,)?, e(dY,) =1, (5.6.53)
with §Y, = —ihu,(G, \), we arrive at
Zxisx = /d(b do*dm dp d)\ exp {721 (S + X +0X +6X, + ¢j‘4a7r‘4“> } , (5.6.54)
where we have used the notation

56X, =2 ((X, 8Y,)* — U%Y, — z’hA“éYa) = 2Q%(X)0Y,. (5.6.55)
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Let us choose the functional §Y, in the form
1 U _
8Y, = ZE“beW’ £(6Y) = 0. (5.6.56)

Then, representing §X as in Eq.( 5.6.51), and identifying §Y = —§Y, we find that
Zxtsx = Zx, (5.6.57)

i.e. the vacuum functional (and hence, by virtue of the equivalence theorem [135], also the S
matrix) does not depend on the choice of gauge.

Finally notice that investigations of the structure and properties of triplectic quantization
are at starting point only [113, 1, 112, 96].



Chapter 6

Superfield BRST Quantization

In Section 4, we have presented the BV quantization method [40, 41] which may be applied
for construction of suitable quantum theory for general gauge theories. The antisympletic
manifold of the BV method contains the fields ¢ (including the initial classical fields, the
ghosts, the antighosts and the Lagrangian multipliers) with assigned to them antifields ¢% of
the opposite Grassmann parity, the usual sources .J4 to the fields ¢ and finally, the auxiliary
fields A4, introducing the gauge to the theory.

In turn, the Yang-Mills theories permit to realize the BRST symmetry transformations
in superspace [53, 54, 126, 44]. At the same time, the crucial point of the formulations
[53, 54, 126, 44, 130] is the manifest structure of configuration space of the theories concerned.
On the other hand, no consistent form of Lagrangian quantization rules for general gauge
theories that would enable one to give the BRST transformations a completely geometrical
description has yet been discovered.

The purpose of this Section is formulation of Lagrangian quantization rules [145] within
functional integration technique on the basis of a superfield approach, revealing the geo-
metrical contents of the BRST symmetry. The functional integration over supervariables is
understood as integration over their components. We also use the usual assumptions of both
gauge invariant regularization and absence of anomalies.

6.1 Superspace, antibracket and operators A, U, V

Let us consider superspace D+ 1, parametrizied by coordinates (z*,6); x* are the space-time
coordinates, = (0,1,..., D —1);  is a scalar Grassmann coordinate. Let ®(6) be a set of
superfields and ®% (#) be a set of the corresponding super-antifields

(@) =ea, (DY) =cea+1.

In terms of superfields and super-antifields we define an antibracket by the rule

SF 0 6G eatl
(F,G) = /d0{5q>f‘(9)(‘396¢2(9)<1) +

_(_1)(6(F)+1)(6(G)+1)(F - G)} , (6.1.1)

101
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where F' = F[®,®*], G = G[D, P*] are arbitrary functionals depending on supervariables.
From the definition ( 6.1.1) one can find that the antibracket ( 6.1.1) obeys the same properties
that the antibracket in the BV-formalism ( 3.2.36).

Let us also introduce operators A, U, V' of the form

o o 4
/do 5<I>A( 56 550" (6.1.2)

B o4 (0) 4
U_—/de 55 5BAE) (6.1.3)

RIAG
/de w X0k (6.1.4)

Here, one has to take into account the expressions of the derivatives

504 (0)
308 (0’

§1d4(0 ,
) = (CD00 )0 = (-1
504(0)

_ (_1\€a+t1l L B
S = (e~ 0

following from the definition of integration over the Grassmann variable 6

/d@@z 1, /dG:O, F(6) :/da’é(a’ —O)F(6),

560 —0)=06 —6.
The algebra of the operators ( 6.1.2), ( 6.1.3), ( 6.1.4) has the form

A*=0 U?=0 V?=0,
AU+UA=0, AV+VA=0, UV+VU=0. (6.1.5)

The action of the operators D = (A,U, V) upon the antibracket is given by the following
relation

D(F,G) = (DF,G) — (-1)*'")(F, DG). (6.1.6)
Finally, let us introduce the operator A
A=A+ %V (6.1.7)
with the properties

A =0, AU+UA=0,
A(F,G) = (AF,G) — (-1)*F)(F,AG), (6.1.8)

readily verified with allowance made for Eqs. ( 6.1.5), ( 6.1.6).
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6.2 Generating functional of Green’s functions

Now we define the generating functional of Green’s functions Z = Z[®*] as a functional
depending on the super-antifields in the form

Z[®*] = /d@'d@*'p[cb ]exp{ﬁ(S[@ ol
—UT[®] + (¥ — @*)«b’) } (6.2.9)

In Eq.( 6.2.9), S = S[®, ®*] is a quantum action satisfying the generating equation

Aexp{;S} =0, (6.2.10)
or, equivalently,
1
5(5, S)+ VS =ihAS, (6.2.11)

U = P[P] is a fermion functional introducing the gauge; h is the Planck constant. Besides,
the following notations

p[®*] = 6(/(19(1)*(9)), P*P = /d&@;(@)@f‘(e) (6.2.12)

are used.
An important property of the integrand in Eq. ( 6.2.9) for ®* = 0 is its invariance under
the following global supersymmetry transformations with a Grassmann parameter p:

a4 (0)
20

084(0) 9 4S8
a0 MogspA(n)

504 (0) =

504 (0) = p (6.2.13)

In fact, owing to Egs. ( 6.1.2), ( 6.1.3), ( 6.1.4), ( 6.2.10), ( 6.2.11), the transformations (
6.2.13) yield

08 = u( (S.9)+U+V) S) = thuAS + pUS, (6.2.14)
§(O*®) = —pUS, 6p[®@*] =0, SUY)=pulU?*¥ =0,
and the corresponding Berezinian Y is equal to

Y = exp{uAS}. (6.2.15)

6.3 Gauge independence

The transformations ( 6.2.13) permit one to establish the fact that the vacuum functional
Zy = Z[0] is independent of a choice of the gauge. Indeed, we shall change the gauge by the
rule ¥ — U 4 §U. In the functional integral for Zy sy we make the change of variables (
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6.2.13) with the parameter u = pu[®]. By virtue of Eq. ( 6.2.13), the Berezinian Y~ of the
change of variables in question reads

Y’ = exp{uAS — Uu}, (6.3.16)

hence the set of variables ® = ® + §®, ®* = ®&* 4 §®* is equivalent to the initial set ®, ®*.
Owing to Eqs. ( 6.2.14), ( 6.2.15) Zysy takes on the form

Zuisu / 4D d* pld*] exp { h (S[tb, &%) — UW[D)
_U(50[®] — ihu(@]) + <1>*<1>) } . (6.3.17)

Then, choosing for the parameter y the functional

p= —%6\1! , (6.3.18)

we find that Zy sy = Zy and conclude that the S-matrix is gauge independent. Note that
by virtue of the definitions ( 6.1.1), ( 6.1.3), ( 6.1.4), the transformations ( 6.2.13) take on
the form

504(0) = pUud*(0)

5% (0) = uV d* () + M(s, @;(9)) . (6.3.19)

Eq. ( 6.3.19) implies that from the geometrical viewpoint the operators U and V ( 6.1.3),
( 6.1.4) can be considered as generators of supertranslations realized on the supervariables
®4(0) and ®% (6) respectively.

6.4 Ward identity

Another consequence of the validity of the transformations ( 6.2.13) are the Ward identities
for the generating functional of Green’s functions. In fact, making in the functional integral
( 6.2.9) the change of variables ( 6.2.13) and taking Eqs. ( 6.2.14), ( 6.2.15) into account, we

arrive at the relation
/ d® dd*p[®*] / dea(ba 9( )(I)A(G)exp{

~UT[D] + (& — @*)@’) } =0, (6.4.20)

(S[cb’, ¥

S| .

representable, with allowance made for Egs. ( 6.1.4), ( 6.2.9), in the form

—/deaq’g‘e(e) 5(1);(9)2[@*] =VZ[3*]=0. (6.4.21)

Geometrically, the Ward identities ( 6.4.21) imply the fact that the functional Z[®*] is in-
variant under supertranslations of ®* with respect to the coordinate 6.
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It appears very important to establish a relation between the superfield approach in ques-
tion and the BV quantization rules. To this end, note that the components of superfields
®4(0) and super-antifields ®* (#) are defined by expansions in

dA(0) = p* + X0, D%(0) = —0Ja, (6.4.22)

e(¢") =e(Ja) =ea, e(dh) =c(A)=ca+1

and coincide with the set of variables in the BV quantization scheme (the choice of signs in
Eq. ( 6.4.22) is due to considerations of convenience).

6.5 Component representation

Consider by virtue of Eq. ( 6.4.22) the component form of the basic definitions and relations
given above.

First, the antibracket ( 6.1.1) and the operator A ( 6.1.2) can be represented in terms of
the component fields as follows

§F 6G . .
(F,G) = TA 5% (—)EEEOD(F - a) (6.5.23)
A
5 6
A = (—1)614(5(#@. (6.5.24)
A

Egs. (6.5.23), ( 6.5.24) coincide with the usual definitions of the antibracket and the operator
A in the framework of the BV quantization method (see Egs. ( 3.2.35), ( 3.2.41)).

Second, the corresponding component expressions for the operators U, V ( 6.1.3), ( 6.1.4)
read

6

— _(_1\earA_Y
U= -1V (6.5.25)
Vgl (6.5.26)

In virtue of Eqgs. ( 6.5.23), ( 6.5.25), ( 6.5.26) we find that the transformations ( 6.2.13)
(or, equivalently, ( 6.3.19)) take on the form

St =M, A =0,
0y = 05 J 0Ja=0 27
qf)A—u(W— A)7 A = U. (65 )
Note that for J = 0 the component form ( 6.5.27) of Egs. ( 6.2.13), ( 6.3.19) coincides
formally with the BRST transformations ( 3.5.46) in the BV quantization scheme. In this
connection, Egs. ( 6.2.13), ( 6.3.19) may be considered as a superfield form of the BRST
symmetry transformations.
Next, making use of Eq. ( 6.5.26), one readily obtains the component representation of
the Ward identities ( 6.4.21) for the functional Z(J, ¢*) = Z[®*]

5
Pa

Ja—Z(J,¢*) = 0. (6.5.28)
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It should also be pointed out that Eq. ( 6.5.28) realizes the usual form of the Ward identities
for gauge theories.

All things considered, the connection between the superfield approach concerned and the
BV quantization scheme is then established as follows. To begin with, note that owing to Eqs.
(6.2.12), ( 6.4.22), the integration measure in Eq. ( 6.2.9) is given in terms of the component
variables by

d® d®* p(P*) = dop dop™ dX\ dJ 6(J), (6.5.29)

and the component representation of the functional ®*® ( 6.2.12) reads
LD = N — Jap? . (6.5.30)
It turns out to be sufficient for our purpose to confine ourselves to a special choice

of solution to the generating equation ( 6.2.11) in the form of a functional S = S[®, ®*]
independent on the variables A4

58S 5S
D /dM&@A(e) =0

and linear in J4
S[®, 0% = S(¢, ¢*) + Jao™, (6.5.31)

where S = S(¢, ¢*) satisfies the usual QME ( 3.3.41)

1

5(5,5) = ihAS. (6.5.32)
Let us now choose the boundary condition to Eq. ( 6.5.32) in the form

S So, (6.5.33)

O*=h=0

where Sy is a classical gauge invariant action (note that Eq. ( 6.5.33) is compatible with the
generating equation ( 6.2.11)). Then, making use of Egs. ( 6.5.25), ( 6.5.29), ( 6.5.30) and
supposing ¥ = ¥(¢), we arrive at the following representation of the generating functional of
Green’s functions Z = Z(J) for the fields ¢*

200) = 2[00y = / do d6* d)exp {;L {S(Qz),qs*)
+<¢*A _ ;(;)AA n JA¢A} } (6.5.34)

The above relation defines, with allowance made for Eqs. ( 6.5.31)—( 6.5.33), the generating
functional of Green’s functions in the framework of the BV quantization formalism.
6.6 Generalization of gauge fixing

Note that there exists [97] generalization of gauge fixing procedure within superfield BRST
quantization which allows to present the BRST transformations in more symmetrical way
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and simultaneously to povide a natural generalization of the BV-formalism. To this end, we
define the vacuum functional Z as the following functional integral:

/d‘I) d®* p[®*] exp { h <S[(I> ] + X[®, D] + <1>*c1>> } (6.6.35)

Here, S = S[®, ®*] obeys the generating equation ( 6.2.11) while the (bosonic) gauge-fixing
functional X = X[®, ®*] is required to satisfy the equation

1
5 (6, X) —UX = ihAX. (6.6.36)

We have used the same definitions of antibracket ( , ) ( 6.1.1), operators A ( 6.1.2), U (
6.1.3), V ( 6.1.4) and the weight functional p[®*] ( 6.2.12).
(6.6

It is convenient to recast the equations ( 6.2.11), .36) into the equivalent form

Aexp{;S} =0, (6.6.37)

Aexp {;X} =0, (6.6.38)

using the operators

'y, (6.6.39)

_ i .
A=A+-V, A=A—
TR h

whose algebra reads as follows:
A?=0, A2=0, AA+AA=0. (6.6.40)

Using the nilpotency of the operator U, we observe that any functional X = UV¥[®], with
U[®] being an arbitrary fermionic functional, is obviously a solution of Eq. ( 6.6.36). The
above expression gives the precise form of the gauge-fixing functional proposed in ( 6.2.9)
when formulating the rules of superfield BRST quantization.

A remarkable property of the integrand in ( 6.6.35) is its invariance under the following
transformations of global supersymmetry with an anticommuting parameter u:

504(0) = pUd () + (4(0), X — W)p,
005 (0) = pVai(0) + (94(0), X — W)p. (6.6.41)
Eqgs. ( 6.6.41) being symmetrical ones are the transformations of BRST symmetry in the
framework of superfield quantization based on the gauge-fixing functional X introduced as a
solution of the corresponding generating equation ( 6.6.36).
It is not difficult to prove the gauge-dependence of the vacuum functional Z, Eq. ( 6.6.35).

Note, in the first place, that any admissible variation § X of the gauge-fixing functional X
should satisfy the equation

(X,0X)—UdX = ihAdX,
which can be represented in the form

Q(X)5X =0. (6.6.42)
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Here, we have introduced the graded linear, nilpotent operator Q(X ),

~

Q(X) =B(X)—ihA, Q*X)=0, (6.6.43)
where g(X ) stands for an operator acting by the rule
(X,F) = B(X)F, (6.6.44)

and possessing the property

B*(X)=8B @(X, X)) . (6.6.45)

~

By the nilpotency of the operator Q(X), any functional of the for
5X = Q(X)oV, (6.6.46)

with U being an arbitrary fermionic functional, obeys the equation ( 6.6.42). Furthermore,
as in the theorems proved by the study of [25, 27], one can establish the fact that any solution
0X of Eq. ( 6.6.42), vanishing when all the variables entering § X are equal to zero, has the
form ( 6.6.46), with a certain fermionic functional §U.

Let Zx = Z be the value of the vacuum functional ( 6.6.35) related to the gauge condition
chosen as a functional X. In the vacuum functional Zx,sx we now make the change of
variables ( 6.6.41) with a functional u = p[®, ®*], accompanied by an additional change

504 = (®4,5Y), 0% = (95,0Y), £(0Y) =1, (6.6.47)
where 0Y = —ifiu[®, *]. We obtain
Zxtox = /d(I) %" p[®*] exp {; (S +X 40X + 60X, + <I>*<I>> } . (6.6.48)
In ( 6.6.48), we have denoted
§X1 =2 ((X, 8Y) —USY — z‘hAéY) = 2Q(X)6Y. (6.6.49)
Let the functional §Y be chosen in the form (recall that 6X = Q(X)J0)

5y = ,%5\1,. (6.6.50)

Thereby we find
Zxysx = ZX, (6.6.51)

which implies the fact that the vacuum functional (and, hence, the S-matrix, by the equiva-
lence theorem [135]) does not depend on the gauge.

In component form, restricting ourselves to functionals S independent of A, and taking
into account ( 6.2.12), we arrive at the following representation of the vacuum functional in
Eq. ( 6.6.35):

7= / dé dg* dAexp {; {S(az ) + X (6, 6%, A) + ¢2AA} } (6.6.52)
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where S = S(¢, ¢*) obeys the QME ( 3.3.41).

The above result may be considered as an extention of the BV quantization procedure [39]
to a more general case of gauge-fixing. In fact, as stated above, the functional X = U¥[P]
is a solution of the generating equation ( 6.6.36). From the component representation of the
operator U

0
U=—(-1)x3— |
provided the functional ¥ is independent of the fields A4, ¥ = W(¢), it follows that the
gauge-fixing functional X

o
X(0,0) =~ ;I;ff) A

becomes identical with the gauge applied by the BV quantization method, thus leading to
the usual expression for the vacuum functional

Z = /d¢ d¢* dX\exp {; [S(¢, ) + (qb;, — ﬁq)x“] } (6.6.53)

It is well-known that the fermionic functional ¥ can always be chosen so as to ensure the non-
degeneracy of ( 6.6.53), which implies the fact that there always exists at least one permissible
choice of gauge (i.e. satisfying the generating equation ( 6.6.36)) which leads to the correct
vacuum functional in ( 6.6.35).

Note that there has been a fairly large amount of papers [130, 58, 59, 145, 2, 133, 97|
devoted to various superfield extensions of the BV-quantization method for gauge theories.
Thus, in [130, 58, 133] a superspace formulation of the action and BRST transformations for
Yang-Mills theories was found; in [2] a superfield representation of the generating operator A
in the BV-method was suggested; in [59] a superspace formulation of the BV-formalism was
given, in [145, 97] a closed superfield form of the BV quantization method [39] was obtained.
In the study of [21, 22|, a superfield quantization in canonical formalism has been proposed.

Recall once again that the Lagrangian quantization rules for general gauge theories on a
basis of a superfield realization of the standard BRST symmetry [145] allow to consider both
the BRST transformations and the Ward identities from geometrical point of view. The Ward
identities ( 6.4.21) imply the invariance of the generating functional Z[®*] under translations
in superspace (2*, §) with respect to the Grassmann coordinate . The BRST transformations
of fields are realized in the form of translantions in superspace along the coordinate 6.



Chapter 7

Superfield extended BRST Quantization

In this Chapter we will demonstrate a possibility to construct for general gauge theories
a superfield covariant quantization [144] based on the BRST-antiBRST invariance principle.

7.1 Superspace, extended antibrackets, operators A“, V¢,
Ua

As usually, the condensed notations by De Witt [75] are used. Scalar anticommuting coordi-
nates 0% form an Sp(2)-doublet. Lowering the Sp(2) indices is given by the rule 6, = £,,6°.
Derivatives with respect to 8% are understood as the left-hand ones. Integration over 6% is

given by
/d29 =0, /d29 0" =0, /d29 076" = e,
For any function f(6) the equalities hold

af) _
/d29 T 0.

Any function of 8 can be represented in the form

F(6) = fo+ £ + 5 s’

Now let us introduce a superspace with coordinates (z*, %), where z* (. =0,1,...,d — 1)
are the space-time coordinates and 0% (a = 1,2) are anticommuting scalar coordinates. Let
®4(0), e(®4(0)) = €4 be a set of superfields with the following restriction

4(0)|,_, = ¢,

where ¢ are the fields of configuration space in the Sp(2)-covariant Lagrangian quantiza-
tion [25, 26]. With each superfield®* () we associate one supersource ®(6) of the same
Grassmann parity

8(@,4(9)) =£€A.
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In terms of supervariables ®4(0), ®4(0) we define for any functionals F = F(®,®), G =
G(®, ®) the super-antibrackets

. §F cp1 006G
(F,G)* = /d29{5¢)A(9)(—1) +189a5®(9) (7.1.1)

—(F « G)(l)(E(F)H)(E(G)H)}

which have the algebraic properties coinciding with properties of the extended antibrackets
in the Sp(2)-formalism ( 4.2.2).
Let us introduce the operators A® V¢ and U® by the rule

0 4
a _ 2 l _
A= /d 95<1>A(9) 00, 09 4(0) (7.1.2)

a_ [ 12,004(0)
1% _/d9 56, .00 (7.1.3)
o [ 2, 0040) 4
U _/de 5, A0 (7.1.4)

Operators V@ and U* have simple geometrical interpretation in terms of representation of
the translation operators along Grassmann variables 6 realized on supervariables ®% and
d4 respectively.

One can easily check that the algebra of the operators ( 7.1.2), ( 7.1.3), ( 7.1.4) coin-
cides with the algebra of correspoinding operators used in the modified version of triplectic
quantization ( 5.6.28) while the action of these operators D* = (A%, V% U®) upon the super-
antibrackets is given by the relations ( 5.6.29).

It is also convenient to introduce the extended operators A®

A% = A® 4 %V“. (7.1.5)

These operators satisfy the relations

AleAbt = 0. (7.1.6)

7.2 Generating functional of Green’s functions

The basic object of the superfield quantization in question is the quantum action S = S(®, ).
We require S to be a solution to the following generating equations

- i
A =S=0
.t
or, equivalently,

1
5(S.9)" + VS = ihA"S. (7.2.7)
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The generating functional of the Green functions Z = Z(®) for superfields ®*(6) we define
as

Z(®) = /[d@’] [dD'] p(®’) exp {; [S(<I>’, D)+ &P — (7.2.8)
- %sabU’aU’bF(qﬂ) - @@’} } ,

where F(®) is the boson gauge functional, p(®) is the weight functional having the form of
functional é—function

p(®) =5 ( / 20 i)(e)) , (7.2.9)
and the notation
5D = / 20 & ,(0)04 (6) (7.2.10)

is used.

7.3 Extended BRST symmetry and gauge independence

The introduced above generating functional ( 7.2.8) possesses two important properties.
Firstly, the integrand in ( 7.2.8) for ® = 0 is invariant under the transformations of global
supersymmetry

a4 (0)
90,

604 (0) = pia e(pa) = 1, (7.3.11)

= 0P 4(0) o0 48
6P A(0) = pa o0, uaﬁiﬂai&ly“(@)

(7.3.12)

on account of the generating equations ( 7.2.7) and invariance of the weight functional ( 7.2.9)
under the transformations ( 7.3.12)

5p(®) = 0. (7.3.13)

In ( 7.3.11), ( 7.3.12) p, is a Sp(2)—doublet of the constant anticommuting Grassmann pa-
rameters. Secondly, the vacuum functional Z(0) does not depend on a choice of the gauge
boson F within the superfield scheme proposed ( 7.2.7), ( 7.2.8), ( 7.2.9). Indeed, suppose
Zp = Z(0). We shall change the gauge F(®) — F(®)+ JF(®). In the functional integral for
Zpysr we make the change of variables ( 7.3.11), ( 7.3.12), choosing for the parameters p,

i b
=—— F(®).
Ha 2h5abU SF (D)
Taking into account properties of U%, ( 7.2.7) and ( 7.3.13), we find that
Zpisr = Zp (7.3.14)

and, hence, the S—matrix is gauge-invariant.
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The transformations ( 7.3.11), ( 7.3.12) realize the BRST- and antiBRST- symmetry in
the superfield approach to quantum gauge theory. Allowing for ( 7.1.1), ( 7.1.3), ( 7.1.4) one
can rewrite these transformations in the form

04(0) = pU®4(9), (7.3.15)
0PA(0) = paVPA(D) + pa(W, ®4(6))°. (7.3.16)

From ( 7.3.15), ( 7.3.16) we conclude that the BRST-antiBRST transformations are realized
as supertranslations in the §%-directions on supervariables ®4(#). This gives a geometric
interpretation of the BRST- and antiBRST- symmetry for arbitrary gauge theory.

7.4 Ward identities

The invariance of the vacuum functional Z(0) under the BRST- and antiBRST- transforma-
tions leads to the presence of gauge Ward identities. Let us consider the derivation of these
identities. To do this we shall use the standard assumptions on functional integral properties,
in particular,

[Jiamiaato@ e o, [usjaaio@) Y

e =0. (7.4.17)

Taking into account the explicit form of the operators A® and ( 7.4.17), we have the following
equalities
/ [d®'][d®"]p(®") A" exp %[S((I)/, ') + &' P — (7.4.18)

1 a =
— §EabU, U/bF((I)/) — (I)(I),]} =0.

Let us act on the exponential by the operators A% and take into account the algebra of the
operators A*, V* U® ( 5.6.28) and ( 7.2.7). We obtain

VeZ(®) =0. (7.4.19)

Equations ( 7.4.19) represent the superfield form of Ward identities for generating functional
of Green functions.

From ( 7.4.19) one can establish a new (geometric) interpretation of the Ward identities in
quantum gauge theory. Indeed, the Ward identities express the invariance of the generating
functionals Z under supertranslations in the 8%—directions.

7.5 Component representation

It is useful to compare the suggested superfield extended BRST quantization for general gauge
theories with the Sp(2)—covariant Lagrangian quantization [25, 26, 27] considered in Section
4 and with the triplectic quantization presented in Section 5. To this end, we present, first
of all, the above superfield quantization scheme in the component form.
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For the supervariables ®4 () and ® 4(#) we shall use the following notations in the 6%
expansions

d4(0) = ¢ + 740, + %AAQGQ",
(1) =ex+1, e(A\) = eq,
() = pa — 0"l — %aaeaJAv
e(Pha) =ca+1, e(Ja) = ca.

Then the operators A ( 7.1.2), V* ( 7.1.3), U* ( 7.1.4) and the super-antibrackets ( 7.1.1)
have the form

§F §G  ,, 6F 6G

(F,G)* = 58 S5 +e 5 5, (7.5.20)
—(F < G) (,1)(6(F)+1)(€(G)+1)7

A% = (_1)”5% 5(;4& + (—1)““5‘“’% M%’ (7.5.21)

Ve = s“bqugb(s(gA —Ja 5;}@, (7.5.22)

U® = (—1)54£%\4 57ff4b - (—1)%“&%. (7.5.23)

From ( 7.5.20), ( 7.5.21) there follow the definitions of super-antibrackets and A® used in con-
struction of the superfield extended BRST quantization lead to analogous objects of triplectic
quantization ( 5.1.1), ( 5.2.3).

In the component form the gauge-fixing action reads

1 arh 1 4. 8°F g, 6F
2€abU UF(®) = 5CabT 5¢A5¢BW 567
L pa O°F 5 4. O°F g
0 (— | + a__ - -
2 57TAa6ﬂ_Bb Q 5¢A5ﬂ,3a

M- (7.5.24)

For the functional ®® ( 7.2.10), we have
P = part + ¢, — Jag?.
The integration measure
[d®][d®]p(D) = [d¢][d¢*][dn][d¢][dN][dT]5(]) (7.5.25)

coincides, in fact, with the measures in functional integrals of the Sp(2)—quantization [25, 26,
27] and the triplectic quantization [28, 35, 96].

One can now readily establish a connection with both the Sp(2)-covariant quantization.
To do this, we note that due to the special form of the integration measure ( 7.5.25) it
is sufficient to consider a solution to the generating equations ( 7.2.7) when J4 = 0 and
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to require, in addition, that the functional S be independent on the variables 74, A4,

ie. S = S5(¢,¢% ¢). From component representations ( 7.5.20), ( 7.5.21), ( 7.5.22) we can
conclude that the functional S = S(¢, ¢*, ¢) satisfies the generating equations of the Sp(2)—
covariant quantization method. Choose the gauge fixing functional F' as to depend on the

variables ¢ only
F = F(g).
Next, suppose that the boundary condition for S(¢, $*, ) has the form

S(¢,9". )

where Sy is a classical gauge invariant action. Then we find in ( 7.2.8) the exact form of the
generating functional of Green functions in the Sp(2)—covariant quantization.

In turn, let us consider the case when S does not depend on A* and J4 = 0. Then the
action S = S(¢,¢*, 7, $) satisfies the generating equations of modified triplectic quantiza-
tion ( 5.6.33). Note that the action X = 1e,UUF(®) ( 7.5.24) satisfies the generating
equations for gauge fixing functional ( 5.6.37) within the modified triplectic method. Then
the generating fuctional in ( 7.2.8) presents the functional ( 5.6.36) corresponding to special
choice of the gauge in the modified triplectic formalism.

The form ( 7.4.19) of the Ward identities for Z(®), rewritten in terms of the components

¢ =d=h=0= 50, (7.5.26)

ab jx 67
S Waos
coincides with the one derived in [25].

The BRST-antiBRST symmetry transformations ( 7.3.11), ( 7.3.12) (or, equivalently, (
7.3.15), ( 7.3.16)) for arbitrary gauge theories acquire, within the superfield formalism, a clear
geometric meaning, since they are realized as supertranslations in superspace (z*, %) along
the Grassmann coordinates 6¢.

The superfield description provides a new outlook of the Ward identities in the quantum
theory of gauge fields, thus revealing their geometric contents. Indeed, the identities ( 7.4.19)
for the generating functional of Green’s functions Z = Z(®) are nothing but the fact that Z
is invariant under supertranslations in superspace. Also revealed are the role and geometric

origin of the operators V', U® which realize the supertranslations in terms of the variables
CI)A(Q): (I)A((g)

0, (7.5.27)



Chapter 8

osp(1,2)—Covariant Quantization

In Chapter 4 we have presented the general method for quantizing gauge theories in the
Lagrangian formalism proposed in [25, 26, 27] which is based on extended BRST symmetry,
i.e. simultaneous invariance under both BRST and antiBRST transformations.

Although this formalism is seemingly manifestly Sp(2)-covariant, among the solutions
of the master equations, despite those allowed by the above requirements, there are both
Sp(2)-symmetric and Sp(2)-nonsymmetric ones. The symmetric solutions may be singled out
by the explicit requirement of invariance under Sp(2) transformations by additional master
equations whose generating differential operators A, (o = 0,+,—) are related to the gen-
erators of the symplectic group Sp(2). The algebra of these operators may be chosen to
obey the orthosymplectic superalgebra osp(1,2). Moreover, if also massive fields should be
considered to circumvent possible infrared singularities occuring in the process of subtracting
ultraviolet divergences, without breaking the extended BRST symmetry, then this algebra
appears necessarily. Let us also mention that the osp(1,2) superalgebra is present in many
problems in which N = 1 superconformal symmetry is involved; e.g. in the minimal N =1
superconformal models this symmetry appears in the light-cone approach to two-dimensional
supergravity [169].

The goal of the present Chapter will be to generalize the Sp(2) - quantization procedure to
another one being osp(1, 2)-covariant [98, 99] and to get an answer on the intrigue question:
What happens if we extend in a non-trivial way the usual algebra of generating operators
A? in the Sp(2) formalisn to that when the fundamental property of nilpotency for every
operator A% a = 1,2 will be lost?. We will show that an answer to this question consists
in the concluzion of gauge independence violation of the S-matrix when the characteristic
parameter destroying the nilpotency of A% a = 1,2 is not equal to zero.

8.1 New algebraic structure

The total configuration space ¢ of osp(1,2) coincides with the configuration space of Sp(2)
method (see ( 4.1.1)). To realize the osp(1,2) symmetry, one needs, except antifields ¢, and
¢4, also to introduce additional variables 14, €(na) = €a.

Now let us introduce the extended antibrackets (F,G)® in the same manner as in the
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Sp(2)-formalism Eqs.( 4.2.2) and a new even graded algebraic structure {F, G}, by the rule

oF 4G 0G OF
F,GYo = (00) gt | — — 4 (—1)<Iel&) 2 1.1
where we used the following notations
(0a) % = (90)%a(PL) 45 - (8.1.2)

Here, we have introduced the matrix (P;)5¢

(P = {oioy (ifA=i,B=j); 026 (ifA=ao,B=p);

5 (87650 + 62.6,°) (if A = agao, B = fobo); 0 (otherwise)}, (8.1.3)

and the matrices o, (a = 0,+, —) ,which are defined by the rule

wra=( "7 ) = (90) @r=(04)-

From the definitions ( 4.2.2) and ( 8.1.1) it follows
c({F,G}a) = e(F) +¢(G),  {F,G}a = {G, Fa(~1)",
(F,G)") = e(F) +e(G)+1, (F,G)"=—(G,F)*(-1)«HDED, (8.1.4)
ie. {F, G}, ((F,G)*) defines an even (odd) graded bracket. Furthermore, it holds
{F,GH}o = {F,G}oH + G{F, H}o(-1)-")<(),
(F,GH)* = (F,G)*H + G(F, H)*(—1)€F+De@) (8.1.5)

i.e. both brackets act on the algebra of functions under multiplications.
Next, one can arrive at the following Jacobi identities satisfied by two brackets:

{{F., G} o, H} 5 (= 1)) 4 cyelic(F, G, H) =0, (8.1.6)

((F,G){e, H)b (—=1)(cE+DEE+Y) | eyclic(F, G, H) = 0,

(.6, H1)o — (RGP ()@ (-1 P4 (819
+cyclic(F,G,H) = 0.

where the square (curly) bracket means antisymmetrization (symmetrization) in the indices «
and [ (a and b), respectively. Identities ( 8.1.8) are usual Jacobi ones for extended antibrackets
while Eqgs.( 8.1.6), ( 8.1.9) present new type of Jacobi identities in this formalism.

Then the operators A%, A, are introduced

] ~ 1

A% — AC L “ya A=A 1.
where we used the notations
51 1) A 51 o

A% — (—1)¢4 A, = (—1)4 (o, _— 1.1

R () (005" 55 (8.1.10)
1) 1) -0 1)

Ve = e, — — +m?(P) 5o —— — m2e®(P) Beoy . — 8.1.11
oy 5da na 365, (Py)ar¢n 367, (P-)av 9B 1A ( )



118

° +(0h(00)’a + ¢Ea(0a)BA)L +n5(0a) (8.1.12)

_ 7 B _Y
Va—¢B(‘7a) A(S(EA 5¢2a

B —_
A577A
and the following abbrevations:

(P-)A8 = (Pr)4; — (Py)A6; + 0505, (Pr)4 = 05(Py)4s-

It is known that the extended antibrackets, being odd graded, may be exstracted from
the action of second-order operators A® on a product of two functionals F' and G

A*(FG) = (A*F)G + F(A*G)(—1)"F) + (F,G)*(—1)<").
A similar statement is valid for the new even graded brackets ( 8.1.1)
AL(FG) = (ALF)G+ F(ALG) +{F,G}a

in contrast with the Poisson bracket which is the even graded bracket defined on a phase
space but for which does not exist a creating operator in the sence discussed here. The
reason is different symmetry properties of these two kinds of brackets: the Poisson bracket is
antisymmetrical while new brackets are symmetrical.

From definitions ( 8.1.10), ( 8.1.11), ( 8.1.12) one can straightforwardly derive the following
algebra of operators A% A,, V%, V,

[Aa, Ag] =0, {A® A’} =0, [An, A% =0, (8.1.13)

Vo, Vol = €05 Vay  {V2, VY= —m?(0®) Vo, [Va, Vil = Vi(oa),".  (8.1.14)
[Aa, Vo] + Va, Agl = €,5' Ay, (8.1.15)

{A®VPY +{Va AP} = —m? (o)A, (8.1.16)

[Au, V2] + [Va, A% = Ab(04)," (8.1.17)

Applying the identities ( 8.1.13) — ( 8.1.17) to a product of two functions F' and G, one
can ectablish the following relations which define the action of the operators A%, A, V,¢ and
V, upon the brackets:

AdF,Glg = {AWF, Gl +1{F, AnGlga,
AlFG = (ARG + (F,AlG)P (—1) D,
Ag(F,G) — AYF,GYo(-1)F) = (ALF,G)* + (F,AnG)* —

—{AF,GYo(-1)F) — {F, A°G},

Vel F, G} = €, {F, G}y + {Vio F, G} g + {F, VGl g,

V7;{La(F7 G)b} = _mZ(U(X)ab{Fv G}Oé + (Vn{maFa G)b} + (F’ VriaG)b}(_l)e(F)+l7
Vo F,G)* — VA{F, G o (1) F) = (F,G)b(04),* + (VoF,G)* + (F,V,G)* —
—{VaF,GYa (1)) —{F, V2 Gla.
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For any bosonic functional S, £(S) = 0 the following relations hold:

5,5} e Stg =0, ((S, S)la 9) =0, {(S,9)%8}a — ({S,S}a,8)* =0, (8.1.18)

30{S, Sty = {AwS Sta,
tAte(g 9 = (Ales 9)b, (8.1.19)
1(AL(S,9)* —AYS,S}.) = (AuS,8)" — {AS,S}a,

and

%‘/[a{sa S}B] = {‘/[ocSvS}ﬁ] +%€aﬂ’y{sa S}’)’7
ylas, 9 = (V28,9 — Im?(0%)*{S, S}a, (8.1.20)
L(Va(S,9) = Ve{S,S}a) = (VaS,8)" —{V2S,S}ta + (S, 9)(0a)s™

As long as m # 0 (the new (mass) parameter of the approach), the operators A%, are
neither nilpotent nor do they anticommute among themselves; instead, together with the
operators A, they generate a superalgebra isomorphic to osp(1,2) (see Appendix A):

[Aa; Ag] = (i/h)eag Ay,
[Aa, A% = (i/R)A,(00)y",

(A%, AL} = —(i/h)ym?(a®) ™ Aa, (8.1.21)
where e, is the antisymmetric tensor, eoy— = 1. From Eqs.( 8.1.21) we see that when

m = 0 it follows the usual anticommutative relations ( 4.3.6) for operators A% of Sp(2) -
quantization.

8.2 Generating equations

Let us introduce a boson action S,, = S,,(¢, #*,$,n) which is required to satisfy the gener-
ating equations of osp(1,2) - quantization:

A% exp{(i/h)Sm} = 0, (8.2.22)

Ay exp{(i/h)Sm} =0 (8.2.23)

or equivalently

1
5 (Smy S)* + VS = ihA"S,,,

1
é{Sm, Sm,}a + VaSm, = ’LhAaSm
with the usual boundary condition

Sm

$*=g=n=h=0 = S0-
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In order to lift the degeneracy of S, we follow the general gauge-fixing procedure intro-
ducing the gauge fixed action

xp{(i/h)Sext} = U (F) exp{(i/h) S}
where the operator U,,(F) = exp{(h/i)T(F)} is defined by the rule

T (F) = gear (B, A%, FI} + (i/m)m?F

If the gauge-fixing boson functional is assumed to depend only on the fields, F' = F(¢*), then
one gets

. SF [ 6 ) h 5§ 8F ¢ i
T.(F)= — | — —im?2(P )2 — ) — — —m?F. (8.2.24
m( ) 5¢A<5¢A Qm( )B(SnB) 2i6ab5¢za5¢A6¢Bé¢*Bb+hm (8 )

When m = 0 operator T}, (F) ( 8.2.24) coincide with operator T'(F) ( 4.5.16) in the Sp(2)-
scheme.

Let us prove that Sy, ex; Obeys the generating equations ( 8.2.22) and ( 8.2.23) as well.
Clearly, since A% A, and U,,(F) do not commute with each other this proof will be more
involved than in the Sp(2)- approach. This is due to the fact that, neither

(A8, T (F)] = L(i/Wym?(00)% AL, A%, F)]
nor
B Ton(F)] = hear{Al, (A%, [Ba, FII} + (i/1)*m?[Aq, F]

does vanish, since due to the nonlinearity of A, one cannot require the strong condition
[An, F] = 0. However, a direct verification shows that T,,(F) commutes with any term on
the right-hand side of both previous relations, i.e. it holds

(Lo (), (A5, T (F)]) = [T (F), [Ba, Ty (F)]] = 0.
Then, by the help of ( 8.2.22) and ( 8.2.23) one obtains

[Ag, Un(F)] = (/1)U ()AL, T (F)], - [, U (F)] = (/1)U (F)[Aa, T (F)].
Let us require

_ 0F 65y,
_ A
(Bar FlSi = (00)5" 57 5o =0,

then, taking into account that S,, solves the generating equations, it is easily seen that

[A% U,,(F)] and [A,, Uy, (F)] vanish after acting on exp{(i/h)S},
(A, Un(F) exp{(i/1)Sm} = 0, [Aa, Un(F)] exp{(i/h)Sm} = 0.
Summarizing, we have the results
A% exp{(i/h)Sm.ext} =0, Ay exp{(i/h)Sm.ext} =0, (8.2.25)

i.e. the gauge-fixed action Sy, exy satisfies the same generating equations ( 8.2.22) and ( 8.2.23)
as S,.
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8.3 Vacuum functional

Now let us define the vacuum functional the theory in question

Z1n(0) = / 46 exp{(i/1) S e (67},
where

Ser,eH(¢A) = Sm,ext (d)A; ¢j<4a7 quv 77A) ‘¢Z:q§:n:0'
It can be represented in the form
Z(0) = / dep™ dna dehy, dr® da dA* 5(na) exp{(i/h)(Sm.ext + Wx)}  (8.3.26)
with
Wx = (na — §m*(P1)505)0" + ¢aam™* + da(\! — gm®(P_)5¢").
where we have extended the space of variables by introducing the auxiliary fields 74¢ and

A,
Then we express 6(n4) by

5(na) = / dcA exp{(i/R)nact}

and change in ( 8.3.26) the integration variables ¢* and A\* according to ¢4 — ¢4 + ¢4 and
M =M 4+ Im?(Po)4 — (Pr)8)¢B. Then, for Z,,(0) this yields

Z,(0) = / dp™ dna dC Ay, dr® da dN exp{(i/B)(SS, o + W)},

where SS, .. is obtained from S,, ey by performing the replacement ¢ — ¢4 + ¢4

m,ex

The term Wx may be cast into the osp(1,2)-invariant form
Wx = (3€ar(Vin = Up) (Vi = Up) +m*) X, X = a0?, (Vo +Ua)X =0,
with V¢ and V,, defined in ( 8.1.11) and ( 8.1.12), satisfying the osp(1, 2)-superalgebra
Var Vol = € Var Ve Vil = Vin(0a)s®,  {Vim, Vin} = —m?(0*)*Va

and the operators U, and U, are defined according to

a € a 6 € a 5
Ui = =0t sl b ()N S
€ ac 6 € a 5
(~)“mPe(Pr)gio” <y — (~) e mP(PO)fa™ o (83.27)
1) 1)
B A 9 B A Ol
Uso = ¢7(0a)p W+>\ (0a)p WJF

1) 0,
(F 0wt + 75 (00)* ) 5 + Pl 5 (8:3.28)
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The operators U% and U, obey the osp(1,2)-superalgebra as well
[Ua, Ul = 7€aﬁ’yU’77 [Ua,Un] = 7Urbn(o'a)ba7 {Um Urbn} = mz(ga)abUa

Inserting into ( 8.3.26) the relation ( 8.2.24) and integrating by parts this yields
Zm(0) = / dp™ dna dC? ey, dn® dga dA* exp{(i/h)(SS, + W& + W)} (8-3.29)

with the following expression for Wg:

oF

WF:iW

A+ 3m® (Pr)o") — eam
which may be recast into the osp(1, 2)-invariant form
Wr = (3eaUp Ul +m?)F, U,F =0.

(Again, S$, and Wé are obtained from S, and W g, respectively, by carrying out the replace-
ment ¢4 — ¢4 + (1)

8.4 Global supersymmetries

We assert now that ( 8.3.26) is invariant under the following (global) transformations:

S = paUSo%, 0mC =0, Omba = paVida,
6m7TAb = HaUgLﬂ-Aba 5m¢2b = Havn(;(lsfqb + ﬂa(SEm ij:\b)av
oA = Ug AU, Smna = paViana, (8.4.30)

where 4, €(pa) = 1, is a Sp(2)-doublet of constant anticommuting parameters. The trans-
formations ( 8.4.30) realize the m-extended BRST symmetry in the space of variables ¢4,
Q{)Aa ¢f4a7 na, ﬂ-Aaa )‘A and CA'

Moreover, it is straightforward to check that ( 8.3.26) is also invariant under the following
transformations:

S = 0°Uyd?, 8¢ =0°UsCh, 6ds =0"Voga,
oAt = UL, So, = 0°Vagh,, 0N = 0°U N,
ona = 0°Vana +0°{SS,,m4}as (8.4.31)

where 6%, €(0*) = 0, are constant commuting parameters. The transformations ( 8.4.31)
realize the Sp(2)-symmetry in the space of variables ¢, ¢4, ¢%,, na, 7%, A\ and (4.

In principle, for a general gauge functional F', u, may be assumed to depend on all these
variables ¢4, ¢4, P> NA, 4% A and (4. As long as F depends only on the fields it is
sufficient for 11, to depend on ¢4 and 74¢ only. Then the symmetry of the vacuum functional
Z, (0) with respect to the transformations ( 8.4.30) and ( 8.4.31) permits to study the question
whether the mass dependent terms of the action violate the independence of the S-matrix on
the choice of the gauge.

Indeed, let us change the gauge-fixing functional F(¢) — F(¢$) 4+ 0F(¢). Then the gauge-
fixing term Wp changes according to

Wi — Weisp = Wr + Wsp, Wip = (3eaULUSL +m?)0F (). (8.4.32)
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Now, performing in ( 8.3.29) the transformations ( 8.4.30), we choose

7

b
ZheabUmaF(d))'

Ha = Ma((ba 77) =

This induces the factor exp(UZ ) in the integration measure. Combining its exponent with
Wr leads to

Wi — Wr + (/i) Ul = Wr — 3eaULULIF(¢) = Wp — Wip + m?0F ().

By comparison with ( 8.4.32) we see that the mass term m?F in W violates the independence
of the vacuum functional Z,,(0) on the choice of the gauge. This result, together with the
equivalence theorem [135], is sufficient to prove that the same is true also for the S-matrix.

One may try to compensate this undesired term m25F(¢) by means of an additional
change of variables. But this change should not destroy the form of the action arrived at the
previous stage. However, an additional change of variables leads to a Berezinian which is equal
to one because o, are traceless. Therefore, the unwanted term could never be compensated
and the S-matrix within this formalism becomes gauge dependent when m # 0. It means to
obtain physical results in this formalism one needs after performing of all calculations to take
the limit m — 0 and to wait for the gauge independence of the S-matrix.

8.5 Ward identities

Finally, we shall derive the Ward identities for the extended BRST- and the Sp(2)-symmetries.
To begin with, let us introduce the generating functional of the Green functions:

293 6300 10) = [ 6 xp{ (/1) (S (0 G0 h0ma) + Ja0") ). (8539)

If we multiply Eqs. ( 8.2.25) from the left by exp{(i/h)Ja¢"} and integrate over ¢ we get
[0 expl (/146" YA exp{(0/1)S (6, 00s Bama )} =0

[ 46 exp{(0/1) 946" Ba exp{ (/1)Suns (0%, Shesama)} =0, (8:530)

Now, integrating by parts and assuming the integrated expressions to vanish, we can rewrite
the resulting equalities by the help of the definition ( 8.5.33) as

) _
(JAT - VTZ)Zm(JAv (bj?{aa ¢A7 TIA) = 07
5¢Aa
) _
((Ua)BAJA(SniB - Va>Zm(JA§ oy ¢A777A) =0, (8.5.35)

which are the Ward identities for the generating functional of Green’s functions.
Introducing as usual the generating functional of the vertex functions,

(h/i) InZm (T 45 Plas DA, 1a) — Jad™,
51an(JAa qﬁjla, ¢Aa TIA)
0Ja ’

Lo (¢ @lags P, 14)

¢t = (n/i)

(8.5.36)
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we obtain
%(Fm, )+ Vvel, =0, %{Fm, Tta+ Vol = 0. (8.5.37)

For Yang-Mills theories the first identities in ( 8.5.37) are the Slavnov-Taylor identities of
the extended BRST symmetries. Furthermore, choosing for o, the representation mentioned
above the second identities in ( 8.5.37) express for a = 0 the ghost number conservation and,
in Yang-Mills theories, for « = (+, —) the Delduc-Sorella identities of the Sp(2)-symmetry
[102].



Appendix A

Lie Groups and Lie Algebras, Lie
Superalgebras and Lie Groups with
Grassmann Structure

A Lie group G is defined by the following properties:
1. G is an abstract group,

2. (G is an analytic manifold of dimension dg = n, i.e. their elements depend analytically
on the local group parameters, g(¢),& = (&1,...,&n),

3. the map (g(£),9(£)) — 9(£g1(¢') is analytic.
Usually the parametrization will be chosen such that ¢g(0) = e (the unit element).
A Lie group may be considered as the group of continuous transformations acting on some
(vector) space V' with elements x € V' according to
9(©) : ©ra(§) = (g2)(§) with @ = (g2)(0). (A.0.)

Given a linear independent basis {e;} of the space V the infinitesimal transformations of the
coordinates in this basis, v = z"e;, are given by
d(gz)’

do' =l (z)de®  with  ul (x) = 9Ee . (A.0.2)
£=0

An infinitesimal change of a function F'(x) on V is given by

oF " . o s,
= Gxidx =d¢* X, F with X, —ua(x)axi

being the infinitesimal generators of the Lie group. The quantities u’ (x) define a velocity
field on the space V which determine the orbit of x under the group actions generated by X,;
the condition of integrability reads

o oul ol » ) . .
i) 2B ) 2D i) with = (A04)

dF(x) (A.0.3)
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the quantities f,;,° are called structure constants of the Lie group. The equation (xxx) for
the generators of the gauge transformations on the functionals of the (bosonic) fields is a
generalization of ( A.0.4).

The infinitesimal generators X, of the Lie group form a linear independent basis of the Lie
algebra Lie (G) of the group G. Because of eq. ( A.0.4) the obey the following commutation
relations

[Xa, Xp) = far“Xe (A.0.5)

which uniquely determine the Lie algebra (having arbitrary elements X = £*X, € Lie (G))
with the Lie product defined by

(Lie (G),Lie (G)) 2 (X, Y)— X oY =[X,Y] € Lie (G) VX,Y € Lie(G). (A.0.6)
Because of the Jacobi identity an analogous relation for the structure constants follow:

HXaa Xb]a XC] + [[Xba Xc}v Xa] + [[Xca Xa}v Xb} =0 (A07)
fab® fac® + foo faa® + fea® far® = 0. (A.0.8)

A Lie group is called abelian if all its generators commute, i.e. if f,;,© = 0. A subset of the
generators, X,,p=1,...,7 < n generates a subgroup H C G iff f,,” =0 for p,o <r,7 > r;
this subgroup is called an invariant subgroup iff f,,” =0 for p <r, 7> r.

By the help of the structure constants a symmetric second rank tensor g,p;, the so-called
Cartan metric, can be introduced:

Gab = fadcfbcdv (A09)

which serves to specify the Lie groups. A Lie group is called semi-simple iff the Cartan
metric is non-degenerate, i.e. det|gas| # 0, and it is compact if the Cartan metric is positive
(or negative) definite. Furthermore, by the help of the Cartan metric the group indices can
be raised and lowered. Especially, it can be shown that

fabc = fabdgdc (AO].O)

can be choosen totally antisymmetric; from this it follows that a semi-simple Lie group does
not have any abelian invariant subgroup (besides the unit element). A Lie group is called
simple if it has no invariant subgroup besides the unit element. In the case of semi-simple Lie
groups the connection withGrassmann Variables, Berezinian and All That the correcponding
Lie algebra is given by !

99(&)
N

9(§) =exp{{"X,} with X, = (A.0.11)

and the generators X, are skew-hermitian Xl = —-X,.
Let us furthermore note that by the help of the Cartan metric an infinitesimal line element
on the group manifold is defined,

ds*(€) = gapd€®dg?, (A.0.12)

IContrary to the normal use in physical context where the generators of the group transformations are
taken to be hermitian operators and being related to the observables of the theory here we have taken the
mathematicians convention. therwise, we had to to change the generators according to X, — —iX,.
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which is left (and right) invariant under the action of the group. Therefore, the group manifold
is a Riemannian (or pseudo Riemannian) space if the metric is definite (or indefinite). If the
group is compact there exists a left (and right) invariant measure u(-), the Haar measure,
such that for any function f there exists an integral over the group,

1) = [ H@)dnte) with du(ong) = diam) = du(a); (A.0.13)
in terms of the group parameters it is given according to

dp(g) = [ d*p(€) = [ d¢"“p(&) (A.0.14)

with the measure function p(£) ensuring invariance under parameter changes. Of course, the

group volume is given by p(1) = vol (G) < oo. That measure may be constructed by starting
with the observation that

0
g™ dg) = 7 ) = 07O e e = O, (A0.15

defines a left (and right) invariant differential form on the Lie algebra, such that the volume
element may be given by

dg=wi Awa A ... ANwy = p(E)dEY NdE2 A ... A dE™. (A.0.16)

Remark: In the case of Euler’s parametrization of the group SO(3),
g(¢,9,1/)) = RZ(Q{))RZI(&)RZ(d))? 0 S ¢ S 27T7 0 S 0 S , O S 1/’ S 271—7

we obtain for the normalized measure

dg = 1 sin Odpdldap, volG = 1.
82

Because of the Jacobi identity the structure constants determine a (matrix) representation
of the Lie algebra, the so-called adjoint or regular representation,

Lie(G) > X —ad X : [X,Y] = (ad X)Y (A.0.17)

which is uniquely determined through the following equivalence for their basis elements:
(Xo)o© = (adX,)p" = fap°. It can be understood as the action of the (fixed) element £°X,, of
the Lie algebra on an arbitrary basis element X, to give another basis element X, according
to £4[X,, Xp] = €%(adX,)p“X,, i.e. the Lie algebra itself — by their property to be a vector
space — serves as representation space for arbitrary elements X = £%X, of the Lie algebra.
In terms of the adjoint representation it is possible to introduce a bilinear form, the Killing
form which, taken for the basis elements, defines the Cartan metric:

K(X,)Y):=tr((adX) - (adY)) = g = K (X4, Xp). (A.0.18)
The adjoint representation of the Lie group G is defined on Lie(G) according to
Adg: X —gXg ! Vg e G, X €Lie(G), (A.0.19)
or, equivalently, in the case of semi-simple Lie groups

Adg(€) = exp {€9(ad X,)} . (A.0.20)
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The above introduced notions of Lie groups and Lie algebras have a natural extension to
Zs—graded Lie supergroups and Lie superalgebras. Let us first consider the latter ones because
they are used in Chapter 8. A Lie superalgebra G (over the field R or C) is an associative,
Za—graded algebra that is a direct sum of two vector spaces Gy = Gy and G,y = G
of even and odd elements, respectively, in which a (Zy—graded) product, the so-called Lie
superbracket or supercommutator, [-, -}, is defined with

[Q(i), g(j)} CGmw with k=1 + j(mod2), (Z5 — gradation), (A.0.21)

(X, X} = —(—1)6(X“‘)E(Xj) (X, X:}, (graded antisymmetry), (A.0.22)
(71)6()&)6(){’6) [Xla [va Xk}} + (71)6(Xj)6(Xi) [va [ka XZ}}

+(=1) XX (X (X5, X33 =0, (Z5 — graded Jacobi identity) (A.0.23)

If €(X;)e(X;) = 0 the supercommutator coincides with the usual commutator, otherwise it is
the anticommutator, i.e.

(X, Y} =XY — (-1)®Vyx, VX Yedq (A.0.24)

The even (or bosonic) part Gy of a Lie superalgebra G is an ordinary Lie algebra, while the
odd (or fermionic) part G; is not an algebra but, because of Gy G; C Gy, it is a module where
Gy is represented. To be more explicit let us write a Lie superalgebra as follows:

[chXﬁ] = faﬁWX'w [Xavya] = faabY}n {mevb} = fava'y- (A025)

Here we used the obvious notation: X, € Gy,Y, € G;.

The most simple example of a Lie superalgebra, generalizing the simplest nontrivial Lie
algebra su(2), is the orthosymplectic superalgebra osp(1l,2) which plays a crucial role in
Chapter 8 of this book.

The supercommutation relations of the superalgebra osp(1,2) in the Cartan-Weyl basis
according to ( A.0.25) read:

Lo,Ls] = +Ls,  [Ly,L_] = 2Lo, (A.0.26)
[Lo, Ry] = i%Ri, [Ly, R:F} =—Ry, [Ly,Ry] =0, (A.0.27)
{R:I:7R:|:} = i%Liv {R+’R—} = %L07 (A028)

and for the fundamental representation these generators are given by:

10 0 010 000
Ly=|0 -1 0], Ly=(0 0 0of,L_=(1 0 0};
0 0 0 000 000
00 3 00 0
R,=(0 0 Of,R-=[0 0 —3
0 3 0 10 0

The superalgebra ( A.0.26)—( A.0.28) in the main part is obtained by the following identifi-
cations:

(h)i)Ao = 2Ly, (h)i)Ay =Ly,  (B/i)A, =2mRy,  (h/i)A,, =2mR_;
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so the relations ( A.0.26)—( A.0.28) may be rewritten as follows (o = 0,4+, —):

Ao, Bpl = (i/h)eap, A, (A.0.29)
B By = (/1) B, (00);", (A.0.30)
(A% A0 Y = —(i/h)ym2 (o)D" (A.0.31)

Here, eq. ( A.0.29) is a realization of the Lie algebra sl(2) with the antisymmetric structure
coefficients e, 3, which are determined by €y;— = 1; eq. ( A.0.30) determines the fundamental

representation (c4)" of that Lie algebra with 0403 = gag+ 3€ag,07, on the spinorial doublet
a

of the odd generators A,,; and eq. ( A.0.31) constitutes the anticommutator of the odd

generators with the structure coefficients given by (0,)?. Raising and lowering of indicies is
obtained by

1 0 0 0 1
gaﬂ =10 0 2 ) ga’yg’yﬁ = 6%7 eab = —€ab = (_1 O> ’ 6acecb = 5!?
0 2 0

From eqgs. ( A.0.27) and ( A.0.28) the following realization of the structure coefficients in
eqs. ( A.0.30) and ( A.0.31) may be read off:

ear=(o o) @=(0 ) = (p ).

and by raising the first index according to (0,)% = €%“(0,).> we get

=0 1), @r=(3 o) = )

The quadratic Casimir operator of the supergroup osp(1,2) is given by Cy = %eabﬁf@; +
m2A“A,.

A (linear) representation w of a Lie superalgebra G is obtained as a homomorphism of G
into the superalgebra of endomorphisms of a Zs—graded vector space V = V) © V(1) such
that

m(cX)=cn(X), 7#(X+Y)=n(X)+n(Y), (A.0.32)
7([X,Y}) = [n(X),n(Y)} (A.0.33)

VX,Y € G,c € C. The dimension resp. superdimension of the representation is the dimension
resp. graded dimension of the vector space V, i.e.

dim7 = dimVy + dimV;, sdim7 = dim), — dimV;. (A.0.34)
The adjoint representation is obtain according to
(ad X)Y :=[X,Y}, ie. ad:G+— Endg (A.0.35)
and the Killing form is obtained by

K(X:, X;) = str(ad(X)ad(X;)) = (~1)* D" Cr™ = g, (A.0.36)
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The Killing form is an inner product, this means that it is

consistent, i.e. K(X,Y) = 0VX € Gy, VY € Gy,

supersymmetric, i.e. K(X,Y) = (=1)*X<¥)K(Y, X), and

invariant, i.e. K([X,Y},Z) = K(X,[Y,Z}). There are analogous results as in the case of
ordinary Lie algebras. Namely, it holds

(1) A Lie superalgebra G with a non-degenerate Killing form is a direct sum of
simple Lie superalgebras each having a non-degenerate Killing form.

(2) A Lie superalgebra is called simple if it does not contain any non-trivial ideal.

(3) A necessary condition for a Lie superalgebra to be simple is that

(i) the representation of Gy on G is faithful and irreducible,

(ii) {G1,61} = Go
A Lie supergroup or, more correctly, a Lie group with Grassmann structure is associated with
a (simple) Lie superalgebra. Let G(n) = G(n)o @ G(n); be the complex Grassmann algebra
of order n, and let A(G be the Grassmann enveloppe of a superalgebra A) which consists of
formal linear combinations Y, 7'a; of elements n° € G and a; € A both being either even
or odd. Then, the commutator [X,Y] := 3 .. n'n'" [a;,a;} confers A(A) with a Lie algebra
structure. Now, a supergroup A associated with the superalgebra A is — according to the
definition of Berezin — the exponential map of the Grassmann envelope A(A).

The Lie supergroups of linear transformations are obtained from the even (square) (m +

n) X (m + n)-supermatrices

M:(é g) with A,D even, B,C odd, (A.0.37)

defining supermatriz groups for an arbitrary field K:
GL(m,n|K) > M being even and invertible
SL(m,n|K) > M :sdetM =1

U(m,n) : M € GL(m,n|C,M Mt =1

OSP(m,n =2p|K) : MS*HM = H with

(1m0 (0 L)
H(O J2p>, sz(_lp 0), (A.0.38)

a special one is the supergroup OSP(1,2|C).



Appendix B

Path Integral Representation of
Transition Amplitude

In Chapter 1 we presented the generating functional Z(J) of Green’s functions by the
path integral ( 1.7.28) over trajectories in phase space. Its derivation rests on a corresponding
representation of the matrix elements of the time ordered product T (¢ (1)...¢" (,,)) between
eigenstates of the position operator. Here we like to present this derivation. Thereby we
restrict ourselves to a quantum mechanical system with one degree of freedom only (for a
more detailed exposition see, for example, [170]).

The eigenstates of the position operator are introduced as follows:

4(®)|lg,t) = gqlg,t) Heisenberg picture,
qsle) = 4qlg) Schrodinger picture,

with the following connection between these states
i A
|g) =exp | — ﬁHt lg,t),
where H denotes the Hamiltonian of the system. Therefore the matrix element

o) = e (= 1 =)o) (Bo.)

corresponds to the transition from the eigenstate |¢) at the moment ¢ to the eigenstate |¢’)
at the moment ¢', and it defines a Green function. Namely, introducing [t) as the solution of
the Schrodinger equation H|t) = ihd|t)/0t, then

7 o~
Wity = [ aatglexn (= LA 0l al)
describes the time evolution of Schrédinger’s wave function (g|t).
Let us first show how the matrix element ( B.0.1) can be represented as a functional

integral; afterwarts its relation to the Green functions (1.24) will be given. We start by
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representing ( B.0.1) as a multiple integral from which, by some limiting procedure, the
corresponding functional integral is obtained.

To begin with we divide the time interval (¢ —¢) into (n + 1) equal parts with length e,
ie.

t'=t+(n+1e and t;=t+jet, (j=1,..,n).

Using the completeness relation at each moment ¢;, [ dg;|g;,t;){q;,t;| =1, we represent the
transition amplitude by

(q,tq.t) = /Hd%' (@ Vgn tn) -+ (g5 tialaj—1,tj-1) -+ (a1, talg, )
j
together with
7 oA 7€ N
(g5, tjlaj—1,tj-1) = (gl eXP{ - hH6}|qj1> = {aslgj-1) = 5 (4| Hlgj—1) + O(e%),

where qo, ¢n+1,to and ¢, are to be considered as g, q',t and t', respectively. Now, choosing
the Hamiltonian H = H(p,§) to be of the form H = T(p) + V(§), we can write

(g1 Hlg;—1) = /dpj<qj|19j><pj\ff|qj—1>

- /—e p{ (Qij—l)}H(pjvqj—l)v

where H(p, ¢) is now the classical Hamiltonian. Using these equations we get
dpj i i 2
(7, tila-1:t5-1) = | 5 expqppi(a = a-1) |1 = 5 eH(pj gj-1)| + O(€)
i
— [ 3B e {inle - 00 - g0 +OE) (B02)

and thus the following expression for the matrix element obtains ( B.0.1):

(@ t'gt) = lim /qu]/ﬁQ 5 e {ni:l [pg(q Qj—l)—H(pj,qa‘—l)(tj—tj—l)”,

where the limit n — oo(e — 0) has been assumed, with the O(e?) terms neglected.
This result will be represented in the compact form

q(t')=q t
(', t']g,t) / DqueXp{h/dT [pg — H(p, )]}, (B.0.3)
t

q(t)=q
where the expression

q(t')=¢'

oy - [T1(“477)

q(t)=q
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is referred to as functional integration over the entire phase space, with the boundary condi-
tions taken as q(t) = ¢, q(t') = ¢’. Let us point to the fact that the whole manifold of curves
to be integrated over are given by (limits of) continuous curves ¢(¢) in configuration space
and piecewise constant curves p(t) in momentum space. Furthermore, we remark that this
derivation has been given for a special functional form of the Hamiltonian only. The final
result, however, is assumed to be true for any Hamiltonian.

If the Hamiltonian has the simple form H = p?/2m + V (q), the integration over momenta
in ( B.0.2) can be performed: Shifting the integration variables, p; — p; — m(Ag;/e), we
obtain by Gaussian integration

2 2
p; i m( Ag;
/exp{ %Aqﬂm?ﬁ}‘exp{m(f]) }

where Ag; = ¢; — ¢j—1 and
RN UV B
5 J 2mh P hom |’

The final result has the form of a functional integral over the configuration space

) a(t')=q .
(e, t) = / Dgexp {;S[q}}- (B.0.4)
a(t)=q
Here, Slg ft dr L(g, ¢) is the action integral over the trajectory ¢(r), where L(q,¢) =
mq? / 2— ( ) is the Lagrange function, and the normalization factor N is given by

/Dpexp{ - f/ dr} with Dp = H( s ) (B.0.5)

The matrix element (¢',¢'|q,t) determines all transition probabilities between quantum
mechanical states. In view of further applications of the functional formalism to quantum
field theories it is important also to know the path integral representation of the matrix
elements of the product of position operators, corresponding to the product of field operators
in quantum field theory. For the time—ordered product of n such operators the following
expression holds:

a(t')=q' o
W (i) i)l = [ Dappateattew {5 [ arbi- H.01fB00)
a(t)=q

Let us check eq. ( B.0.6) for the product of two operators: §(1)G(72) at 71 > 72. Here again,
we divide the time axis into small intervals, choosing ¢;...t,, in such a way that

71 :tip T2 :ti27

and then we apply the relation of completeness at each ¢;. We thus have
(¢ V]a(r)q(m)la,t) = /Hin<q/7tl|Qn7tn> iy iy [4(T1) iy =15 i 1) -
i

A tin|4(T2) | Gig—15 tig—1) - - (@1, t1 ], T)

= /HinQi1Qi2<q/7t/|Qn7tn>"'<q17t1|Q7t>'
i
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Proceeding exactly as for the derivation of ( B.0.3), we obtain the expression ( B.0.6) for
n = 2. Note that the last equation holds for 71 > 7. When 71 < 79, the r.h.s. of that equation
corresponds to the matrix element (¢’,t'|G(72)§(71)|q,t). Therefore, the path integral, like (
B.0.6), defines the matrix element of the time—ordered product of two position operators
q(t/):q/ . '
i . SR
DgDp q(t1)q(t2) exp {h/ drlpq — H(p, Q)]} =(d, t’IT(q(tl)q(tz)) lg, 1)
t
q(t)=q
As before, it is possible to make a transition from path integrals over phase space to path
integrals over configuration space.
Let us introduce also that the transition amplitude in the presence of an external source
J(7),
q(tl):ql X +
i " .
w.tlaty = [ oo ew {5 [ ari- Hp0) - a1} o
t
q(t)=q
which corresponds to a Hamiltonian modified by a source term H — H — Jq. It can be used

as generating functional of the matrix elements of the position operators, which are given by
the functional derivatives with respect to J(7):

<q’,t’\T(q(t1)...4(tn))Iq, t) = (:L) M(d,tqq,wﬂ]_o. (B.0.8)

Let us now relate these matrix elements to the Green’s functions, i.e. the vacuum expection
value of the various products of position operators. Assume the Lagrangian L of the system
to be (explicitly) time—independent. The energy eigenstates correspond to the wave functions
®,,(q) = (gn). In particular, the ground state, or the vacuum, is described by the function
D4(q) = (q|0). It will be convenient to use ®g(q,t) defined as

o(ant) = exp (4ot ) al0) = (alex ( = 3 710) 10) = . )
We are interested in the matrix element
O (a(61)-d(t) )10) = [ d'da @(d'#)(d' ¢ T01)-(tn) 0:0) @00, 1).

Using for the matrix element (¢, t'|T'G(t1)...G(tn)|g, t) the functional form given by eq. ( B.0.6)
this may be written in the following way

" o
z) 5J(t1)...0.0 ()

where the generating functional Z(J) is given by

(O (4(t2)-(t))10) = ( Z(D)] o, (B.0.9)
Z(J) = (0]0)” = /dq/dqq>6(q’7t’)<q’7t’|q,t>J<D0(q,t) (B.0.10)

with (¢’,#'|q,t)” defined by ( B.0.7). However, because of the integration in eq. ( B.0.10) over
any value of ¢’ and ¢, this is nothing else then

Z(J) =/Dq7>p eXp{;/dt [m—H(p,q)JrJq]} (B.0.11)
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where the integrations are taken over the whole space of trajectories in phase space.

The above results can be generalized to the case of more than one degree of freedom. If the
number of degrees of freedom equals to N, the coordinate g should then be replaced by an V-
component vector ¢°. The functional integral now corresponds to the sum over all trajectories
in the N-dimensional configuration space, satisfing appropriate boundary conditions.



Appendix C

Grassmann Variables, Berezinian and All
That

In the Hamiltonian approach to quantum field theory fermionic fields, like Dirac fields,
have be quantized by the canonical anticommutation relations. Correspondingly, in the for-
mulation of quantum field theory by functional integrals one has to deal with (classical)
anticommuting fields. These entities may be considered as fields over the Minkowski space
having values in some algebra of supernumbers’. The appropriate mathematical theory is
that of a Berezin algebra [47], [48] which will be introduced in the following. In addition we
summarize some of their properties like differentiation, integration and change of variables,
which will be relevant for a mathematical consistent formulation of quantum field theory in
the functional formalism. (For a more detailed presentation see [47], [48], [49], [103].)

Let us first introduce a Grassmann algebra G as an associative algebra with unit over the
field of complex numbers C which is generated by a finite (or infinite) set of anticommuting
elements {*,a=1,2,--- | n,

P+ =0, (C.0.1)
and being endowed with an involution. Every element of G may be written as

g = f0+fa§a+"’+fcx1“-an£al"'gan where f()a"'afou--unec' (002)

The indices of the coefficients fo, -, fa,...a, because of ( C.0.1) are assumed to be completely
antisymmetric. The involution which in the operator formulation corresponds to hermition
conjugation has to be required necessarily (therefore, after defining some conjugation of the
generating elements, g ¢ G fulfil relations being equivalent to hermitian conjugation). The
elements of that Grassmann algebra are the above mentioned supernumbers. In principle,
the objects fo, -+, fay...a, could be elements of some function algebra, e.g. C! or C* of
continuous or infinitely differentiable functions; since we are interested in quantum field theory
these functions are assumed to be defined over Minkowski space (or Euclidean space).

The Berezin algebra B is defined as the associative algebra with involution over the field C
of complex numbers where the coefficients of the Grassmann variables are elements of some
function algebra. Every element ¢ € B, being a (generalized classical) field, can be represented
in the form

d(x) = fo(z) + fa(2)E" + faran (@)EME™ + -+ + faya, (@) - £, (C.0.3)
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where €%, a = 1,...,n are the generating elements of a Grassmann algebra G and fo(x), fa,a, (%),
oy fay -, () are functions of the (in our case: real) variables x?, i = 1, ..., m, belonging to
some function space determined through the (physical) fields under consideration. !

Let us now introduce the notion of odd and even elements of the algebra B. The element ¢,
whose representation ( C.0.3) contains only odd powers of ¢ is called d’. The element ¢,
whose representation ( C.0.3) involves only even powers of ¢ is called even’. Note that the
set of all even elements ¢ forms a subalgebra of the algebra B. Obviously, even elements
commute with all elements of the algebra B, and odd elements anticommute among themselfs.
For each odd ¢, (even ¢(.)) element we introduce the quantity £(¢,) and £(¢(.))), called
the Grassmann parity, by the rule: e(¢(,)) = 1 and £(¢()) = 0, respectively. The parity of
the element ¢3 = ¢1¢2, when ¢; and ¢o have definite parities, is equal to

£(¢3) = (e(¢1) + e(2))(mod 2) (C.0.4)

and the commutation relation between both elements can be presented as

Prho = (—1)FPV(@2) g, (C.0.5)

The set of all elements {¢} having definite Grassmann parity in the algebra B forms the
so-called Zy—graded algebra. This case is very important for purposes of quantum field theory
dealing only with quantities having definite Grassmann parity. Now, and afterwards, we will
assume every variable or quantity to have definite Grassmann parities. It is also convenient
to introduce the Grassmann parity of indices. In what follows we denote the parity of the
index A — being related to some quantity — by €4.

We shall now consider matrices in the algebra B which will be called supermatrices. The
supermatrix M is characterized by its matrix elements M 4p which belong to B, and each of
which has definite parity being characterized by the parities of their indices (¢4,¢p). The
parities of the matrix elements of the supermatrix M are assumed to obey

e(Map) =ca4+ep. (C.0.6)

For supermatrices of equal size having the same order of succession of odd and even
indices one can consider the operations of summation and multiplication. The results of
these operations are again supermatrices. This opens the possibility to consider also regular
functions f(M) of a supermatrix M in an obvious way.

The normal form of the supermatrix M is called the supermatrix M) which is constructed
from M by means of a simultaneous permutation of equally numbered rows and columns to
obtain a supermatrix with a definite order of succession of indices: first come all even indices
and then all odd ones. The supermatrix M) can be presented in the following block—form:

_ ( ((Ml)ii (Mz)ig ) (C.0.7)

(N)
HMAB M3)aj (My)ap

where A = (i,a), B = (j,0), €i =¢j = 0,6 = €3 = 1, and the matrix elements of matrices
My, My are even ones whereas the matrix elements of matrices M,, M;3 are odd ones.
The supertrace (sTrM) of a supermatrix M is defined by the rule

sTeM =) (=1)"* Maa. (C.0.8)
A

LOf course, this defines only a subclass of Berezin algebras which is sufficient for our purposes.



138

With the help of the supertrace ( C.0.8) one introduces the superdeterminant (sDetM) by
sDetM = exp(sTr InM). (C.0.9)

Supertrace and superdeterminant possess many properties of trace and determinant of usual
matrices. Let us now present some properties of the supertrace and the superdeterminant
which are used essentially in the main text:

1) sTr(M+ N) = sTrM + sTrN,
sTeM = sTeM™N) = TrM; — TrMy,
sDetM = sDetM™) = DetM; — Det (M, — M3 M; ' M,),

)
)
)
) sTtMN = sTrNM,
)
)

T o W N

sDetMN = sDetMsDetN,
sDetM ™! = sDet™' M.

(=)

Here we have introduced the inverse supermatrix M ~! of a nonsingular supermatrix M by
MM~' = M~'M = 1. The conditions of nonsingularity can be expressed in the form

DetM # 0, DetM # 0,

where the matrices M? are obtained from the matrices M; by taking the limit £ — 0. In
addition the rank of a supermatrix is defined by to numbers (n1,n2) being given according to

rankM = (n1,n2) with rankM? = ny, rankM) = n,.

Let us now introduce the notion of derivation and integration in the Berezin algebra B, eq. (
C.0.3). Notice, first of all, that the derivation and integration with respect to the variables
{z"} coincides with that of the ordinary derivation and integration, respectively, namely

¢ dfo(z) = Ofa(x) Ofaras () + 8fa1---oc_n($>

or  Oa * Ozt & Oz’ SR Ozt &,

/dm /dxifo(x) + (/dxifa(x)>ga + (/dﬂfam(x)>§alga2 N
+...+(/dzifal‘,,%(x))§al,,,fan.

Derivatives with respect to the Grassmann variables £ are linear operations as well, and it
is sufficient to define them on products of generating elements £ only. Because generating
elements anticommute among themselves, there exist two types of derivatives: right and left
ones. The left derivative is defined by the rule:

k

gongon ... gon — Z(_l)Pi(Sgié'al coLEXmIEQEL L gk, (C.0.10)

=1

O
age

where P; is the parity of the permutation from (1,2, ...,4,....k) to (¢,1,...,a — 1,i + 1,..., k).
The right derivative is defined as:

k

é-alé-az . fak _ Z(_l)PkfiJrl(Sgié'al .. gai,1£ai+1 ce fo"“. (C.O.ll)

=1

Or
o
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Let us now combine 2% and £ into the common set z4 of variables: z4 = (2%,£%), £(z4) =

€4. Then we can present a few essential properties and relations for the derivatives with
respect to variables z acting on elements of the Zs—graded algebra:

0 0 veaes O O
1) 924 azB(’b = (=1 928 8zA¢’

Oy O B cacy O O
2) 0z4A 8z3¢ = (=D 928 8zA¢’

81 o a al
3) 924 8z3¢ - 9zB 8zA¢’

Oy

4) @Qﬁ _ ( 1)8A( e(p)+1) = 5oA o,

0, 980} cac(dy) . O
5) oa(@102) = Zogdn+ (1) g TR

6) %(m@) = (—1)7ac%2) 8’”%2 + ¢ a”?j.

Derivatives of a composite function ®(z) = ¢(p(z)) of z with respect to z can be calculated
as

8[‘1) o 8[(,0B 8l<I> 3T(I) - 8T<I> &«pB

0z4 024 0B’ 024 0pB 024

Now let us introduce the definition of the integral in the Berezin algebra B. To this end
one needs, in fact, an definition of the integral over odd elements. Introducing formal symbols
d&®, e(d€*) = 1 with the following properties

£2de’ = —dele*,  dgvdeP = —dePage,

the integral over odd elements is defined by the rules

/dga =0, /dgaga =1

Formally, the integral over odd elements coincides with the derivative:

a1, A — e al — 87- R ar
/ deT e deThe = agal e ? = ear T pgm

In the general case, we consider dz? = (dz?, d¢®), e(dz?)

o.

= ¢4 with the properties
dz?2P8 = (—1)54%8B 44, dz?d2® = (—1)54°8d2PdzA.

The integral over the Grassmann variables z” possesses a number of properties of usual
integrals.
(1) The integral of a total derivative is equal to zero:

/d A c’ﬂrqﬁ A (M) (C.0.12)

7

when appropriate boundary conditions with respect to the even variables are assumed. From
eq. ( C.0.12) the formula of integration by parts follows:

/d A81¢1¢2 (- I)EAa(m)/dqugl%; (C.0.13)
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in egs. ( C.0.12), ( C.0.13) no summation over repeated indices has been assumed.
(2) The integral is invariant under shifts of the integration variables:

/ dzg(z +y) = / dz¢(2),

where y# belongs to B and does not depend on the integration variables z4.
(3) The rules of integration formulated above allow to derive the following formula for a
change of variables:

[z 62) = [ dz Bery(a) otut),

where Bery(z) is the Berezinian of the change of variables y* = y“(2)

A

Bery(z) = sDetR, RA:aray E(;Z)
z

ayB(2)

= sDetL, Lpj= :

sDetL, 54

The Berezinian can be considered as the extension of the Jacobian according to the change
of variables in the case of usual integrals. The properties of the Berezinian follow from the
properties of superdeterminants.

(4) Finally, we give the expression for the Gaussian integral (e(Ja) =¢€a4):

/dz exp ( - %zAMABzB + JAzA> = (2m)"?(sDet Y2 M) exp (%JAAABJB), (C.0.14)

where the matrix M fulfills the equality Map = (—1)(Fates+eass) My 4 1 is number of even
components z*, and we have used the notation

AAB _ (M_l)AB(—l)EA.



Appendix D

Functional Integrals in Perturbation
Theory

Let us consider the definition of functional integrals in Quantum Field Theory sufficient
to present the generating functionals of Green’s functions in the framework of perturba-
tion theory. The main object of such definition is a functional Z(J) of varialbes (sources)
Ja, e(Ja) = €4 given in the form of functional integral

209 = [ D6 exp {;[Sw) T JAqu]} = [ Do FGo.. (D.0.1)

In Eq.( D.0.1) it is assumed that the boson fuctional S of fields ¢#, £(¢?) = 4 can be
presented in the form

5(6) = 16" Mapo® +V(0) (D.0.2)

where supermairix M with matrix elements Map, e(Map) = €4 + €p does not depend on
fields ¢ and is not singular one. Moreover we assume the matrix M to satisfy the following
properties of symmetry:

Mg = (71)5A+€B+€A€B Mpga.
In Eq.( D.0.2) the functional V(¢) is considered as regular functional with respect to fields

o4, ie.

Z j Vas- A, oAt

n>2

By definition the functional integral ( D.0.1) within perturbation theory is presented by
the following rule

Z(J) = exp{ v(’: (f])} Zo(J), (D.0.3)

where the functional Zy(J) has the Gaussian form

/quem{ { P Mapd® + Jad H
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and is defined as
Zo(J) = (sDetM)~1/2 exp{ - ;hJAAABJB}. (D.0.4)

In Eq.( D.0.4) we have used the following notation
AAB _ (M—l)AB(_l)eB

where supermatrix M ~! is inverse to M. Notice, the superdeterminat sDetM in Eq.( D.0.4)
is some numerical factor which does not depend on variables. We can omit the numerical
factors which appear as a result of integration by the definitions ( D.0.3), ( D.0.4) and do
not contain parameters essential for the theory. The reason is the fact that only relative
(normalized) quantities in which these factors vanish are of actual interest for Quantum Field
Theory.

From definitions ( D.0.3), ( D.0.4) one can derive the basic properties of the functional
integrals. Here we restrict ourself only by enumerations of them omitting all proofs (for details
of proofs see, for example, [80], [103]).

The integral ( D.0.1) is invariant under the shifts of integration variables

[Por@.0)= [DoF@+ o) (D.0.5)

The integral of the total derivative over any of the integration field ¢4 is equal to zero

)

Dp — F =0. D.0.

[ Po 555 Flo.0) =0 (D.0.6)
From this property formulas of integration by parts follow
5G(,J 5F(¢,J)

D¢ F ’ D¢ (—1)=4(@) ’ D.0.

[ oo B8 - [y -yl g, (D.0.7)

where derivatives with respect to ¢ are considered as right ones.
The formula for the change of variables holds:

[ PoFo.0) = [ D6 Flo(o). ) Berfeto) (D.0.3)
where Ber[p(¢)] is the Berezinian of the change of variables
3 (9)

A
Ber[p(#)] = sDetR, R = 58 (D.0.9)
In Eqgs.( D.0.8), ( D.0.9) e(¢?) = e(¢*) and supermatrix R is nonsingular one.
Finally, formula for functional é-fuction, §(J), holds
= /D¢> exp {;[JAqu]}. (D.0.10)

The é-function ( D.0.10) obeys the usual property for d-functions

/DJ F6,1)5(J) = F(,0).
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