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Preface

All the fundamental interactions that exist in Nature (electromagnetic, gravitational,
strong and weak) can be described in terms of gauge theories. The quantization of gauge
theories is one of the most essential means providing insight into the quantum properties of
the fundamental forces. The formalisms of Hamiltonian and Lagrangian quantization of gauge
theories present two di�erent approaches to the quantum description of dynamical systems
[77, 84, 75, 47, 120, 170, 188, 174, 80, 104, 103, 158, 62, 205].

There are many reasons for the interest in the covariant quantization of general gauge
theories in the framework of Lagrangian formalism. First of all, in contrast to canonical
quantization, it is possible to retain the covariance of description at all stages of calculations.
This formalism provides a systematic method of obtaining the conservation laws on the basis
of the Noether theorem. The most essential ingredient of covariant quantization is the path
integral technique, being the most popular method currently available, and providing the
most economic way of obtaining the Feynman rules directly from the classical Lagrangian. In
solving the problem of quantization, we achieve a better understanding of the structure and
quantum properties of general gauge theories.

The covariant quantization of gauge theories has made a long way starting from the famous
works of Feynman [83], Faddeev, Popov [79], and DeWitt [74].

Many authors have contributed to developing the methods of covariant quantization, as
well as to providing them with various applications. More references can be found in [125]
(Henneaux and Teitelboim), [205] (Weinberg) and [108] (Gomis, Paris and Samuel).

The main purpose of this book is to introduce the reader to modern approaches to covariant
quantization of gauge theories. We shall proceed according to the following plan of exposition.

The �rst subject to be considered is "Canonical quantization of constraint systems". Re-
garding this question as one of the necessary educational elements for anyone engaged in the
study of quantum theory, we give a brief review of the principal results obtained in this area,
following the books [77] (Dirac) and [103] (Gitman and Tyutin).

Considered next is "Faddeev�Popov quantization", the �rst success in the quantization of
non-trivial gauge theories, like Yang�Mills ones, in the Lagrangian formalism proposed by
Faddeev and Popov [79].

The third subject area to be covered is "Batalin�Vilkovisky method". This method, de-
veloped by Batalin and Vilkovisky [40, 41], provides a unique closed approach to covariant
quantization, based on a special kind of global supersymmetry, the so-called BRST symmetry,
discovered by Becchi, Rouet and Stora [45, 46], and, independently, also by Tyutin [195].

We next proceed with "Sp(2)-covariant Lagrangian quantization". This method, proposed
by Batalin, Lavrov and Tyutin [25, 26, 27], handles the quantization of general gauge the-
ories using a realization of so-called extended BRST symmetry, including BRST symmetry

7
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and antiBRST symmetry, discovered for Yang�Mills theories by Curci and Ferrari [66], and,
independently, also by Ojima [166].

Following is "Triplectic quantization". This quantization method, proposed by Batalin,
Marnelius and Semikhatov [28, 35, 29], gives a completely anticanonical form to the Sp(2)-
covariant procedure. A modi�ed version of triplectic quantization has recently been suggested
by Geyer, Gitman and Lavrov [96].

Then we deal with "Super�eld BRST quantization". This approach, proposed by Lavrov,
Moshin and Reshetnyak [145], realizes the BRST transformations for general gauge theories
as supertranslations in superspace with respect to an additional (Grassmann) coordinate,
thereby giving an elegant geometric interpretation to the Ward indentities in the quantum
theory of gauge �elds.

The above subject area is followed by "Super�eld extended BRST quantization". This
method, discovered by Lavrov [144], succeeds in presenting BRST and antiBRST transfor-
mations as supertranslations in superspace along additional Grassmann coordinates, thus
giving a geometric interpretation to the Ward indentities in the method of Sp(2)-covariant
quantization.

As regards super�eld quantization, it should be noted that the geometric content of the
BRST and antiBRST transformations in Yang�Mills theories, as supertranslations in super-
space along additional (Grassmann) coordinates, was realized many years ago by the studies
[53] (Bonora and Tonin), [54] (Bonora, Pasti and Tonin), [6] (Alvarez-Gaume and Baulieu),
and [44] (Baulieu); however, no satisfactory super�eld description of the quantization proce-
dure was proposed. Moreover, the crucial point of these super�eld methods was the manifest
structure of Yang�Mills theories, and therefore the treatment of arbitrary gauge theories
remained an unsolved peoblem.

Finally considered is "osp(1,2)-covariant quantization". This approach, recently proposed
by Geyer, Lavrov and M�ulsch [98, 99] on the basis of invariance under the global supergroup
osp(1,2), generalizes the method of Sp(2)-quantization and ensures the symplectic invariance
of the quantum action in general gauge theories.

This reveiw was originated by a lecture course given by one of the authors (P.M.L.) to
students and aspirants at the Graduate College "Quantum Field Theory" of Leipzig University
(Germany) and at the Institute for Physics of Juiz de Fora University (Brazil). We are greatly
indebted to D. M�ulsch for useful discussions and participation at the initial stage of this work,
and also to S. Falkenberg, one of the most attentive and responding listeners of this lecture
course, a young promising scientist. Untimely and tragic death both of them was a heavy
loss for us. We would like to thank I.A. Batalin, I.L. Buchbinder, A.A. Deriglazov, A.V.
Galajinsky, D.M. Gitman, S.M. Kuzenko, P.Yu. Moshin, V.I. Mudruk, A.P. Nersessian, J.A.
Neto, V.F. Popov, S.D. Odintsov, W. Oliveira, A.A. Reshetnyak, I.L. Shapiro, S. Theisen,
I.V. Tyutin, B.L. Voronov for useful discussions on the related topics.



Chapter 1

Canonical Quantization of Constraint
Systems

At present, the problem of quantization of an arbitrary Lagrangian system in the Hamilto-
nian formalism should be considered as solved. Here, we state only the main results following
from the (appropriately modi�ed) canonical quantization and reformulate it in terms of the
Feynman path integral formalism (for a more detailed consideration, see [77, 120, 188, 174,
103]). Despite preferring the time coordinate, resulting in the loss of manifest covariance in
the quantization of relativistic theories, canonical quantization is a natural starting point for
all further considerations. For the sake of simplicity, we �rst present it for the case of �nite
degrees of freedom and, at the end of each subsection, we generalize to �eld theories; also
various illustrations are given in this respect.

1.1 Lagrange equations

Let the system under consideration be described by the Lagrangian L

L = L(q, q̇), q̇ ≡ dq

dt
, (1.1.1)

where (qi, q̇i), i = 1, 2, ..., n, are generalized coordinates and velocities, respectively. The fun-
damental equations of the classical theory, the equations of motion, follow from the principle
of stationary action, δS = 0, applied to the action functional,

SL = S[q] =
∫
dtL(q, q̇). (1.1.2)

They are given by the Lagrange equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (1.1.3)
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1.2 Hessian matrix

Going over to the Hamiltonian formulation of the classical theory, we introduce the generalized
momenta pi, corresponding to the generalized coordinates qi, according to

pi =
∂L

∂q̇i
= pi(q, q̇). (1.2.4)

Since these equations need to be resolved for q̇i = q̇i(p, q), the further analysis relies on the
properties of the Hessian matrix,

Hij =
∂2L

∂q̇i∂q̇j
. (1.2.5)

Two di�erent cases are possible

A) det |Hij | 6= 0, (1.2.6)

B) det |Hij | = 0, (1.2.7)

which will be dealt with independently.

1.3 Hamiltonian equations of unconstrained systems

Consider, �rstly, the simple case corresponding to condition ( 1.2.6). Then the relations
pi = pi(q, q̇) can be solved uniquely in terms of the velocities

pi = pi(q, q̇) ⇐⇒ q̇i = q̇i(p, q), (1.3.8)

and thus we have a dynamical system without constraints. Let us introduce the quantity

H = piq̇
i − L(q, q̇), (1.3.9)

which, in view of ( 1.3.8), can be represented as a function of the variables (p, q), and is
referred to as the Hamiltonian H = H(p, q) of the system. The transition from L(q, q̇)
to H(p, q), given by Eq. ( 1.3.9), is a Legendre transformation. One easily establishes the
following properties of this transformation:

pi =
∂L(q, q̇)
∂q̇i

⇔ q̇i =
∂H(p, q)
∂pi

, (1.3.10)

∂L(q, q̇)
∂qi

∣∣∣∣
q̇

= − ∂H(p, q)
∂qi

∣∣∣∣
p

. (1.3.11)

Note that in the phase space (p, q) more curves may be speci�ed than in the coordinate
space. Indeed, singling out a continuous trajectory q(t) in the coordinate space produces
the (piecewise) continuous curve q̇(t); and therefore the corresponding trajectory (q(t), p(t) =
p(q(t), q̇(t))) in the phase space is uniquely de�ned. On the other hand, singling out a curve
(p(t), q(t)) in the phase space speci�es the curve q̇(t) = dq(t)/dt. However, also such curves
q(t) may occur that the relation p(t) = ∂L/∂q̇ = p(q(t), q̇(t)) is violated, and therefore there
is no corresponding trajectory in the coordinate space.
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Despite this fact, the extremum of the action holds at the same trajectories in both the
coordinate and the phase space. Namely, let us introduce the Hamiltonian action by

SH = S[p, q] =
∫
dt(piq̇i −H(p, q)). (1.3.12)

Taking the variation of the action SH considered as a functional of the variables p and q, we
obtain the following equations which determine the classical extremals in the phase space:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
; (1.3.13)

these relations are the Hamilton equations. In addition, one easily proves the equivalence of
the equations of motion in both the Lagrangian and the Hamiltonian formalism (Eqs. ( 1.1.3)
and ( 1.3.13)); in other words,

δSH = 0 ⇔ δSL = 0.

To establish this fact, it is necessary to use the above-mentioned properties of the Legendre
transformations.

1.4 Poisson bracket

It is advantageous to introduce the Poisson bracket, de�ned for any two quantities F,G in the
phase space, by the rule

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
. (1.4.14)

The Poisson bracket ( 1.4.14) obeys the following properties:
(1) Antisymmetry

{F,G} = −{G,F}, (1.4.15)

(2) Jacobi identity

{F, {G,H}+ cyclic perms.(F,G,H) ≡ 0, (1.4.16)

(3) Linearity

{F +G,H} = {F,H}+ {G,H} (1.4.17)

(4) Leibniz rule

{FH,G} = F{H,G}+ {F,G}H. (1.4.18)

One easily veri�es the following equalities:

{qi, qj} = {pi, pj} = 0, {qi, pj} = δij . (1.4.19)

By using the Poisson bracket, the Hamilton equations ( 1.3.13) can be presented in the form

q̇i = {qi, H}, ṗi = {pi, H}; (1.4.20)
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and the time evolution of any physical quantity A(p, q) is given by

Ȧ = {A,H} . (1.4.21)

Obviously, eqs. ( 1.4.15) � ( 1.4.21) introduce an algebraic structure of the classical theory.
It will be the basis of canonical quantization (see, for example [80, 103, 62]) where these
algebraic properties, given in terms of Poisson brackets, are translated into quantum brackets
de�ned as commutation relations between the corresponding operators according to

{F,G} =⇒ (i~)−1[F̂ , Ĝ]. (1.4.22)

1.5 Quantization

That quantization procedure is governed by the following postulates:

(1) A state of the system is described by a (normalized) vector |ψ〉 in the Hilbert space
H with the inner product 〈ψ1|ψ2〉. Generically, the Hilbert space is realized as a Fock space
constructed with the help of a (unique) vacuum state |0〉.
Physical observables A are represented by Hermitian operators Â acting on the Hilbert space.

(2) The expectaction value of an observable A with respect to a state |ψ〉 is given by 〈ψ|Â|ψ〉.

(3) The initial coordinates and momenta qi(t), pi(t) in the Heisenberg picture are described
by Hermitian operators q̂i(t), p̂i(t), which satisfy the (equal time) canonical commutation

relations

[q̂i(t), q̂j(t)] = 0, [p̂i(t), p̂j(t)] = 0, [q̂i(t), p̂j(t)] = i~δij , (1.5.23)

where ~ is the Planck constant.

(4) The time evolution of operators Â(t) is determined, similarly to ( 1.4.21), by the equation

i~
dÂ(t)
dt

= [Â(t), Ĥ], (1.5.24)

where the Hermitian operator Ĥ, the quantum Hamiltonian, is obtained from the classical
Hamiltonian H by substituting the operators q̂i(t), p̂i(t) in place of the coordinates qi(t) and
momenta pi(t).

In performing quantization according to the above rules, one faces the problem of the ar-
rangement of the operators q̂, p̂ in the values representing physical quantities, like the Hamil-
tonian Ĥ = H(q̂, q̂). Notice that di�erent forms of the correspondence principle give rise to
restrictions on the zeroth and �rst terms in the expansion of physical quantities in powers
of ~. However, there remains considerable arbitrariness in the arrangement of operators. In
what follows, it is assumed that a certain arrangement of the non�commuting operators q̂, p̂
has been applied. (Note that in the path integral quantization, to be introduced further, the
so-called Weyl ordering is preferred.)
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1.6 Green's functions

The fundamental objects of the quantum theory are the Green's functions of the position
operators q̂i(t) de�ned by the following vacuum expectation values

G
(n)
i1...in

(t1, ..., tn) = 〈0|T
(
q̂i1(t1)...q̂in(tn)

)
|0〉. (1.6.25)

Here, the symbol T denotes chronological ordering, which implies that the operators must
be arranged from left to right so that their (mutually di�erent) time arguments decrease.
Moreover, under the sign of the T�product all operators commute with each another. The set

of Green's functions {G(n)
i1...in

(t1, ..., tn), n = 1, 2, ..., } contains the complete information one
expects to derive from quantum theory. In other words, possessing the knowledge of the whole
set of Green's functions, one can recover the Hilbert space and the algebra of observables.
This is the meaning of the GNS construction, well known in general quantum �eld theory
(see, for example [119]).

1.7 Generating functional of Green's functions

Instead of considering the set of Green's functions G(n) separately, one can introduce an
object combining all of them. Let Ji(t) be a set of scalar functions belonging e.g. to some
space of test functions and referred to as external sources, then the generating functional Z(J)
of (complete) Green's functions is de�ned by

Z(J) =
∑
n

1
n!

(
i

~

)n ∫
dt1...

∫
dtnG

(n)
i1...in

(t1, ...tn)Ji1(t1)...Jin(tn), (1.7.26)

such that

G
(n)
i1...in

(t1, ..., tn) =
(
i

~

)n
δn

δJi1(t1)...δJin(tn)
Z(J)

∣∣∣
J=0

. (1.7.27)

It is well known [84, 174, 170, 104] that this functional Z(J) can be written as a functional
or path integral over trajectories in the phase (or con�guration) space with the integrand
depending on the phase of the action integral,

Z(J) =
∫
DqDp exp

{
i

~

∫
dτ [piq̇i −H(p, q) + Jiq

i]
}

(1.7.28)

where the expression ∫
DqDp ≡

∫ ∏
τ

(
dqi(τ)dpi(τ)

2π~

)
(1.7.29)

is referred to as functional integration over the entire phase space without boundary condi-
tions, i.e. the integration is performed over all the trajectories without restrictions. Taking
into account eqs. ( 1.6.25) and ( 1.7.27), we obtain

〈0|T
(
q̂i1(t1)...q̂in(tn)

)
|0〉 =

∫
DqDp

(
qi1(t1)...qin(tn)

)
exp

{
i

~

∫
dτ [piq̇i −H(p, q)]

}
.

Let us point to the fact that the time ordering in this approach appears automatically. Some-
times the generating functional ( 1.7.28) is called the vacuum-to-vacuum transition amplitude
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in the presence of the external current J , i.e. Z(J) = 〈0|0〉J . Since the functional integral (
1.7.28) contains the entire information of the quantum theory obtained from a classical sys-
tem with the Hamiltonian H, this procedure is called path integral quantization in phase space
(The reader, not familiar with the path integral formulation of quantum theory, may pro�t
from the short exposition of the essential steps leading to eq. ( 1.7.28) given in Appendix
B).

It is important that the generating functional Z(J) should also be expressed directly in
terms of the Lagrangian of the theory,

Z(J) =
∫
Dq exp

{
i

~

∫ (
L(q, q̇) + Jiq

i
)
dt

}
. (1.7.30)

This can be seen from the following consideration. Let us make a shift p → p(q, q̇) + p of
the integration variable, where p(q, q̇) is the solution of the Hamilton equation of motion (
1.3.13), i.e.

q̇i = {qi, H} =
∂H

∂pi

∣∣∣∣
p=p

.

Of course, this results from the translation invariance of the measure ( 1.7.29) and takes the
classical solution p(q, q̇) as reference curve for the quantum �uctuations p around it. If the
Hamiltonian H is build up from the Lagrangian L, which is assumed to be the case, then
such a solution always exists and is given by (see eq. ( 1.3.10))

pi(q, q̇) =
∂L

∂q̇i
.

Here, the identity holds

(piq̇i −H)|p=p ≡ L(q, q̇). (1.7.31)

Therefore,

SH |p→p+p = SL +
∫
dt4H,

where SL = S[q] is the classical Lagrangian action, and

4H = −
∞∑
n=2

1
n!
pn
∂nH

∂pn

∣∣∣∣
p=p

.

Making use of ( 1.7.31), one can write:

Z(J) =
∫
Dq4 (q) exp

{
i

~
(S[q] + Jiq

i)
}

(1.7.32)

where

4(q) =
∫
Dp exp

(
i

~

∫
dt4H(p, q)

)
.

Formula ( 1.7.32) expresses the generating functional Z(J) of a nonsingular theory in the
form of a functional integral in con�guration space. It acquires an especially simple form if
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the interaction does not contain derivatives of the coordinates with respect to time. In this
case, H is a quadratic form in the momenta with constant coe�cients, so that 4(q) is simply
a constant and we arrive at the above-mentioned form ( 1.7.30) for Z(J). Consequently, it
is obvious that the path integral over the con�guration space is more restricted than the one
over the entire phase space.

The above results for theories with �nite degrees of freedom can be generalized to �eld

theories, i.e. to the case of in�nite degrees of freedom. The trajectory qi(t) in con�guration
spaces is replaced by a �eld function φ(x), where x = (t,x). The Lagrangian density L =
L(φ, ∂µφ, ...) is considered as a function of the �elds φ and their partial derivatives ∂µφ ≡
∂φ/∂xµ. The degrees of freedom are now labeled by the continuous index x as well as by
additional labels indicating the �eld components with respect to certain symmetries of the
theory; obviously, the number of degrees of freedom is in�nite. The corresponding momenta
are given by π(x) = ∂L/∂0φ(x). To de�ne the appropriate path integral, one can start from
a multiple integral on a discrete, and to begin with, �nite lattice of space-time points. This
amounts to de�ning the quantum �eld theory as a limit of a theory possessing only a �nite
number of degrees of freedom. Note that a consistent de�nition of functional integral in
quantum �eld theory can be given, at least in perturbation theory, without any reference to
the limiting process [182, 80].

By analogy with the above results, we may postulate the following path integral repre-
sentation for the generating functional of Green's function of a quantum �eld theory without
constraints:

Z(J) =
∫
DπDφ exp

{
i

~
(SH [π, φ] + Jφ)

}
(1.7.33)

where SH [π, φ] is the classical Hamiltonian action ( 1.3.12); here we have used the notation
Jφ ≡

∫
dxJ(x)φ(x). The corresponding functional integral over con�guration space reads:

Z(J) =
∫
Dφ exp

{
i

~
(SL[φ] + Jφ)

}
(1.7.34)

Example: real scalar �eld

The standard �eld theoretic example of the above situation is the model of a real scalar �eld

ϕ(x) with the action

S[ϕ] =
∫
dxL(ϕ, ∂µϕ), L(ϕ, ∂µϕ) =

1
2
(
∂µϕ∂

µϕ−m2ϕ2
)
− V (ϕ) (1.7.35)

where V (ϕ) ≡ Lint = λ
3!ϕ

3 + λ′

4!ϕ
4 + ... is a potential. The Hamiltonian action is given by

S[π, ϕ] =
∫
dx(πϕ̇−H(π, ϕ)), H(π, ϕ) =

1
2
(
π2 + ∂iϕ∂iϕ+m2ϕ2

)
+ V (ϕ), (1.7.36)

and, by construction, we have 4H = 0. The equality of the two expressions for Z(J), the
phase space and the con�guration space functional integrals, is based on the fact that the
integration over π is Gaussian. The explicit form for Z(J) can be given as

Z(J) = exp
{
− i

~

∫
dxV

(
~
i

δ

δJ

)}∫
Dϕ exp

{
− i

~

∫
dx

[(
1
2
ϕ(� +m2

)
ϕ− Jϕ

]}
= exp

{
− i

~

∫
dxV

(
~
i

δ

δJ

)}
exp

{
i

~

∫
dxdy

1
2
J(x)Dc(x− y)J(y)

}
, (1.7.37)
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where Dc(x− y) = 〈x|(� +m2)−1|y〉 is the free (causal) propagator. Obviously, contrary to
the Hamiltonian action eq. ( 1.7.36) the Lagrangian action eq. ( 1.7.35) is covariant. There-
fore, the latter is preferable if symmetry properties of the theory need to be formulated.

Example: Dirac �eld

Another standard example is the Dirac �eld ψ, whose Lagrangian action is given by

S[ψ,ψ] =
∫
dxLD(ψ,ψ), LD(ψ,ψ) = ψ(iγµ∂µ −m)ψ + Lint, (1.7.38)

where the coupling (e.g. to the Maxwell �eld) is given by

Lint = ψγµψA
µ, (1.7.39)

with ψ being the spinor �eld, γ � the Dirac matrices, and Aµ � the electromagnetic potential.
However, as is well known, the canonical quantization of Dirac �elds is to be formulated in
terms of anticommutators instead of the commutators below. Consequently, in the path inte-
gral the classical �elds ψ,ψ are anticommuting or Grassmann variables. (A short exposition
of functional integrals with Grassmann variables is given in Appendix C).

1.8 Constraints

The second possibility mentioned above is more complicated. In this case det |Hij | = 0 and
the equations ( 1.2.4), pi = ∂L/∂q̇i, are solvable with respect to q̇i only partially. That is,
eq.( 1.2.4) may give rise to some (linearly independent) relations involving no q̇i, which called
�rst stage or primary constraints; a system with constraints is called a singular system.
In addition, let us remark, that in this case the equations of motion

Hij(q, q̇)q̈j = Ki(q, q̇) ≡
∂L

∂qi
− ∂2L

∂q̇i∂qj
q̇j

cannot be solved uniquely. The solution of the Cauchy problem for the second order dif-
ferential equations of motion depends on arbitrary functions, thus demonstrating the gauge
freedom of the theory.

The constraints

φα(p, q) = 0, α = 1, ..., r , (1.8.40)

are functions of qi and pi. They de�ne the physical surface in the phase space of the system.
Let us consider a variation of the Hamiltonian H = piq̇

i − L, i.e.

δ(piq̇i − L) = q̇iδpi −
∂L

∂qi
δqi +

(
pi −

∂L

∂q̇i

)
δq̇i. (1.8.41)

If eq. ( 1.2.4) is applied, it follows from eq. ( 1.8.41) that the Hamiltonian can be expressed
in terms of qi and pi. Of course, this statement holds under the validity of the constraints,
Eq.( 1.8.40). Hence we should consider a generalized Hamiltonian,

H∗ = piq̇
i − L+ λαφα ≡ H + λαφα, (1.8.42)
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where the Lagrange multipliers λα remain undetermined. The (modi�ed) canonical equations
of motions may be formulated as

ṗ = {p,H∗}, q̇ = {q,H∗} together with φα(p, q) = 0; (1.8.43)

of course, before calculating the Poisson bracket the constraints must be considered non-
vanishing. The time development of a quantity A is given by Ȧ = {A,H∗}. Since the
constraints are supposed to hold for any t, φ̇α = 0, consistency requires

{φα, H∗} ≡ {φα, H}+ λβ{φα, φβ} = 0. (1.8.44)

Part of Eqs. ( 1.8.44) can be satis�ed by an appropriate choice of λα, but the remainder may
contain new conditions, which are to be regarded as second-stage constraints. We should
therefore consider eq. ( 1.8.44) for these new constraints. Repeating this procedure up to
the L-th stage, we �nd no further secondary constraints, and obtain a set of independent
constraints Eq. ( 1.8.40) with α = 1, .., s (r ≤ s ≤ n).

According to Dirac, a function f of the variables (p, q) is called a �rst-class function

if its commutator (the Poisson bracket) with any constraint is proportional to constraints
{f, φ} ' φ. Accordingly, one introduces the notion of �rst-class constraints. Consequently,
any set of constraints φ for which the matrix ‖ {φ, φ} ‖|φ=0 is nonsingular, will be referred
to as a set of second-class constraints. The number of second-class constraints is necessarily
even. This follows from the fact that a nonsingular antisymmetric matrix always has even
rank.

1.9 Second class theories

Let us �rst consider theories for which the antisymmetric matrix ‖ {φα, φβ} ‖ composed by
the Poisson brackets of all the constraints φα is nonsingular,

Det ‖ {φα, φβ} ‖|φ=0 6= 0. (1.9.45)

In this case it is possible to solve eq. ( 1.8.44) for the Lagrangian multipliers. Then,
introducing for any functions F (p, q) and G(p, q) a modi�cation of the Poisson bracket,

{F,G}D = {F,G} − {F, φα}{φα, φβ}−1{φβ , G}, (1.9.46)

the so-called Dirac bracket, one represents the equations of motion in the form

ṗ = {p,H}D, q̇ = {q,H}D together with φα(p, q) = 0, (1.9.47)

with the initial Hamiltonian H. The theory is quantized by using the same postulates (1) �
(4), with the Poisson bracket replaced by the Dirac bracket and, in addition, with the con-
straints required to hold (on the physical states).
This procedure can be implemented within the path integral formalism. Omitting all calcu-
lations, let us only give the �nal result for the generating functional of Green's functions for
theories with second-class constraints

Z(J) =
∫
DpDqDet1/2{φα, φβ}δ(φα) exp

{
i

~
[SH(p, q) + Jq]

}
. (1.9.48)

Here, the δ-functional ensures that all the constraints (α = 1, ..., s) are ful�lled, thereby
reducing the integration to the independent variables, whereas the Jacobi determinant results
from the corresponding change of variables.
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Example: massive vector �eld

As an example of a theory with second-class constraints, we consider the theory of a massive

vector �eld Aµ. This theory is described by the following action:

S(A) =
∫
dx

(
− 1

4
FµνFµν +

m2

2
AµA

µ

)
=
∫
dxL(Aµ, ∂νAµ) (1.9.49)

where the �eld strenght Fµν is given by

Fµν = ∂µAν − ∂νAµ.

The canonical momenta are

Pµ =
∂L
∂Ȧµ

= −F0µ.

and, therefore, the theory contains a primary constraint:

φ1 ≡ P0 = 0. (1.9.50)

Then for the Hamiltonian H we obtain

H =
1
2
P 2
i − Pi∂iA0 +

1
4

F2
ik −

m2

2
(A2

0 −A2
i ). (1.9.51)

Hence,

H∗ = H + λ1P0.

Commuting the primary constraint ( 1.9.50) with the HamiltonianH∗, i.e. using the canonical
equations of motion ( 1.8.44), we �nd a secondary constraint

φ2 ≡ ∂iPi −m2A0 = 0. (1.9.52)

There are no further secondary constraints. Hence φ = (φ1, φ2) is the complete system of
constraints. The matrix composed by the constraints,

‖{φ, φ}‖ =
(

0 m2

−m2 0

)
δ(~x− ~y), (1.9.53)

is nonsingular in this case. Thus, we have a theory with second-class constraints.
Let us construct for this theory the generating functional of Green's functions. Note that

the matrix ( 1.9.53) in this case does not depend on the �elds, and therefore we need not
write the corresponding determinant in the functional integral ( 1.9.48). Then, the generating
functional has the form

Z =
∫
DAµDPµδ(P0)δ(∂iPi −m2A0) exp

[
i

~

∫
dx(PµȦµ −H + JiA

i)
]
, (1.9.54)

where the Hamiltonian H is de�ned by Eq.( 1.9.51). We have introduced the sources Ji only
to the �elds Ai, since the corresponding Green functions are su�cient to describe all physical
quantities of the theory.

Let us now perform some operations in the integral ( 1.9.54). In the Hamiltonian H, eq. (
1.9.51), we substitute the term −Pi∂iA0 by m2A2

0. This can be done, owing to the presence
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of the δ-function of the secondary constraint in the integral ( 1.9.54). Furthermore, let us
introduce

δ(∂iPi −m2A0) =
∫
DB exp

[
− i

~

∫
dxB(∂iPi −m2A0)

]
,

and then integrate over P0 and A0. The result can be written as (being B replaced by A0):∫
DAµDPi exp

{
i

~

∫
dx

[
− 1

2
P 2
i + Pi(Ȧi + ∂iA

0) +
m2

2
(A2

0 −A2
i )−

1
4
F 2
ik + JiA

i

]}
.

Now, the integral over the momenta can be easily calculated. As a result, we obtain

Z(J) =
∫
DA exp

[
i

~
(S(A) + JµA

µ)
]
. (1.9.55)

Here, for the sake of formal symmetry, we have introduced a source also to the �eld A0. From
( 1.9.55) one can observe the validity of the naive Feynman rules in perturbation calculations
of the Green functions for this model.

1.10 First class theories

We shall now consider theories for which the matrix ‖{φ, φ}‖ is singular on the physical
surface,

det ‖{φ, φ}‖φ=0 = 0, µ = [φ]− rank‖{φ, φ}‖ > 0, (1.10.56)

where [φ] denotes, at any �xed space-time point x, the number of constraints φ (we assume
that [φ] does not depend on any x). In this case, the analysis of the classical theory is more
complicated than the one considered above. In short, the main results may be outlined as
follows [103]:
First, the theory possesses µ �rst-class constraints. Among them, there should be µ1 6= 0
primary �rst-class constraints. Second, the solution of the Hamiltonian equations of motion
essentially contains µ1 arbitary functions of time. In turn, the solutions of the Lagrangian
equations contain exactly µ1 arbitrary functions of time, equal to the number of primary
�rst-class constraints in the Hamiltonian formalism. Third, all the constraints {Φ} can be
divided into two groups, i.e.

Φ = (φ; ϕ),

where φ are all �rst-class constraints and ϕ are all second-class constraints.
Of course, a quantization procedure analogous to the second class constraints does not

work for the �rst class ones because the Dirac bracket would not be well-de�ned. However, in-
troducing independent gauge functions χ, as many as the number of the �rst class constraints,
makes a functional formulation of gauge theories possible. There is only one restriction on the
gauge functions; namely, it is necessary that the determinant of all the �rst-class constraints
φ with all the gauges χ shoul be non-vanishing:

Det{φ, χ} 6= 0.
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In this case the generating functional of Green's functions can be expressed in the form

Z(J) =
∫
DpDqDet1/2{ϕ,ϕ}Det{χ, φ}δ(χ)δ(ϕ)δ(φ) exp

(
i

~
[SH(p, q) + Jq]

)
. (1.10.57)

Let us point to the formal equivalence with the quantization of second-class theories, if the
gauge functions are considered as a completion of the �rst-class constraints, φα, according to
Φ′ = (φ, χ; ϕ) then we have

Det1/2{Φ′,Φ′}δ(Φ′) = Det1/2{ϕ,ϕ}Det{χ, φ}δ(χ)δ(ϕ)δ(φ).

Example: free electromagnetic �eld

To give an illustrative example, we consider the theory of a free electromagnetic �eld Aµ, which
is described by the action

S(A) =
∫
dx

{
− 1

4
FµνFµν

}
. (1.10.58)

From Eq.( 1.10.58) it follows that there is one primary constraint here,

φ1 ≡ P0 = 0. (1.10.59)

The Hamiltonians H and H∗ are of the form

H =
1
2
P 2
i − Pi∂iA0 +

1
4

F2
ik, H∗ = H + λP0. (1.10.60)

Commuting the constraint ( 1.10.59) with the Hamiltonian H∗, we obtain

{H∗, φ1} = ∂iPi.

Thus a second-stage constraint appears,

φ2 ≡ ∂iPi = 0. (1.10.61)

The commutator of the constraint φ2 with the Hamiltonian H∗ is equal to zero, which means
that no further constraints arise in this case. Clearly, we are dealing with a theory with
�rst-class constraints, since the constraints φ1 and φ2 commute with each other. Obviously,
this theory obtains from the former example in the limit m2 = 0. Let us remind that Pi = Ei
are the components of the electric �eld, whereas Bi = (1/2)εijkFjk are the components of the
magnetic �eld, and that P0 = 0 is a trivial constraint, whereas ∂iEi = 0 is the Gauss law.

To construct the generating functional in this case, let us consider the following choice of
gauge functions:

χ1 ≡ A0, χ2 ≡ ∂iAi, (1.10.62)

leading to the non-covariant canonical, or radiation, gauge with A0 = 0 (temporal gauge) and
∂iAi = 0 (Coulomb gauge). Notice that the matrix of the �rst-class constraints φ = (φ1, φ2)
and gauge functions χ = (χ1, χ2) has the form

‖{χ, φ}‖ =
(

1 0
0 −4

)
δ(~x− ~y);
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it does not depend either on the �elds Aµ or on the momenta Pµ, and again the Jacobian is
simply a constant. Then, for the generating functional Z(J) we have

Z(J) =
∫
DAµDPµδ(A0)δ(P0)δ(∂iAi)δ(∂iPi) exp

{
i

~

∫
dx

[
PµȦ

µ −

− 1
2P

2
i + Pi∂iA0 − 1

4 F2
ik + JiA

i

]}
.

Next, integrating over A0 and P0 and then representing ∂iPi in the form of a functional
integral,

δ(∂iPi) =
∫
DA0 exp

(
− i

~

∫
dxA0∂iPi

)
,

we obtain

Z(J) =
∫
DAµDPiδ(∂iAi) exp

{
i

~

∫
dx

[
PiȦ

i − 1
2
P 2
i − Pi∂iA0 −

1
4

F2
ik + JiA

i

]}
.

Again, the integral over the momenta is Gaussian and can easily be calculated. As a �nal
result, we obtain the expression for Z in the form of a functional integral in con�guration
space:

Z(J) =
∫
DAµδ(∂iAi) exp

{
i

~

(
S(A) + JµA

µ

)}
(1.10.63)

where S(A) is the initial action ( 1.10.58). In the integral ( 1.10.63) we have introduced
the source J0 to the �eld A0 for the sake of symmetry, although the corresponding Green
functions are not necessarily present in the calculation of the physical quantities.

It is useful to rewrite the integral ( 1.10.63) in the following form:

Z(J) =
∫
DAµDB exp

{
i

~

(
S(A) +Bχ+ JµA

µ

)}
(1.10.64)

by introducing an auxiliary scalar �eld B multiplying the gauge function χ = ∂iAi. Here,
owing to the δ-function, we have the generating functional represented by the singular gauge.
It is often convenient to use a non-singular form of gauge in the functional integral for Green's
functions:

Z(J) =
∫
DAµDB exp

{
i

~

(
S(A) +Bχ+

α

2
B2 + JµA

µ

)}
, (1.10.65)

where α is a gauge parameter. It is interesting to observe that the same form of the generating
functional is obtained in the case of covariant gauges, as in the Feynman case. Then one has
to substitute into ( 1.10.64) the Lorentz gauge

χ = ∂µA
µ, (1.10.66)

with the result

Z(J) =
∫
DAµDB exp

{
i

~

(
S(A) +B∂µA

µ +
α

2
B2 + JµA

µ

)}
. (1.10.67)

Integrating in ( 1.10.67) over the �eld B, we obtain the generating functional in the generalized
Feynman gauge:

Z(J) =
∫
DAµ exp

{
i

~

(
S(A)− 1

2α
(∂µAµ)2 + JµA

µ

)}
(1.10.68)
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1.11 Naive Feynman rules

The quantization of electrodynamics started in the late 1920's, beginning from the proce-
dure of canonical quantization. Some gauges, e.g. the Lorentz gauge, could not be imposed
as operator identitis on the whole state space, but only on the subspace of physical states.
This resulted in the concept of Hilbert spaces with inde�nite metric and a certain projection
operator onto the physical states � which reappeared afterwards in the case of more compli-
cated gauge theories as the BRST operator. In the mid 1940's, the Feynman path integral
quantization of classical electrodynamics, circumvented this canonical approach, introducing
the diagrammatic rules for the computation of S�matrix elements directly in terms of the
e�ective action Seff . This e�ective action is obtained by adding an appropriate gauge part
Sg(A) to the action ( 1.10.58), for example, in the form

Sg(A) = − 1
2α

(
∂µA

µ
)2

(1.11.69)

where α is the gauge parameter. Then the generating functional Z(J) for the quantized
electrodynamics has the form

Z(J) =
∫
DA exp

{
i

~

(
Seff(A) + JA

)}
, (1.11.70)

where

Seff(A) = S(A) + Sg(A). (1.11.71)

The interaction with (charged) spinor �elds, e.g. electron-positron �eld, did not meet with
serious troubles: the generalization of the above canonical quantization method to the case of
anticommuting variables is straightforward. However, incorporating them into the path inte-
gral formalism led to intrioducing (classical) anticommuting variables (so-called Grassmann
variables), de�ning integrals over them, and replacing determinants in the functional integral
for Green's functions by superdeterminats (for the reader's convenience some properties to
be used in the rest of this review are given in Appendix B).

Until the early 1960's the idea existed that the naive Feynman rules could be constructed
by using the functional integral over all �elds of the initial theory with the action modi�ed
by the gauge, if necessary. As has been illustrated by the speci�c examples, after integrating
over the momenta, the expression for the generating functional of Green's functions, obtained
by (modi�ed) canonical quantization, can be written in the form

Z(J) =
∫
Dφ exp

{
i

~

(
Seff(φ) + Jφ

)}
, (1.11.72)

where the set of integration �elds φ includes both the initial �elds of the theory and some
additional �elds, like Nakanishi�Lautrup �eld, Faddeev�Popov ghost and antighost �elds (see
the next chapter), meanwhile the e�ective action Seff is a non-degenerate functional of all
�elds φ.

It appears to be an attractive idea to construct the e�ective action directly from the action
S of the original classical singular (gauge) theory without having recourse to the procedure
of canonical quantization. Such an approach, referred to as Lagrangian quantization, has an
additional advantage � that the formalism can be manifestly covariant.



Chapter 2

Faddeev-Popov and BRST Quantization

2.1 Yang-Mills �elds

In 1954 an important step in the theory of gauge �elds was taken by C.N. Yang and R.L.
Mills [207]. They introduced the concept of non-abelian gauge �elds Aµ and constructed the
action for these theories analogous to electrodynamics. 1

A Yang�Mills �eld can be associated with any compact semi-simple Lie group G, i.e., a
compact group without (nontrivial) Abelian invariant subgroup. (For a short exposition of
terminology and de�nitions being relevant in the following, seeAppendix A.) The number of
independent parameters ξa, a = 1, . . . , n, which characterize an arbitrary element g(ξ) of this
group, i.e., the dimension of G, is denoted by n. Among the representations of this group and
of the corresponding Lie algebra Lie(G), there exists a distinguished representation by n× n
matrices, the regular or adjoint representation. Any element ξ in the adjoint representation
M of the Lie algebra can be represented by a linear combination of the n skew-hermitian
generators Ta ≡ ad(Xa), cf. Eq. ( A.0.17),

ξ = ξaTa, with T+
a = −Ta,

and any element g ∈ G of the Lie group is given by g(ξ) = exp{ξaTa}. The generators Ta can
be normalized according to

tr (TaTb) = δab, (2.1.1)

de�ning the Cartan metric of G, cf. Eq. ( A.0.18). In that case the group manifold is Euclidean
and, by convention, the group indices will be written as upper ones only. Then, the structure
constants fabc of the Lie algebra may be chosen completely antisymmetric and the product
in the Lie algebra, i.e. the Lie bracket, is given by:

[T a, T b] = fabcT c. (2.1.2)

The Yang�Mills �eld is given by a Lorentz vector Aµ(x) on Minkowski spacetime, x ∈M4,
taking its values in Lie(G). It is convenient to consider Aµ(x) as a matrix in the adjoint

1The idea of a non-abelian gauge theory with gauge group SU(2) has been formulated already by O. Klein
at a Conference in 1938 in Warsaw [138]

23
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representation of this algebra. In this case the �eld Aµ(x) is de�ned by its coe�cients,

Aµ(x) = Aaµ(x)T a,

with respect to the basis {T a} of the generators. The gauge transformations of the �eld Aµ(x)
are de�ned by the rule

Aµ(x)→ Agµ(x) = g−1(x)Aµ(x)g(x) + g−1(x)∂µg(x), (2.1.3)

where g(x) = exp
(
ξa(x)Ta

)
� at any value of x � is a matrix taking its values in the adjoint

representation of the group G. It is easy to see that these transformations compose a group,
which is called the group of gauge transformation or, in short, the gauge group, G =

∏
xGx.

2

It is often convenient to deal with the in�nitesimal form of the gauge transformations. Let
the matrices g(x) di�er in�nitesimally from the unit matrix, i.e.,

g(x) = 1 + ξ(x) + . . . = 1 + ξa(x)T a + . . . ,

where ξ(x) belongs to the Lie algebra of the group Gx, and the ellipses indicate the terms
of second and higher order in the in�nitesimal group parameters ξa. Then the change of Aµ
under that transformation will be

δAµ(x) = ∂µξ(x) + [Aµ(x), ξ(x)] =: Dµ(A)ξ(x),

with the covariant derivative Dµ(A) ≡ ∂µ + [Aµ(x), � ] and, in components,

δAaµ = ∂µξ
a + fabcAbµξ

c = Dab
µ ξ

b, Dab
µ = δab∂µ + facbAcµ.

One can easily check that

[Dµ, Dν ]ξ = [Fµν , ξ] with Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

being the �eld strength tensor of the Yang-Mills �eld Aµ. This generalizes the electromagnetic
�eld strengh Fµν = ∂µAν − ∂νAµ, with the electromagnetic potentials Aµ being the gauge
�eld related to the abelian group U(1). One can represent Fµν as

Fµν = FaµνT
a, where Faµν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν .

Notice that the tensor Fµν transforms homogeneously under the gauge transformations (
2.1.3),

Fgµν = g−1Fµνg,

which implies that the classical action functional 3

S(A) = −1
4

∫
dx tr

(
FµνFµν

)
= −1

4

∫
dxFaµνFaµν (2.1.4)

is invariant under gauge transformations,

S(Ag) = S(A).

2A mathematical more adequate formalism uses the notion of a principle bundle P over the manifold M4

whose �bres at each point x ∈ M4 are (identical copies of) the group G. The gauge �eld Aµ(x) de�nes a
connection of the cotangent bundle T ∗P , and the �eld strenght Fµν(x) is the associated curvature. For an
introduction to that formulation of classical gauge theories, see, e.g. [159].

3Here, it should be mentioned that we already dropped the gauge coupling g of the Yang-Mills �eld which
usually appears in the covariant derivative and the �eld strenght through gfabc by including it into the gauge
�eld Aµ. Then the action functional should contain an additional factor 1/g2 which, for simplicity, in the
following will be set equal to one.
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2.2 Orbits

By analogy with electrodynamics, one may try to quantize the theory under consideration in
the form of the Lagrangian path integral with the classical action S(A), Eq. ( 2.1.4), modi�ed
by the gauge �xing action with some gauge parameter α,

Sgf(A) = − 1
2α

∫
dx tr

(
∂µAµ

)2 = − 1
2α

∫
dx
(
∂µAaµ

)(
∂νAaν

)
.

It is exactly like this that Feynman [83] analyzed in 1963 the problem of S-matrix unitarity
in Yang-Mills theories and also in Einstein gravity, thus discovering the non-unitarity of
the physical S-matrix in these theories. He also showed that the failure could be cured by
introducing so-called `ghost �elds�. Therefore a natural question arises: How can a properly
de�ned functional Z(J) be constructed in con�guration space for Yang-Mills theories? The
answer to this question was found in 1967 by L.D. Faddeev and V.N. Popov [79] and by B.S.
DeWitt [74].

Following the naive Feynman rules of quantization, one expects that the vacuum functional
may be expressed in the form of a functional integral over all �eld con�gurations,

〈0|0〉 ∼
∫
DAµ exp

{
i

~
S(A)

}
, (2.2.5)

where the integration measure DAµ is required to be invariant under gauge transformations,

DAµ = DAgµ.

The simplest (formal) Ansatz for the integration measure, satisfying this property, is

DAµ =
∏
µ,a,x

dAaµ(x).

However, since the integration is taken over all possible con�gurations Aµ, this implies mul-
tiple counting of physically equivalent con�gurations, i.e., those being equal up to a gauge
transformation.

Therefore, let us divide the con�guration space of the gauge �elds into equivalence classes
{Agµ(x) : g(x) ∈ G}, called orbits of the gauge group. Namely, an orbit of the group includes
all the �eld con�guration which arise when all possible transformations g(x) of the gauge
group G are applied to a given initial �eld con�guration Aµ(x). Obviously, the integrand of
the functional integral ( 2.2.5) is ill-de�ned � the action remains constant along any orbit
of the gauge group. Consequently, the integral is proportional to an in�nite constant � the
volume Πxvol(Gx) = vol(G)×M4 of the gauge group G.

2.3 Factoring out the volume of gauge group

Faddeev and Popov suggested a procedure of factoring out this in�nite constant of the path
integral. The idea is to split the integration over the full con�guration space into an inte-
gration over the equivalence classes of con�gurations {Agµ} and a further integration over the
con�gurations of any individual orbit. This corresponds to a change of `coordinates� from
{Aµ(x)} to {Ag0

µ (x), g(x)}, i.e., to exactly one representant Ag0
µ of each orbit and the group

manifold (along the orbit).
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First, let Dg denote an invariant measure, e.g., the (continuous product of) Haar measure,
on the gauge group G,

Dg = D(gg′); Dg =
∏
x

dg(x).

Furthermore, let us introduce a functional 4[Aµ] as follows:

1 = 4[Aµ]
∫
Dg δ

(
χ[Agµ]

)
. (2.3.6)

Here, δ
(
f
)
represents the continuous product of the usual Dirac δ-functions,

∏
x δ(f(x)), one

corresponding to each space-time point. Concerning the functional χ[Aµ], we assume that
the equation (with respect to g(x) ∈ G)

χ[Agµ] = 0

has exactly one solution, g0, for any initial �eld Aµ ≡ Aeµ, e: unit of G. 4 Then, in the
con�guration space {Aµ} the equation χ[Agµ] = 0 de�nes a hypersurface that intersects any
of the orbits exactly once. In other words, χ[Agµ] = 0 de�nes a 'gauge' by �xing a �eld Ag0

µ (x)
which represents the orbit. In general, the functional χ[Aµ] should be of the form χa(x, [Aµ]).
In fact, to �x a gauge we need at each space-time point one equation for each group parameter
ξa.

Notice that 4[Aµ] is invariant under gauge transformations. This can be demonstrated
by

4−1[Agµ] =
∫
Dg′δχ

(
[Agg

′

µ ]
)

=
∫
D(gg′)δ

(
χ[Agg

′

µ ]
)

=
∫
Dg
′′
δ
(
χ[Ag

′′

µ ]
)

= 4−1[Aµ],

where we have used the invariance of the group measure Dg. In fact, 4[Aµ] is a functional
on the space of orbits.

Now, our aim is to replace the integration over all �eld con�gurations by an integration
restricted to the hypersurface χ[Aµ] = 0. In that case each orbit would contribute with only
one �eld con�guration, and we are left with an integration over physically distinct �elds only.
This is achieved as follows. We start by inserting ( 2.3.6) into the path integral ( 2.2.5). Then
we change the order of integration, which implies∫

Dg
∫
DAµ 4 [Aµ]δ

(
χ[Agµ]

)
exp

{
i

~
S(A)

}
.

An important observation is that the total expression under the integral
∫
Dg is, in fact,

independent of g. To demonstrate this, we use the gauge invariance of
∫
DAµ, 4[Aµ] and

S(A), replacing them by
∫
DAgµ, 4[Agµ] and S(Ag), respectively; the result,∫
DAgµ 4 [Agµ]δ

(
χ[Agµ]

)
exp

{
i

~
S(Ag)

}
can be made manifestly g-independent by a change of notation: Agµ → Aµ. Consequently,
the group integration

∫
Dg factorizes out producing an in�nite constant: the volume of the

complete gauge group. We �nally obtain(∫
Dg
)∫
DAµ 4 [Aµ]δ

(
χ[Aµ]

)
exp

{
i

~
S(A)

}
.

4For non-abelian gauge theories this requirement cannot be ful�lled globally, i.e., there never exists a global
section of the bundle T ∗P which cuts every �bre only once thereby �xing one and only one representant of
each orbit [111]. However, this is not what is required for quantizing small �uctuations of the theory. It is
only necessary that the solution of Eq. ( 2.3.7) is unique in the neighbourhood of the classical extremals.
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2.4 Faddeev-Popov determinant

Next, we need to calculate 4[Aµ]. By de�nition it holds 1 =
∫
Dχδ

(
χ[Agµ]

)
. After formally

changing variables g ↔ χ (which is possible at least if χ depends linearly on Aµ):

4−1[Aµ] =
∫
Dgδ

(
χ[Agµ]

)
=
∫
Dχ

(
Det

δχ[Agµ]
δg

)−1

δ
(
χ[Agµ]

)
,

we obtain

4[Aµ] = Det
(
δχ[Agµ]
δg

) ∣∣∣∣
χ[Agµ]=0

. (2.4.7)

4[Aµ] is called the Faddeev-Popov determinant. It is the Jacobian of a `coordinate transfor-
mation� from χ to g.

It is convenient to use the gauge invariance of 4[Aµ] to choose Aµ such that it already
satis�es the gauge condition χ[Aµ] = 0. Then in ( 2.4.7) we can take the constraint χ[Agµ] = 0
at g = e, which simpli�es practical calculations:

4[Aµ] =
(

Det
δχ[Agµ]
δg

) ∣∣∣∣
g=e

. (2.4.8)

In the vicinity of g = e we should only deal with the in�nitesimal transformations: g(ξ) =
1 + ξaT a (where ξa(x) � 1). We can now rewrite ( 2.4.8) in a more explicit form, with all
relevant indices

4[Aµ] =

(
Det

δχa(x, [Aξµ])
δξb(y)

)∣∣∣∣
ξ=0

≡ DetMab(x, y).

We have to calculate the determinant of a matrix in both space-time and the group indices
Mab(x, y). For the Lorentz covariant gauge

χa[Aµ] ≡ ∂µAµa(x) = 0

we obtain

Mab(x, y) = ∂µD
µabδ(x− y).

The generating functional of Green's functions takes on the form,

Z(J) =
∫
DAµDet

(
∂µDab

µ

)
δ(∂µAaµ) exp

{
i

~
[S(A) + JaµA

µa]
}
. (2.4.9)

The same result ( 2.4.9) can be obtained (see, for example, [103]) by using the method of
canonical quantization (cf. Eq. ( 1.10.57) for the general expression in phase space).

2.5 Ghost and antighost �elds

The standard method of dealing with the Faddeev-Popov determinant is to replace it by an
additional functional integration over auxiliary, mutually independent complex scalar �elds
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Ca(x) (ghost �elds) and C̄a(x) (antighost �elds), which are Grassmann variables: 5

Det
(
∂µD

µab
)

=
∫
DCDC̄ exp

{ i
~
C̄aMabCb

}
≡
∫
DCDC̄ exp

{
i
~

∫
dxdyC̄a(x)Mab(x, y)Cb(y)

}
.

Introducing additional auxiliary �elds Ba(x) (Nakanishi�Lautrup �elds), we can also represent
δ(∂µAµa) in the form of a functional integral,

δ(∂µAµa) =
∫
DB exp

{
i

~
Ba∂µA

µa

}
so that �nally we obtain

Z(J) =
∫
Dφ exp

{
i

~
(Seff(φ) + JAφ

A)
}
. (2.5.10)

In Eq.( 2.5.10) we have introduced the e�ective action,

Seff(φ) = S(A) +Baχa + C̄a
δχa

δAµc
DµcbCb, with χa(x) = ∂µA

µa(x), (2.5.11)

and the entire set of dynamical �elds in the Lagrangian formalism which constitute the so-
called extended con�guration space of the Yang-Mills theory under consideration:

φA = (Aµa, Ba, Ca, C̄a), (2.5.12)

2.6 Faddeev-Popov action

For the sake of formal symmetry we have introduced also sources for the auxiliary �elds
Ba, Ca, C̄a in the integral ( 2.5.10). Furthermore, let us denote by ε(φ) the Grassmann parity
and by gh(φ) the ghost number of a �eld φ, which are given for the various quantities in
Yang�Mills theories as follows:

ε(Aaµ) = ε(Ba) = 0, ε(Ca) = ε(C̄a) = 1, ε(ξa) = 0, ε(S) = 0, (2.6.13)

gh(Aaµ) = gh(Ba) = 0, gh(Ca) = 1, gh(C̄a) = −1, gh(ξa) = 0, gh(S) = 0. (2.6.14)

This �nishes the Faddeev�Popov method to obtain an e�ective action, the Faddeev�Popov
action SFP, for any Yang-Mills theory:

SFP(φ) = S(A) +Ba∂µA
µa + C̄a∂µD

µabCb. (2.6.15)

Besides of the Lagrange multiplier �eld B which easily may be integrated out � leading to
the Landau gauge � the unphysical ghost and antighost �elds C and C̄ occure. In the case
of electromagnetism these �elds decouple since, because of the abelianess of the gauge group,
i.e., fabc = 0, the Faddeev�Popov determinant Det∂µ∂µ is �eld independent and the ghost
�eld equation of motion, �C = 0, decouples from the gauge �eld Aµ. In that case the ghost
and antighost �elds also may be integrated out leading to

‖{χ, φ}‖ =
(
∂2

0 0
0 −4

)
δ(~x− ~y);

5Here, and in the following we use the convention of DeWitt [73], see also [75], where indices are assumed to
contain also the spacetime variables, if necessary, and summation over the indices then also include integration
over these continuous variables
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in the discussion of Chapter 1 the constant Faddeev-Popov determinant has been dropped!
For nonsingular gauges, like the Feynman gauge which obtains after addition of the term

(α/2)B2 to Eq. ( 2.6.15), the Nakanishi-Lautrup �eld could be also integrated out, thus
leading to the following action

SFP(φ) = S(A)− 1
2α
(
∂µA

µa
)2 + C̄a∂µD

µabCb. (2.6.16)

The action ( 2.6.15) or, likewise, the action ( 2.6.16) is the starting point to determine
the Feynman rules of Yang-Mills theories, in order to compute scattering amplitudes, decay
rates, and so on, for the physical �eld Aµ. Ghost and antighost �elds occure in internal lines
only, but their contribution adds up such that the S-matrix comes out to be unitary.

Here, it should be remarked, that Yang�Mills theories may be quantized also by the
canonical formalism, leading to the same physical results � but manifest relativistic covariance
would be lost. There appear also no problems to include interactions with matter �elds,
like Dirac or scalar �elds, as is necessary in formulating Quantum Chromodynamics or the
Electroweak Standard Model (see below). � In addition, it should be mentioned that any
gauge �xing functional χ[Aµ] works as long as it is local and linear in the �elds. For the
non-covariant axial gauges, like χ ≡ nµAµ, n

µ: const., it is even possible to decouple the
(anti)ghost �elds again � however, other complications are introduced instead.

As is well known from QED that, because of gauge symmetry, the Green's functions, in
general, are not independent from each other. There occure relations between them which
are governed by some Ward identities, relating, e.g., the (3�point) vertex function and the
derivative of the (2-point) propagator. The same situation, but much more involved, also
occurs for nonabelian Yang�Mills theories. Furthermore, it has to be proven that after renor-
malization the quantized theory shows the same symmetries as the classical (e�ective) action.
Of course, the gauge invariance with respect to G is broken by the gauge �xing and ghost
terms, Sgf + Sgh, but there must be some relic of the original symmetry group G!

2.7 BRST symmetry and BRST cohomology

The next important step in the development of gauge theories was taken by C. Becchi, A.
Rouet and R. Stora [46] and also, independently, by I.V. Tyutin [195]. They discovered a
remarkable invariance of the action ( 2.6.15) under some nonlinear global supertransformations
in the extended con�guration space, the so-called BRST-transformations:

δBSFP(φ) = 0, (2.7.17)

with

δBA
a
µ = Dab

µ (A)Cbλ, δBC
a = −1

2
fabcCbCcλ, (2.7.18)

δBC̄
a = Baλ, δBB

a = 0, (2.7.19)

where λ is a constant Grassmann parameter (ε(λ) = 1). The �rst set of �elds, the so-called
minimal pair, transforms nonlinear in the �elds, whereas the second set of �elds, the so-called
trivial pair, transforms linear. For the initial �elds of the theory, Aµ (as well as possible matter
�elds), the BRST-transformations are gauge transformations with gauge parameters ξa(x) =
Ca(x)λ. Owing to this fact, the initial action S(A) is invariant under these transformations.
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Furthermore, the transformation rule of the ghost �elds encodes the (global) symmetry group
G through their structure constants.

Let us now de�ne an operator s acting on the �elds φA:

δBφ
A = (sφA)λ. (2.7.20)

This operator is the generator of BRST-transformations in the Lagrangian formalism. One
can verify that it is nilpotent, i.e.,

s2 = 0. (2.7.21)

Indeed, 6

s2Ba = s(sBa) = 0,

s2C̄a = s(sC̄a) = (sBa) = 0,

s2Ca = s
(1

2
fabcCcCb

)
= 1

2
fabcCcf bdeCdCe =

= −1
6
(facbf bde + fadbf bec + faebf bcd)CcCdCe = 0,

s2Aaµ = s(Dab
µ C

b) = 1
2
Dab
µ (f bcdCdCc) +

δDab
µ

δAcν
(Dcd

ν C
d)Cb =

= 1
2
fabd∂µ(CdCb) + fadb(∂µCd)Cb + 1

2
faebf bcdAeµC

dCc + facbf cedAeµC
dCb

= 1
2
(facbf bde + fadbf bec + faebf bcd)AeµC

dCc = 0.

Here, we have used the equalities following from the Jacobi identity (cf. Eq. ( A.0.8))

fabcf cde + fadcf ceb + faecf cbd ≡ 0;

computing (δDab
µ /δA

c
ν)(Dcd

ν C
d) it must be observed that the sum over ν implicitly contains

an integration over, say, y leading to
∫
dy
(
facbδ(x− y)

)
Dcd
ν (y)Cd(y)! In addition, we remark

that

Sgf + Sgh = sΨ(φ) with Ψ(φ) = C̄a∂µAaµ (2.7.22)

holds. Because of the nilpotency of s this makes the proof of BRST invariance of SFP quite
trivial. The same would hold for any other choice of the so-called gauge fermion Ψ of ghost
number gh(Ψ) = −1, also if its dependence on A would not be linear! (In Feynman gauge
the gauge fermion reads Ψ(φ) = C̄a(∂µAaµ + α

2B
a)). Let us point also to another fact. If the

Nakanishi-Lautrup �elds are integrated out from the action the BRST transformation of the
trivial pair reduces to the following single rule for the antighost C̄ only:

sC̄a = − 1
α
χa[Aµ]. (2.7.23)

However, then the BRST operator fails to be nilpotent when applied to C̄! On the other
hand, nilpotency of the BRST operator is a very essential ingredient for a consistent physical
interpretation of quantum gauge theories as will be shown now.

6Here, it should be kept in mind that the BRST operator s according to its de�nition, Eq. ( 2.7.20), acts
from the right, cf. [103, 108]. This has to be taken into account when its action on Grassmann odd variables
is to be considered! Warning: Some textbooks, e.g., [205, 168, 80] introduce s as (usual) left operation by
writing λ in Eqs. ( 2.7.18) and ( 2.7.19) also to the left!
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The physical content of the theory is given by the entire set of BRST-invariant functionals
Φ(φ) of ghost number zero, sΦ(φ) = 0, modulo the set of BRST-variations of any functional
Ψ(φ) of ghost number -1, sΨ(φ), which are invariant because of the nilpotence of s. Generally
speaking, physical observables as well as states are nontrivial cohomology classes of the BRST
operator. 7 Let us qualify this statement more explicitly.

From the BRST invariance of the FP action ( 2.6.15) it follows � as for any global symmetry
� the existence of a conserved Noether current

JµB =
δrS

δφAµ
sφA with ∂µJ

µ
B = 0,

where δrX(φ)/δφAµ denotes the right derivative of a functional X(φ). Its explicit form reads

JµB = −F aµν(Dab
ν C

b) +Ba(DµabCb)− 1
2
fabc(∂µC̄a)CbCc,

= BaDµabCb − (∂µBa)Ca + 1
2
fabc(∂µC̄a)CbCc − ∂ν(F aµνCa), (2.7.24)

where, for the second line, the �eld equations of Aµ have been used. In general, the total
divergence does not contribute to the corresponding conserved charge, the BRST charge:

QB =
∫
d3xJ0

B with
dQB

dt
= 0.

The theory contains another conserved current JµC , the ghost current, and a conserved
charge QC , the ghost or FP charge, which is associated with the invariance of the FP-action
under the scale transformation

Ca → eθCa, C̄a → e−θC̄a,

where θ is a constant Grassmann even parameter:

JµC = i
(
C̄a(DµabCb)− (∂µC̄a)Ca

)
with ∂µJ

µ
C = 0,

QC =
∫
d3xJ0

C with
dQC

dt
= 0.

In exactly the same manner as the �elds are supplemented with the usual charges correspond-
ing to some phase transformation, all the �elds here can be supplemented with the (conserved)
ghost number gh(φ), Eq. ( 2.6.14), the eigenvalue of the ghost operator on the corresponding
�eld operator.

Furthermore, both currents are related:

JµB = −sJµC − ∂ν(F aµνCa). (2.7.25)

As is well known from Quantum Electrodynamics the full state space of the theory is
a Hilbert space V with inde�nite metric: scalar photons have zero norm and longitudinal
ones may have negative norm. However, there exists a projection operator onto the physical
Hilbert space having positive de�nite metric [118, 52]. The same situation occurs for the
quantum states of non-abelian gauge theories which, in addition, su�er from the (virtual)

7In mathematical terms one says that Φ, which is in the kernel of s, is a BRST-closed functional and that
Ψ is a BRST-exact functional, since sΨ is in the image of s. This is completely analogous to the de Rham
cohomology of the (nilpotent) exteriour di�erential d, d2 = 0, in di�erential geometry where a form ω of degree
p is called closed if dω = 0, and a form ω is called exact if it can be written as ω = dν with some form ν of
degree p− 1. Because of this similarity between d and s the latter is also called an anti-derivation.
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appearance of ghost and antighost particles. In order to be able to determine the subspace of
physical states of the theory, Vphys ⊂ V, it is necessary to study the irreducible representations
of the BRST and the FP charge in the full state space which, for the �rst time, has been
done by Kugo and Ojima [140]. This plays a crucial role in the formulation a unitary physical
S-matrix.

Both the BRST charge and the ghost charge, together with the �elds φA, are to be
represented by corresponding operators. In fact, the ghost numbers are the eigenvalues of
iQ̂C , e.g.,

[iQ̂C , Ĉa] = Ĉa, [iQ̂C , ˆ̄aC] = − ˆ̄aC, (2.7.26)

and the (nilpotent) BRST charge operator generates the BRST transformations of the �eld
operators,

sφ̂A = [iQ̂B , φ̂A]∓, (2.7.27)

with the commutator and the anticommutator in the case of bosonic and fermionic �elds,
respectively. Both charge operators are hermitian. They satisfy the following BRST algebra:

{Q̂B , Q̂B} = 2(Q̂B)2 = 0, (2.7.28)

[ iQ̂C , Q̂B ] = Q̂B , (2.7.29)

[ Q̂C , Q̂C ] = 0. (2.7.30)

2.8 Physical state space

A physical state Vphys is de�ned by the BRST charge

Q̂B |ϕ〉 = 0, ∀|ϕ〉 ∈ Vphys ≡ ker Q̂B . (2.8.31)

Because of its nilpotence there exist only two types of representations of Q̂B , namely, the
singlet states |s〉 and the doublet states (|p〉, |d〉) being called parent (p) and daughter (d)
states:

Q̂B |s〉 = 0,
Q̂B |p〉 = |d〉 6= 0, Q̂B |d〉 = 0.

In addition it holds

〈ϕ|d〉 = 〈ϕ|Q̂B |p〉 = 0,
〈d|d〉 = 〈p|(Q̂B)2|p〉 = 0.

Therefore, any physical state should be a singlet state modulo some daughter state,

|ϕ〉 = |s〉+ |d〉,

i.e., physical states are nontrivial cohomology classes of Q̂B . In addition, genuine physical
states should have vanishing ghost number, i.e., it should hold

Q̂C |phys〉 = 0.
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States with nonvanishing ghost number occure pairwise with opposite ghost number N with
〈N |−N〉 = 1 which also proves that states |ψλ〉 = |N〉+λ|−N〉, λ complex, may have negative
norm (for Reλ negative). 8 In general the following state con�gurations are possible:

1. BRST singlet with N = 0 (genuine physical state),

2a. BRST singlet with N 6= 0 together with an FP conjugate d�state (unpaired singlet),

2b. FP conjugate pairs of BRST singlets with N 6= 0 (singlet pair),

3. Two FP conjugate BRST doublet states with N 6= 0 (quartet state).

This exhausts all the possible representations of the BRST algebra in inde�nite inner product
spaces (for a comprehensive review, see [140, 158]).

2.9 AntiBRST symmetry

As it became obvious from the previous considerations ghost and antighost �elds enter the
FP quantization not symmetrically � besides the fact that they could be renamed. However,
for the FP action ( 2.6.15) it was discovered by Curci and Ferrari [66] and, independently, by
Ojima [166] that in addition to BRST-symmetry there exists another global supersymmetry,
the so-called antiBRST symmetry, which also leaves the quantum Yang�Mills action invariant,
provided the gauge-�xing functional χ is linear in the �elds. These antiBRST-transformations

read

δ̄BA
a
µ = Dab

µ (A)C̄bλ̄, δ̄BC̄
a = 1

2
fabcC̄bC̄cλ̄, (2.9.32)

δ̄BC
a = (−Ba + fabcCbC̄c)λ̄, δ̄BB

a = −fabcC̄bBcλ̄, (2.9.33)

where for the �rst pair of transformations C and C̄ are exchanged relative to Eqs. ( 2.7.18)
but for the second pair the transformations look more complicated than Eqs. ( 2.7.19). The
antiBRST operator s̄ acting on the �elds φA as

δ̄Bφ
A = (̄sφA)λ̄.

satis�es, together with s, the following algebra:

s2 = s̄s + s̄s = s̄2 = 0.

Later on, in Chapters 4, 5, 7 and 8, we make use of that possible extension of the formalism.

2.10 Zinn-Justin equation

The BRST symmetry of the e�ective action should be maintained also for the renormalized
Green's functions of the theory. The formulation of that requirement in renormalized per-
turbation theory is not trivial since (most of) the BRST transformations are nonlinear thus
leading to serious problems in properly renormalizing products of operators being de�ned on
the same spacetime point. The way out has been given by Kluberg-Stern and Zuber [139] who

8The existence of pairs of states with conjugate imaginary eigenvalues iN and −iN of Q̂C is in accordance
with the inde�nite metric of the state space.
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introduced (external) classical sources, later on called anti�elds φ∗A by Batalin and Vilkovisky
[40], coupling to the nontrivial BRST transforms of the �elds φ. Therefore, instead of the FP
action ( 2.6.15) we introduce an extended action Sext

Sext(φ, φ∗) = SFP (φ) +A∗µaD
µabCb + C̄∗aB

a + 1
2
C∗af

abcCbCc, (2.10.34)

with the set of anti�elds φ∗A

φ∗A = (A∗µa, B
∗
a, C

∗
a , C̄

∗
a) with ε(φ∗A) = ε(φA) + 1, gh(φ∗A) = −1− gh(φA).

Obviously, in the present situation the introduction of the anti�elds B∗ and C̄∗ is not manda-
tory; however, for general gauge theories to be considered in the next chapter they occure
necessarily. Here, by de�nition, the anti�elds φ∗A are BRST invariant sources of the BRST-
transforms of the �elds φA:

sφA =
δSext

δφ∗A
, sφ∗A = 0.

Later on, in the same manner we introduce also anti�elds coupled to the antiBRST transforms
of the �elds φA (cf. Chapter 4).

By construction, the extended action is invariant under the BRST-transformations

sSext(φ, φ∗) = 0

which, equivalently, may be expressed by the Zinn-Justin equation:9

δSext

δφA
δSext

δφ∗A
= 0. (2.10.35)

Let us remind the reader that this equation is a shorthand notation of the following integrated
expression:∫

dx

{
δSext

δAaµ(x)
δSext

δA∗aµ(x)
+

δSext

δCa(x)
δSext

δC∗a(x)
+

δSext

δC̄a(x)
δSext

δC̄∗a(x)

}
= 0.

For the �rst time, the property of the BRST invariance of the extended action Sext, as well
as for the 1PI-vertex functional Γ, for gauge theories of Yang-Mills type in the form of Eq. (
2.10.35) was realized by J. Zinn-Justin in his lectures in 1975 [208]. Let us emphasize that
Eq. ( 2.10.35) is very general. It does not contain any information about the gauge group.
The special aspects of the theory are given only by the classical action S0(A) and the gauge
�xing procedure à la Faddeev-Popov.

2.11 Slavnov�Taylor identity

The Zinn-Justin equation allows for a short derivation of the Ward identity of the BRST
symmetry in terms of the extended generating functional of Green's functions Z(J, φ∗),

Z(J, φ∗) =
∫
Dφ exp

{
i

~

(
Sext(φ, φ∗) + JAφ

A

)}
,

9From now on we use the convention that any derivation with respect to the �elds � if not stated otherwise
� is understood as acting from the right, whereas any derivative with respect to the anti�elds acts � as usual
� from the left.
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with the evident property

Z(J, φ∗)|φ∗=0 = Z(J),

where Z(J) is given by Eq. ( 2.5.10) with an e�ective action written with an arbitrary (linear)
gauge function χ(A). By virtue of Eq. ( 2.10.35) it follows immediatly∫

DφδSext

δφA
δSext

δφ∗A
exp

{
i

~

(
Sext(φ, φ∗) + JAφ

A

)}
= 0

which may be rewritten as∫
DφδSext

δφA
δ

δφ∗A
exp

{
i

~

(
Sext(φ, φ∗) + JAφ

A

)}
= 0.

Taking into account the explicit form of Sext, Eq. ( 2.10.34), we obtain

δ2Sext

δφ∗Aδφ
A

= 0,

and, therefore, we have

δ

δφ∗A

∫
DφδSext

δφA
exp

{
i

~

(
Sext(φ, φ∗) + JAφ

A

)}
= 0.

Supposing (as usual) that any integral over a total derivative vanishes as long as the expression
under the derivative vanishes at the boundary,

∫
Dφ(δ/δφA) exp

{
i
~
(
Sext(φ, φ∗)+JAφA

)}
= 0,

then, integrating in the last expression by parts, gives the Ward identity of BRST symmetry
in terms of the generating functional Z:

JA
δZ(J, φ∗)
δφ∗A

= 0. (2.11.36)

For the generating functional of connected Green's function, W(J, φ∗) = (~/i) lnZ(J, φ∗),
the Ward identity resulting from ( 2.11.36) simply reads

JA
δW(J, φ∗)

δφ∗A
= 0. (2.11.37)

For the generating functional of the 1PI-vertex functions being de�ned through the Leg-
endre transformation of W, 10 where the anti�elds are independent `spectators�,

Γ(φ, φ∗) =W(J, φ∗)− JAφA,

φA =
δW(J, φ∗)

δJA
,

δΓ(φ, φ∗)
δφA

= −JA,
δW(J, φ∗)

δφ∗
=
δΓ(φ, φ∗)
δφ∗

,

the corresponding Ward identity has the form of the Zinn-Justin equation,

δΓ
δφA

δΓ
δφ∗A

= 0. (2.11.38)

This nonlinear identity is often refered to as the Slavnov�Taylor identity [191, 186]. It plays
a crucial role in the proof of the renormalizability of Yang-Mills type theories based on
the BRST-symmetry [208, 209]; for a comprehensive review based on the BRST-algebraic
approach, see, e.g., [168].

10Now, the functions φ which enter Γ are classical C∞�functions like the (external) anti�elds φ∗.
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2.12 Renormalization

The vertex functional Γ is the basic object to study renormalizability of a quantum �eld
theory. In general, it is a very complicated functional of the �elds and anti�elds whose loop
expansion reads

Γ(φ, φ∗) = Σ(φ, φ∗) +
∞∑
N=1

ΓN (φ, φ∗), (2.12.39)

with Σ = Sext(φ, φ∗) being the tree approximation. Proving renormalizability means to show,
order by order in perturbation theory, that the Slavnov-Taylor (ST) identity, Eq. ( 2.11.38),
together with the gauge �xing condition,

δΓ
δBa(x)

= χa(A), (2.12.40)

and the ghost equation of motion,

δΓ
δC̄a(x)

+ ∂µ
δΓ

δA∗aµ(x)
= 0, (2.12.41)

are satis�ed; obviously, they hold in the tree approximation. The last equation shows that
Γ depends only on the combination Ã∗aµ(x) = A∗aµ(x) + ∂µC̄

a(x); taking this for granted the

ghost equation of motion simply reads δΓ/δC̄a(x) = 0.
As long as the gauge function χ depends on Aµ only linearly then, by applying the

quantum action principle [156, 157, 64, 141, 142], the gauge condition and the ghost equation
of motion may be proven to hold, i.e., any possible obstruction of the vertex functional can be
compensated, order by order, by adding corresponding conterterms into the vertex functional
Γ without disturbing its structure in terms of �elds (and anti�elds). If the gauge condition
depends nonlinear on the �elds one has to introduce additional sources to deal with this
situation, too.

However, also the nonlinear Slavnov-Taylor identity should not be broken by anomalous
terms. In order to formulate that condition let us introduce the following equivalent notations
for the action of the nonlinear Slavnov-Taylor operator S(·) on the vertex functional Γ (cf. also
Chapter 3)

S(Γ) =
δΓ
δφA

δΓ
δφ∗A

≡ (Γ,Γ). (2.12.42)

Obviously, the ST operator has ghost number gh(S) = 1.
Absence of any obstruction means that, for any order ~n, it should hold

n∑
n′=0

(Γn,Γn−n′) = 0.

If, at order n, the ST identity would be broken by an integrated local polynomial in the �elds
and anti�elds ∆(Φ,Φ∗) with gh(∆) = 1,

S(Γ) = ~n∆ +O(~n+1),

then it has to be shown that this could be remedied by an appropriate counterterm of Γ. This
leads to the consideration of another cohomology problem. Namely, any possible breaking
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∆ has to satisfy some consistency condition. To show this let us introduce the linearized

Slavnov�Taylor operator,

BΓ =
δΓ
δφA

δ

δφ∗A
+

δΓ
δφ∗A

δ

δφA
(2.12.43)

which identically obeys

BΓS(Γ) ≡ 0. (2.12.44)

Furthermore, if the ST identity is ful�lled then BΓ is nilpotent, i.e.,

S(Γ) = 0⇒ (BΓ)2 = 0. (2.12.45)

Here, it should be mentioned that these statements are true not only for Γ but also for
an arbitrary functional F . Especially, the latter statement holds for the classical action Σ.
Therefore, because of ( 2.12.44), the consistency condition for ∆ reads

BΣ∆ = 0. (2.12.46)

Of course, this de�nes a cohomology problem for BΣ in the sector of integrated local �eld
polynomials of ghost number one:

• If ∆ = BΣ∆̃, then this cohomology is trivial and the vertex functional can be rede�ned
by subtracting the counterterm ~n∆̃;

• if, however,

∆ = rA+ BΣ∆̃ with rA 6= BΣÃ (2.12.47)

with nonvanishing r, then the Slavnov�Taylor identity is broken by the anomaly A,

S(Γ) = r~nA+O(~n+1), (2.12.48)

and the classical symmetry cannot be implemented at the quantum level.

Therefore, renormalizability means absence � or at least mutual compensation � of anomalies.

2.13 BRST quantization

The procedure described up to now extends the Faddeev-Popov�DeWitt quantization in so
far as it also works in cases where the (anti)ghost �elds occure not only bilinear. Let us,
therefore, summarize the various components of that so-called BRST quantization:

• The �rst step consists in �nding themost general classical action Seff being invariant un-
der the BRST transformations (possibly, also under further local symmetries like general
coordinate transformations as for general relativity) and allowing for a renormalizable
quantum action, i.e., the various terms of the Lagrangian should have dimensions not
exceeding the dimension of spacetime. In principle, this is equivalent of asking for the
most general classical solution Σ(φ, φ∗) of the Zinn-Justin equation.

• The second step consists in proving absence of anomalies of the Slavnov�Taylor identity
� as well as of further Ward identities corresponding to additional symmetries � for the
renormalized vertex functional Γ(φ, φ∗) thus ensuring preservation of the symmetry at
the quantum level.
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• Additionaly, the existence of a conserved, nilpotent BRST�charge operator Q̂B and of an
(anti)ghost-free physical subspace should be proven consisting of states |phys〉 which are
annihilated by Q̂B and have positive de�nite norm; furthermore, the S�matrix should
be proven to be unitary in that physical state space.

2.14 Further generalizations and special properties of FP

quantization

Now we give further generalization of the FP method in order to be able to investigate more
complicated gauge theories than pure Yang�Mills theories. Thereby, also we prepare the
ground for introducing the Batalin-Vilkovisky method of the next Chapter. In addition, we
give some aspects of the extended action related to the gauge �xing procedure.

(i) General conditions allowing for the application of FP quantization

At �rst we generalize to the case where Yang-Mills theories are coupled to some matter �elds,
e.g., scalar or spinor �elds. Thereby, we formulate the general conditions which should be
ful�lled in order to be able to apply the FP method. Let us start from some initial action
S0(A) of the �elds Ai = {Aaµ(x), ϕr(x), ψr(x), . . .}, with Grassmann parities ε(Ai) ≡ εi,
being invariant under the gauge transformations (X, ≡ δX/δAi)

δAi = Riα(A)ξα, S0,i(A)Riα(A) = 0,

where ξα are arbitrary functions with Grassmann parities ε(ξα) ≡ εα, and Riα(A), ε(Riα(A)) =
εi + εα are generators of gauge transformations. For the Yang-Mills �elds, using DeWitt's
notation [75], the content of indices i and α is i = (x, µ, a) and α = (x, a) and, correspondingly,
for the matter �elds. The latter are assumed to transform homogeneously according to some
� but not necessarily the same � representation of the gauge group with group generators
(Xa)rs obeying the same Lie bracket ( 2.1.2) as the generators in the adjoint representation,
e.g.,

δψr = (Xa)rsψ
s, δϕr = (Xa)rsϕ

s, . . . .

Then the algebra of the gauge generators Riα has the following form:

Riα,j(A)Rjβ(A)− (−1)εαεβRiβ,j(A)Rjα(A) = −Riγ(A)F γαβ , (2.14.49)

where F γαβ = −(−1)εαεβF γβα are the structure constants � in the case of general gauge
theories, which will be considered starting with the next Chapter, they may depend upon the
�elds Ai. If, in addition, the generators Riα form a set of linear independent operators with
respect to {α}, then the algebra ( 2.14.49) allows for the application of the Faddeev-Popov
quantization to the theory under consideration.

Let us introduce the extended con�guration space of the �elds as follows:

φA = (Ai, Bα, Cα, C̄α),
ε(Ai) = εi, ε(Bα) = εα, ε(Cα) = ε(C̄α) = εα + 1,
gh(Ai) = gh(Bα) = 0, gh(Cα) = 1, gh(C̄α) = −1,
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where Bα are Nakanishi-Lautrup auxiliary �elds , Cα and C̄α are the Faddeev-Popov ghost
and anti-ghost �elds.

Let us de�ne the total (e�ective) action of the theory according to the rule

Seff(φ) = S0(A) + C̄αχα,i(A)Riβ(A)Cβ + χα(A)Bα (2.14.50)

where χα, ε(χα) = εα, is some gauge functional lifting the degeneracy of the classical gauge
invariant action S0(A). Then the generating functional of the Green functions can be repre-
sented in the form of a functional integral

Z(J) =
∫
Dφ exp

{
i

~

(
Seff(φ) + JAφ

A

)}
. (2.14.51)

If, in addition, the following conditions

(−1)εβF ββα = (−1)εi
δlR

i
α

δAi
= 0 (2.14.52)

are ful�lled then it is possible also to establish the gauge independence of the vacuum func-
tional Z(0) and of the S-matrix (see below). (Here and elsewhere the subscript "l" denotes
the left derivative with respect to a �eld.) For Yang-Mills theories considered above the rela-
tions ( 2.14.52) are valid due to the property of the antisymmetry of the structure constants
fabc.

The action ( 2.14.50) is invariant under the following BRST transformation

δBSeff(φ) = 0,

with

δBA
i = Riα(A)Cαλ, δBC

α = −1
2
(−1)εβFαβγCγCβλ, (2.14.53)

δBC̄
α = Bαλ, δBB

α = 0, (2.14.54)

where λ is a constant Grassmann parameter (ε(λ) = 1). One easily veri�es the property of
nilpotency of the BRST-transformation as well as of the corresponding BRST operator.

(ii) Extended action and gauge �xing

As in the case of pure Yang-Mills theory it is useful to modify the action Seff(φ) in the
following way:

Sext(φ, φ∗) = Seff(φ) +A∗iR
i
α(A)Cα − 1

2
C∗αF

α
βγC

γCβ(−1)εβ + C̄∗αB
α (2.14.55)

with the anti�elds φ∗A = (A∗i , B
∗
α, C

∗
α, C̄

∗
α), ε(φ∗A) = εA+1. By construction, that extended

action ( 2.14.55) is invariant under the BRST transformations,

δBSext(φ, φ∗) = 0, (2.14.56)

which, again, may be represented in the equivalent form of the Zinn-Justin equation

δSext

δφA
δSext

δφ∗A
= 0. (2.14.57)
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Eqs. ( 2.14.56) and ( 2.14.57) follow from the gauge invariance of the initial action S0(A).
Note also that one can express the BRST-transformations ( 2.14.53) and ( 2.14.54) by means
of Sext in a unique form:

δBφ
A =

δSext

δφ∗A
λ, δBφ

∗
A = 0.

Again as in the case of pure Yang-Mills theories one obtains the Ward identities for the
generating functionals of (connected) Green's functions and 1PI-vertex functions in the same
manner with formally the same result.

Furthermore, using the extended action it is possible to describe the gauge �xing in a
unique way. To do this let us consider the action

S(φ, φ∗) = S0(A) +A∗iR
i
α(A)Cα − 1

2
C∗αF

α
βγC

γCβ(−1)εβ + C̄∗αB
α, (2.14.58)

i.e., replacing Seff by S0(A) in Eq. ( 2.14.55) and omitting the gauge �xing and the ghost
actions. It is obvious that this action also satis�es Eq. ( 2.14.57)

δS

δφA
δS

δφ∗A
= 0 (2.14.59)

as well as the boundary condition

S|φ∗=0 = S0(A).

The BRST-transformations are also expressed through S

δBφ
A =

δS

δφ∗A
λ, δBφ

∗
A = 0.

Now, let us introduce a functional Ψ(φ), the gauge �xing fermion, by the rule

Ψ(φ) = C̄αχα(A).

Then the actions Seff , Eq. ( 2.14.50), and Sext, Eq. ( 2.14.55), may be expressed by S(φ, φ∗)
as follows

Seff(φ) = S

(
φ, φ∗ =

δΨ
δφ

)
, Sext(φ) = S

(
φ, φ∗ +

δΨ
δφ

)
. (2.14.60)

We emphasize once again that the Eq. ( 2.14.59) is of a very general form, which does
not contain explicit information about the initial gauge group. All the information about the
initial theory is contained, in fact, in the boundary condition (also including the �eld content).

(iii) Gauge independence of the vacuum functional

It follows from the de�nition of the e�ective action ( 2.14.50) that the functional Z(J), Eq. (
2.14.51), depends on the gauge function χ(A) or, likewise, on Ψ(φ). Let us consider the
vacuum functionals of the theory Zχ ≡ Z(0) and Zχ+δχ corresponding to the gauges χα(A)
and χα(A) + δχα(A), respectively. In the functional integral

Zχ+δχ =
∫
Dφ exp

{
i

~

(
Seff(φ) + C̄αδχα,i(A)Riβ(A)Cβ + δχα(A)Bα

)}
(2.14.61)
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we make a change of variables being given by Eqs. ( 2.14.53) and ( 2.14.54) with some
functional Λ = Λ(φ) instead of the constant Grassmann odd variable λ. Of course, the
e�ective action is invariant under such a change of variables. There appear contributions
only from the integration measure, resulting in a corresponding Jacobian, and from the terms
containing δχ. Restricting to �rst order in Λ(φ) and δχα(A) and rewriting the Jacobian
according to sDetM = exp(sTrM), with MA

B ≡ δ(δφA)/δφB we obtain

Zχ+δχ =
∫
Dφ exp

{
i

~

(
Seff(φ) + C̄αδχα,i(A)Riβ(A)Cβ + δχα(A)Bα + (2.14.62)

+i~Λ,iRiα(A)Cα − i~1
2
(−1)εα+εβFαβγC

γCβ
δΛ
δCα

+ i~
δΛ
δC̄α

Bα
)}

.

Choosing the functional Λ(φ) as

Λ =
i

~
C̄αδχα(A) ,

it follows from ( 2.14.62) that the vacuum functional does not depend on the choice of the
gauge,

Zχ+δχ(0) = Zχ(0) .

From this it is possible to prove gauge independence of the S�matrix [135] (see, Chapter 3).

2.15 Unitarity and admissible gauge generators

Considering the FP procedure as the method of quantization for gauge theories, one usually
says that this method can not be applied for theories with open gauge algebras (for the
corresponding de�nition, see below), for the case of reducible theories. But we would like
to mark that the FP-method is responsive to a choice of admissible generators of gauge
transformations (see [154]). Indeed, let us consider the theory with the action

S(ϕ, ω) =
∫
dx

(
1
2

(∂µϕ∂µϕ−m2ϕ2)− V (ϕ)
)
,

where ϕ, ω are real scalar �elds. It is a gauge theory. Choosing the generators of gauge
transformations of �elds ϕ, ω in the form Rϕ = 0, Rω = � + ϕ2 (δϕ = 0, δω = (� + ϕ2)ξ)
and gauge as χ = ω = 0 we obtain the e�ective action

Seff (ϕ, ω, C̄, Cλ) =
∫
dx

(
1
2

(∂µϕ∂µϕ−m2ϕ2)− V (ϕ) + ωλ+ C̄(� + ϕ2)C
)
,

where C̄, C are ghost �elds, and λ is an auxiliary �eld introducing the gauge. It is obvious
that the unitarity of this theory is broken in the subspace of ϕ. If one chooses for this theory
the gauge transformations in the form (δϕ = 0, δω = ξ) and uses the same gauge-�xing, then
the e�ective action is equal to

Seff (ϕ, ω, C̄, Cλ) =
∫
dx

(
1
2

(∂µϕ∂µϕ−m2ϕ2)− V (ϕ) + ωλ+ C̄C

)
,

so that the ghosts C̄, C and gauge �eld ω are not dynamical, and do not give any contribution
to the dynamics of the �elds ϕ. Therefore, in this case the S-matrix coincides with the S-
matrix of real scalar �eld ( 1.7.35), and there is no unitarity problem.



Chapter 3

Batalin�Vilkovisky Method

In the middle of the 1970's, supergravity theories were discovered [91, 70, 92]. Direct
application of the Faddeev-Popov answers ( 2.14.50), ( 2.14.51) leads in the case of these
theories to an incorrect result; namely, the violation of the physical S-matrix unitarity. The
reason lies in the structure of gauge transformations for these theories. In this case, the invari-
ance transformations for the initial action do not form a gauge group. The arising structure
coe�cients may depend on the �elds of the initial theory, and the gauge algebra of these
transformations may be opened by terms proportional to the equations of motion. Moreover,
attempts of covariant quantization of gauge theories with linearly-dependent generators of
gauge transformations result in the understanding of the fact that it is impossible to use the
Faddeev-Popov rules to construct a suitable quantum theory [193, 183, 121]. Therefore, the
quantization of gauge theories requires taking into account many new aspects (in comparison
with QED) such as open algebras, reducible generators and so on. It was realized how to
quantize them using di�erent types of ghosts, antighosts, ghosts for ghosts (Nielsen, Kallosh
ghosts etc.) [76, 90, 162, 134, 163, 67, 93, 154].

A unique closed approach to the problem of covariant quantization summarized all these
attempts was proposed by Batalin and Vilkovisky [40, 41]. The Batalin-Vilkovisky (BV)
formalism gives the rules for the quantization of a general gauge theories.

3.1 General gauge theories

The starting point of the BV-method is a theory of �elds Ai, i = 1, 2, ..., n, ε(Ai) = εi
for which the initial classical action S0(A) is assumed to have at least one stationary point
A0 = {Ai0}

S0,i(A)|A0 = 0, (3.1.1)

and to be regular in the neighborhood of A0. Equation ( 3.1.1) de�nes a surface Σ in space of
functions Ai. Invariance of the action S0(A) under the gauge transformations δAi = Riα(A)ξα

in the neighborhood of the stationary point is assumed:

S0,i(A)Riα(A) = 0, α = 1, 2, ...,m, 0 < m < n, ε(ξα) = εα. (3.1.2)

Here ξα are arbitrary functions of space-time coordinates , and Riα(A) (ε(Riα) = εi + εα) are
generators of gauge transformations. We have also used DeWitt's condensed notations [74],

42
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when any index includes all particular ones (space - time, index of internal group, Lorentz
index and so on). Summation over repeated indeces implies integration over continuos ones
and usual summation over discrete ones.

As an example, for the Yang�Mills theory of �elds Aaµ, we have

Ai ≡ Aaµ(x), Riα(A) ≡ Dab
µ (A(x))δ(x− y), i = (x, µ, a), α = (y, b),

and so on.
It follows from the identities ( 3.1.2) (the Noether identities) that, �rst, the equations of

motion are not independent and, second, (some) propagators do not exist because the Hessian
matrix Hij = S0,ij of S0 is degenerate at any point on the stationary surface Σ:

S0,i(A)Riα,j(A) + S0,ji(A)Riα(−1)εαεj = 0 =⇒ S0,jiR
i
α|A0 = 0.

The generators Riα are on shell zero-eigenvalue vectors of the Hessian matrix S0,ij . We
assume ful�lment of so-called regularity condition [41, 42, 43] which implys that the on-shell
degeneracy of the Hessian matrix is due to the only independent zero-eigenvalue vectors Riα.
There are two key consequences of the regularity condition:

(i) If a function F (A) of the �elds Ai vanishes on-shell (S0,i = 0) then F must be a linear
combination of the equations of motion

F (A)|Σ = 0 =⇒ F (A) = S0,i(A)λi,

with some quantities λi which may be functions of Ai.

(ii) Any solution to the Noether identities ( 3.1.2) is a gauge transformation, up to terms
proportional to the equations of motion

S0,i(A)λi = 0⇐⇒ λi = Riα(A)λα + S0,j(A)M ij(A), (3.1.3)

where M ij satis�es the condition

M ij = −(−1)εiεjM ji.

The second term Ritriv = S0,jM
ij in ( 3.1.3) is known as a trivial gauge transformation of the

initial action S0(A), vanishing at the extremals of S0(A) : Ritriv|Σ = 0.
Let

rankRiα|Σ = r

be the rank of the gauge generators taken at the extremals.
If the condition r = m holds, then the generators Riα are linearly independent and the

theory under consideration belongs to the class of irreducible theories.
If r < m, then the generators Riα are linearly dependent. In that case the gauge theory

belongs to the class of reducible theories. Linear dependence of Riα implies that the matrix
Riα has at the extremals S0,j(A) = 0 zero-eigenvalue eigenvectors Zαα1

= Zαα1
(A), such that

RiαZ
α
α1

= S0,jK
ij
α1
, α1 = 1, ...,m1 (3.1.4)

and the number εα1 = 0, 1 canbe found in such a way that ε(Zαα1
) = εα + εα1 . Matrices Kij

α1

in ( 3.1.4) can be chosen to possess the property:

Kij
α1

= −(−1)εiεjKji
α1
.
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Let the rank of the matrix Zαα1
at the extremals be:

rankZαα1
|Σ = r1.

If the condition r1 = m1 is satis�ed, then the gauge theory is the �rst-stage reducible one.
In general case r1 < m1, the set Z

α
α1

is linearly dependent as itself, so that at the extremals
S0,i = 0 there exists the set of zero-eigenvalue eigenvectors Zα1

α2
= Zα1

α2
(A)

Zαα1
Zα1
α2

= S0,jL
αj
α2
, α2 = 1, ...,m2 (3.1.5)

and numbers εα2 = 0, 1 such that ε(Zα1
α2

) = εα1 + εα2 .
Let, in its turn:

rankZα−1
α2
|Σ = r2.

If r2 = m2, them we deal, by the de�nition, with the second-stage reducible gauge theory.
In the general case the set Zα−1

α2
can be redundant, i.e., r2 < m2 and so on. In such a way

the sequence of reducibility equations arises:

Zαs−2
αs−1

Zαs−1
αs = S0,jL

αs−2j
αs , αs = 1, ...,ms; s = 1, .., L, (3.1.6)

where the following notations are introduced:

Zα−1
α0
≡ Riα, Lα−1j

α0
≡ Kij

α , (3.1.7)

ε(Zαs−1
αs ) = εαs−1 + εααs ,

rankZαs−1
αs ≡ rs.

The stage L of reducibility is de�ned by the last value s for which rs = ms.
It should be noted here that for the given gauge theory the gauge generators Riα as well

as the zero-eigen eigenvectors Z
αs−1
αs are de�ned nonuniquely. Characteristic arbitrariness in

their de�nition can be described by the following relations:

R̄iα = RiβX
β
α + S0,jY

ij
α , Y ijα = −(−1)εiεjY jiα ,

Z̄αs−1
αs = Z

αs−1
βs

Dβs
αs + S0,jE

αs−1j
αs , s = 1, ..., L,

where the matrices Xβ
α , D

βs
αs are inversible.

The set of gauge generators {Riα} ( 3.1.2), eigenvectors {Z
αs−1
αs } ( 3.1.6) and structure

functions {Lαs−2j
αs } ( 3.1.6) de�nes the structure of gauge algebra on the �rst level.

The structure of gauge algebra on the second level can be found by studying the com-
mutator of gauge transformations and some consequences from the relations ( 3.1.2) and (
3.1.6). We assume that the set {Riα(A)} is complete. Consider the commutator of two gauge
transformations [δ1, δ2]Ai = δ1(δ2Ai)− δ2(δ1Ai) with gauge parameters ξα1 , ξ

β
2 . It leads to

[δ1, δ2]Ai =
(
Riα,jR

j
β − (−1)εαεβRiβ,jR

j
α

)
ξβ1 ξ

α
2 .

Since this commutator is also a gauge symmetry of action we have after factoring out the
gauge parameters ξα1 , ξ

β
2 the Noether identities

S0,i

(
Riα,jR

j
β − (−1)εαεβRiβ,jR

j
α

)
= 0.



45

Therefore as a consequence of the condition of completeness, one can prove that the algebra
of generators has the following general form ([203, 42, 43]):

Riα,j(A)Rjβ(A)− (−1)εαεβRiβ,j(A)Rjα(A) = −Riγ(A)F γαβ(A)− S0,j(A)M ij
αβ(A), (3.1.8)

where F γαβ(A) are structure functions depending, in general, on the �elds Ai with the following
properties of symmetry F γαβ(A) = −(−1)εαεβF γβα(A) and M ij

αβ(A) satis�es the conditions

M ij
αβ(A) = −(−1)εiεjM ji

αβ(A) = −(−1)εαεβM ij
βα(A).

If M ij
αβ(A) = 0, then the theory is called a gauge theory with a closed gauge algebra.

If M ij
αβ(A) 6= 0, then the gauge algebra is called open. In this case due to the symmetry

properties of M ij
αβ(A), the quantities Riαβ,triv(A) = S0,j(A)M ij

αβ(A) are symmetry (trivial)
generators of the initial action S0(A), vanishing at the extremals of S0(A):

Riαβ,triv(A)|S0,i=0 = 0,

but they are not connected with an additional degeneration of S0(A) because rank of the
Hessian matrix, describing of degeneration of initial action, is de�ned at the extremals S0,i =
0.

If M ij
αβ(A) = 0, and F γαβ does not depend on the �elds, the gauge transformations form

a gauge group and ( 3.1.8) reduces to ( 2.14.49) and de�ne a Lie algebra (for details, see
Appendix A).

For irreducible theories the structure of gauge algebra on the second level is de�end by the
set of structure functions {F γαβ} and matrices {M ij

αβ} in Eq. ( 3.1.8). For reducible theories

the existence of relations among the Z
αs−1
αs ( 3.1.6) leads to the appearance of new structure

functions. Let us demonstrate this point for a �rst-stage reducible gauge theory. To this end
let us multiply the relation ( 3.1.8) by the eigenvector Zβα1

. We obtain(
Riα,jR

j
β − (−1)εαεβRiβ,jR

j
α +RiγF

γ
αβ + S0,jM

ij
αβ

)
Zβα1

= 0. (3.1.9)

First, note that relations ( 3.1.4) allows us to express RjβZ
β
α1

as a term proportional to the
equations of motion. Second, by di�erentiating Eqs. ( 3.1.4) and ( 3.1.2) with respect to A
one obtains that

Riβ,jZ
β
α1

(−1)εj(εβ+εα1 ) +RiβZ
β
α1,j

= S0,jlK
li
α1

(−1)εj(εi+εα1 ) + S0,lK
il
α1,j , (3.1.10)

S0,jiR
j
α(−1)εlεα + S0,iR

i
α,j = 0, (3.1.11)

Then multiplying Eqs. ( 3.1.10) by Rjα, using the Noether identities ( 3.1.2) and relations (
3.1.11), we �nd

−(−1)εαεβRiβ,jR
j
αZ

β
α1

= (−1)εαεα1RiβZ
β
α1,j

Rjα + S0,j(R
j
α,lK

il
α1

(−1)εαεi −Kij
α1,l

Rlα(−1)εαεα1 ).

Returning with this result into ( 3.1.9) one can obtained the relations

Riβ((−1)εαεα1Zβα1,j
Rjα − F βαγZγα1

) = S0,jY
ij
α1α

where all terms proportional to the equation of motion have been collected into Y ijαα1
. Taking

into account the completeness of the set of eigenvectors Zαα1
the general solution to this

equation

(−1)εαεα1Zβα1,j
Rjα − F βαγZγα1

= −Zββ1
P β1
α1α − S0,jQ

βj
α1α (3.1.12)



46

de�nes a new gauge-structure relation similar to Eq. ( 3.1.8). Therefore two new structure
functions P β1

αα1
and Qβjαα1

arise to complete de�nition of the structure of gauge algebra for the
�rst-stage reducible theory on the second level.

To de�ne the structure of gauge algebra on the third level one has to consider the Jacobi
identity for gauge transformations and some consequences from gauge-structure relations of
previous levels. Thus for irreducible theories one has to consider the Jacobi identity for
commutators of gauge transformations

[δ1, [δ2, δ3]]Ai + cycl.perm.(1, 2, 3) = 0,

and to �nd

(RiγD
γ
αβδ + S0,kZ

ik
αβδ)ξ

δ
1ξ
β
2 ξ

α
3 + cycl.perm.(1, 2, 3) = 0, (3.1.13)

where we have de�ned

Dγ
αβδ = (−1)εαεδ(F γασF

σ
βδ + F γαβ,iR

i
δ) + cycl.perm.(α, β, δ),

Zikαβδ = (−1)εαεδ(M ik
ασF

σ
βδ +M ik

αβ,jR
j
δ − (−1)εiεαRkα,jM

ij
βδ +

+(−1)εk(εα+εi)Riα,jM
kj
βδ ) + cycl.perm.(α, β, δ)

with the following graded-antisymmetric properties

Dγ
αβδ = −(−1)εαβδDγ

βαδ = −(−1)εαβδDγ
αδβ ,

Zikαβδ = −(−1)εkεiZkiαβδ = −(−1)εαβδZikβαδ = −(−1)εαβδZikαδβ .

Because of the linear independence of the generators Riα and their completeness Eq.(
3.1.13) has the following solution

Dγ
αβδ = S0,kQ

γk
αβδ (3.1.14)

with the properties of graded antisymmetry

Qγkαβδ = −(−1)εαβδQγkβαδ = −(−1)εαβδQγkαδβ ,
εαβδ ≡ εαεβ + εαεγ + εβεγ .

Using this solution Eq. ( 3.1.13) can be presented in the form

S0,k

(
Zikαβδ + (−1)εk(εi+εγ)RiγQ

γk
αβδ

)
ξδ1ξ

β
2 ξ

α
3 + cycl.perm.(1, 2, 3) = 0.

Due to the completeness of gauge generators Riα the general solution of this equation is of
the form

Zikαβδ + (−1)εk(εi+εγ)RiγQ
γk
αβδ − (−1)εkεγRkγQ

γi
αβδ = S0,jM

ikj
αβδ, (3.1.15)

where M ikj
αβδ obeys graded antisymmetry in i, j, k and α, β, δ

M ikj
αβδ = −(−1)εkεiMkij

αβδ = −(−1)εkεjM ijk
αβδ,

M ikj
αβδ = −(−1)εαβδM ikj

βαδ = −(−1)εαβδM ikj
αδβ .
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For irreducible theories the functions Qγkαβδ and M
ikj
αβδ de�ne the structure of gauge algebra

on the third level. In its turn Eq. ( 3.1.15) can be considered as a new gauge-structure
relations on this level. In case of reducible theories new structure functions arise additionaly
on the third level. Here we are going to demonstrate this fact for a �rst-stage reducible gauge
theory. The eigenvectors Zα1

α lead to modi�cation of the solution of the Jacobi identity (
3.1.13). Instead of Eq. ( 3.1.14), we have

Dγ
αβδ + Zγσ1

Fσ1
αβδ = S0,kQ

γk
αβδ (3.1.16)

and therefore the Jacobi identity can be rewritten in the form

S0,k

(
Zikαβδ + (−1)εk(εi+εγ)RiγQ

γk
αβδ +Kik

α1
Fα1
αβδ

)
ξδ1ξ

β
2 ξ

α
3 + cycl.perm.(1, 2, 3) = 0

with Kij
α1

de�ned in ( 3.1.4). The general solution is

Zikαβδ + (−1)εk(εi+εγ)RiγQ
γk
αβδ − (−1)εkεγRkγQ

γi
αβδ +Kik

α1
Fα1
αβδ = S0,jM

ikj
αβδ. (3.1.17)

Eq. ( 3.1.17) can be considered as a new gauge-structure relation. Functions Qγkαβδ, M
ikj
αβδ

and Fα1
αβδ de�ne for the �rst-stage reducible theory the structure of gauge algebra on the

third level. And so on. In general the structure of gauge algebra looks like a set of in�nite
number of structure functions which de�ne in�nite number of gauge-structure relations. It is
remarkable fact that all these relations can be collected within the BV-method in a solution
of classical master equation.

The gauge theories whose generators satisfy Eq.( 3.1.8) are called general gauge theories.

Example: Yang-Mills theory

Let us consider some examples of gauge theories from the point of view of general de�nitions
( 3.1.4), ( 3.1.5), ( 3.1.6), ( 3.1.8).

For Yang�Mills theory we have the set of linear independent generators Riα = Dab
µ and

the gauge algebra ( 3.1.8) with

M ij
αβ(A) = 0, F γαβ ≡ f

abcδ(x− y)δ(y − z)δ(x− z).

By de�nition the Yang-Mills theory belongs to the class of irreducible one with closed gauge
algebra.

Example: W3 gravity

Next example is model of W3 gravity as an example of an irreducible theory with an open
algebra and structure functions F γαβ dependind on �elds. The classical action for W3 gravity
is [128, 199]

S0(φ, h,B) =
∫
d2x

[
1
2
∂φ∂̄φ− 1

2
h(∂φ)2 − 1

3
B(∂φ)3

]
. (3.1.18)

The �elds Ai = (φ, h,B) are bosonic ones de�ned in a two-dimensional space with coordinates,
x = (z, z̄), so that ∂ = ∂z, ∂̄ = ∂z̄.

The equations of motion read

δS0

δφ
= −∂∂̄φ+ ∂h∂φ+ ∂2φh+ (∂φ)2∂B + 2∂φ∂2φB,

δS0

δh
= −1

2
(∂φ)2,

δS0

δB
= −1

3
(∂φ)3. (3.1.19)
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The action ( 3.1.18) is invariant under the gauge transformations

δφ = (∂φ)ε+ (∂φ)2λ,

δh = ∂̄ε− h∂ε+ (∂φ)2((∂B)λ−B∂λ),
δB = (∂B)ε− 2B∂ε+ ∂̄λ− h∂λ+ 2(∂h)λ (3.1.20)

with the bosonic parametres ξα = (ε, λ) and the following identi�cation of gauge generators
Riα:

Rφα =
(
∂φ, (∂φ)2

)
,

Rhα =
(
∂̄ − h∂ + ∂h, (∂φ)2((∂B)−B∂)

)
,

RBα =
(
∂B − 2B∂, ∂̄ − h∂ + 2∂h

)
. (3.1.21)

The generators ( 3.1.21) are linearly independent.
Alrebra of gauge transformations ( 3.1.20) has the form

[δ1, δ2]φ = −∂φε(1,2) − (∂φ)2(ελ)(1,2) + (∂φ)2(ελ)(2,1) − 2(∂φ)3λ(1,2),

[δ1, δ2]h = −(∂̄ − h∂ + ∂h)ε(1,2) − (∂φ)2((∂B)−B∂)(ελ)(1,2)

+(∂φ)2((∂B)−B∂)(ελ)(2,1)

−(∂φ)2[∂̄ − h∂ + 3∂h+ 2∂φ∂B + 4∂2φB]λ(1,2),

[δ1, δ2]B = −(∂B − 2B∂)ε(1,2) − (∂̄ − h∂ + 2∂h)(ελ)(1,2)

+(∂̄ − h∂ + 2∂h)(ελ)(2,1)

−[(∂φ)2∂B − 4∂φ∂2φB − 2(∂φ)2B∂]λ(1,2) (3.1.22)

where we have used the notations

ε(1,2) = (ε1∂ε2 − (∂ε1)ε2), (ελ)(1,2) = (ε1∂λ2 − 2(∂ε1)λ2), λ(1,2) = (λ1∂λ2 − (∂λ1)λ2).

Taking into account general structure of gauge algebra ( 3.1.8) and de�nitions of gauge
generators ( 3.1.21) for W3 model, it follows from ( 3.1.22) possible de�nitions of structure
functions F 1

11, F
2
21, F

2
12:

ε(1,2) = F 1
11ε1ε2, (ελ)(1,2) = F 2

21ε1λ2, (ελ)(2,1) = −F 2
12ε2λ1.

or, equivalently,

F 1
11 = δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1),
F 2

21 = δ(x− y1)∂xδ(x− y2)− 2δ(x− y2)∂xδ(x− y1),
F 2

12 = −(δ(x− y2)∂xδ(x− y1)− 2δ(x− y1)∂xδ(x− y2)).

These structure functions do not depend on �elds. Then from Eq. ( 3.1.22) for [δ1, δ2]φ we
can suggest the following Ansatz for the remainder

2(∂φ)3λ(12) = Rφ1F
1
22λ1λ2 +Rφ2F

2
22λ1λ2 +

δS0

δh
Mφh

22 λ1λ2 +
δS0

δB
MφB

22 λ1λ2.

From ( 3.1.19) and ( 3.1.21) we can parametrize F 1
22, F

2
22,M

φh
22 ,M

φB

F 1
22λ1λ2 = α1(∂φ)2λ(12), F 2

22λ1λ2 = α2(∂φ)λ(12),

Mφh
22 λ1λ2 = 2β1(∂φ)λ(12), MφB

22 λ1λ2 = 3β2λ(12)
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or

F 1
22 = α1(∂φ)2

(
δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1)

)
,

F 2
22 = α2(∂φ)

(
δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1)

)
,

Mφh
22 = 2β1(∂φ)δ(x− y)

(
δ(y − y2)∂yδ(y − y1)− δ(y − y1)∂yδ(x− y2)

)
,

MφB
22 = 3β2δ(x− y)

(
δ(y − y2)∂yδ(y − y1)− δ(y − y1)∂yδ(x− y2)

)
. (3.1.23)

Here α1, α2, β1, β2 are constant parameters which satisfy the equation

α1 + α2 − β1 − β2 = 2.

Returning with these results to the remainders in [δ1, δ2]h and [δ1, δ2]B we can put that

(∂φ)2[∂̄ − h∂ + 3∂h+ 2∂φ∂B + 4∂2φ B]λ(12) =
(
Rh1F

1
22 +Rh2F

2
22 +

+
δS0

δφ
Mhφ

22 +
δS0

δB
MhB

22

)
λ1λ2,

[(∂φ)2∂B − 4∂φ∂2φB − 2(∂φ)2B∂]λ(12) =
(
RB1 F

1
22 +RB2 F

2
22 +

+
δS0

δh
MBh

22 +
δS0

δφ
MBφ

22

)
λ1λ2.

Using representation for MhB
22

MhB
22 λ1λ2 = Mλ(12) (3.1.24)

with some operator M , de�nitions ( 3.1.23) and Eq. ( 3.1.24) we �nd the following relations
to de�ne explicitly the gauge algebra for the W3 gravity

α1 = 1, α2 = 0, β1 + β2 = −1, (∂φ)2M = 6β2
δS0

δφ
. (3.1.25)

If β2 6= 0 then we have a realization of the algebra with non-analitical (with respect to �eld
φ) matrix MhB

22 . Under requirement of analiticity (β2 = 0) we �nd (within Ansatz suggested
) simple realization of the gauge algebra of W3 gravity with gauge generators Riα ( 3.1.21),
non-vanishing structure functions F γαβ

F 1
11 = δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1),
F 2

21 = δ(x− y1)∂xδ(x− y2)− 2δ(x− y2)∂xδ(x− y1),

F 1
22 = (∂φ)2

(
δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1)

)
(3.1.26)

and non-vanishing matrices M ij
αβ

Mφh
22 = −2(∂φ)δ(x− y)

(
δ(y − y2)∂yδ(y − y1)− δ(y − y1)∂yδ(y − y2)

)
(3.1.27)
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depending on the �eld φ. Namely this realization of gauge algebra has been used in [71, 198]
to construct solution to the classical master equation.

Notice in general for given set of generators {Riα} gauge structure functions of higher
levels are de�ned non-uniquely. The best (economic) way to study this point is connected
with consideration of di�erent solutions to the classical master equation corresponding to
boundary conditions with both �xed classical action S0(A) and set of gauge generators {Riα}.
Later we will discuss these peculiarities using as an example of the W3 gravity.

Example: Freedman-Townsend model

Let us consider the Freedman-Townsend model as an example of an reducible theory in d = 4.
The theory of a non-abelian antisymmetric �eld Bpµν , suggested by Freedman and Townsend
[90], is described (in the �rst order formalism) by the action

S0(Apµ, B
p
µν) =

∫
d4x

(
−1

4
εµνρσF pµνB

p
ρσ +

1
2
ApµA

pµ

)
, (3.1.28)

where Apµ is a vector �eld with the strength F
p
µν = ∂µA

p
ν−∂νApµ+fpqrAqµA

r
ν and the coupling

constant being absorbed into the structure coe�cients fpqr; the Levi-Civita tensor εµνρσ is
normalized as ε0123 = 1. Eliminating the auxiliary gauge �eld Apµ through its �eld equations
leads to the more complicated action of the second order formalism.

The action ( 3.1.28) is invariant under the gauge transformations

δApµ = 0, δBpµν = Dpq
µ ξ

q
ν −Dpq

ν ξ
q
µ ≡ Rpqµναξqα, (3.1.29)

where ξpµ are arbitrary parameters, and Dpq
µ is the covariant derivative with potential Apµ

(Dpq
µ = δpq∂µ + fprqArµ).
The gauge transformations ( 3.1.29) form an abelian algebra (in Eq. ( 3.1.8) F γαβ =

0, M ij
αβ = 0) with the generators Rpqµνα possessing at the extremals of the action ( 3.1.28) the

zero-eigenvectors Zpqµ ≡ Dpq
µ (see ( 3.1.4))

RprµναZ
rqα = εµναβf

prq δS0

δBrαβ
, Kij

α1
≡ εµναβfpqr, (3.1.30)

i = (p, µ, ν), j = (q, α, β), α1 = r,

which, in their turn, are linearly independent. According to the accepted terminology, the
model ( 3.1.28), ( 3.1.29) and ( 3.1.30) is an abelian gauge theory of �rst stage reducibility.

3.2 Rules of BV quantization

The procedure of the BV-quantization for general gauge theories in question involves the
following steps.

Con�guration space

The total con�guration space φA is introduced. For irreducible theories the space φA includes
the ghost and antighost �elds Cα and C̄α and the auxiliary (Nakanishi-Lautrup) �elds Bα

φA = (Ai, Bα, Cα, C̄α), ε(φA) = εA, (3.2.31)
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with the following distribution of the Grassmann parity and ghost number

ε(Ai) = εi, ε(Bα) = εα, ε(Cα) = ε(C̄α) = εα + 1,
gh(Ai) = gh(Bα) = 0, gh(Cα) = 1, gh(C̄α) = −1.

We see that as in the case of Yang-Mills type theories, for irreducible gauge theories in the
BV-formalism the total con�guration space is constructed by extending the �elds Ai with the
set of Nakanishi�Lautrup �elds, ghost and antighost �elds, with respect to the number of the
gauge functions {ξα}. For reducible theories the space φA has more complicated structure
[41] and contains main chains of the ghost Cαss , antighost C̄αss and auxiliary Bαss �elds as
well as pyramids of the ghost for ghost Cαss(ns) and auxiliary Bαss(ns) �elds (C

α0
0 ≡ Cα, C̄α0

0 ≡
C̄α Bα0

0 ≡ Bα in ( 3.2.31))

φA =
(
Ai; Bαss , Cαss , C̄αss , s = 0, 1, ..., L; Bαss(ns), C

αs
s(ns)

, s = 1, ..., L, ns = 1, ..., s
)
(3.2.32)

with the properties

ε(Ai) = εi,

ε(Bαss ) = (εα + s) mod2, s = 0, 1, ..., L,
ε(Bαss(ns)) = (εαs + s) mod2, s = 1, ..., L, ns = 1, ..., s,

ε(Cαss ) = ε(C̄αss ) = (εαs + s+ 1) mod2, s = 0, 1, ..., L,
ε(Cαss(ns)) = (εαs + s+ 1) mod2, s = 1, ..., L, ns = 1, ..., s,

gh(Ai) = 0,
gh(Bαss ) = −s, s = 0, 1, ..., L;

gh(Bαss(ns)) = s− 2(ns − 1), s = 1, ..., L, ns = 1, ..., s;

gh(Cαss ) = −gh(C̄αss ) = (s+ 1), s = 0, 1, ..., L
gh(Cαss(ns)) = s+ 1− 2ns, s = 1, ..., L, ns = 1, ..., s. (3.2.33)

In comparison with original proposal of Ref. [41] we have slightly (for simplicity and unifor-
mity) changed notation of auxiliary �elds and pyramids of �elds. In particular, πsαs ≡ Bαss .
As an example for a second-stage reducible theory the following identi�cation for the pyramids
of �elds exists:

C
′α1
1 ≡ Cα1

1(1), C
′α2
2 ≡ Cα2

2(1), C̄
′′

2α2
≡ Cα2

2(2),

π
′α1
1 ≡ Bα1

1(1), π
′α2
2 ≡ Bα2

2(1), π
′′

2α2
≡ Bα2

2(2).

Anti�elds

To each �eld φA ( of the total con�guration space) one introduces corresponding anti�eld φ∗A

φ∗A =
(
A∗i , B

∗
sαs , C

∗
sαs , C̄

∗
sαs , s = 0, 1, ..., L; B∗s(ns)αs , (3.2.34)

C∗s(ns)αs , s = 1, ..., L, ns = 1, ..., s
)

The statistics of φ∗A is opposite to the statistics of the corresponding �elds φA

ε(φ∗A) = εA + 1

and ghost numbers of �elds and corresponding anti�elds are connected by the rule

gh(φ∗A) = −1− gh(φA).
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Antibracket

On the space of the �elds φA and anti�elds φ∗A one de�nes an odd symplectic structure ( , )
called the antibracket

(F,G) ≡ δF

δφA
δG

δφ∗A
− (F ↔ G) (−1)(ε(F )+1)(ε(G)+1). (3.2.35)

The derivatives with respect to �elds are understood as right ones and those with respect to
sources as left ones (see, Appendix C). One can easely verify that the following properties
of the antibracket follow from the de�nition ( 3.2.35)
(1) Grassmann parity

ε((F,G)) = ε(F ) + ε(G) + 1 = ε((G,F )) (3.2.36)

(2) Generalized antisymmetry

(F,G) = −(G,F )(−1)(ε(F )+1)(ε(G)+1), (3.2.37)

(3) Leibniz rule

(F,GH) = (F,G)H + (F,H)G(−1)ε(G)ε(H), (3.2.38)

(4) Generalized Jacobi identity

((F,G), H)(−1)(ε(F )+1)(ε(H)+1) + cycle(F,G,H) ≡ 0. (3.2.39)

One can readily verify that the antibracket ( 3.2.35) is invariant under the anticanonical
transformation of variables φ, φ∗ with the generating functional X = X(φ, φ∗), ε(X) = 1:

φ
′A =

δX(φ, φ∗
′
)

δφ∗
′
A

, φ∗A =
δX(φ, φ∗

′
)

δφA
. (3.2.40)

This property of the odd symplectic structure ( 3.2.35) on the space of φ, φ∗ is a conterpart
to the invariance property of the even simplectic structure (the Poisson bracket) under a
canonical transformation of canonical variables (p, q) (for further discussions of non-trivial
relations between the Poisson bracket and the antibracket, see [18, 30]). For the �rst time, the
importance of anticanonical transformations ( 3.2.40) in the formulation of the BV-method
was realized in [202] (for further discussions, see [42, 153, 194, 200, 109]).

∆ -operator

The nilpotent generating operator ∆ is introduced,

∆ = (−1)εA
δl

δφA
δ

δφ∗A
, ∆2 = 0 ε(∆) = 1.

The operator ( 3.2.41) is not well-de�ned on local functionals because for any local functional S
∆S ∼ δ(0), and one is faced with the so-called "problem of δ(0)". The usual way 'to solve' this
problem is to use the dimensional regularization [155] when the corresponding singularity ∼
δ(0) is equal to zero. Quite recently, a new calculus for local variational di�erential operators
in local quantum �eld theory has been proposed by Shahverdiev, Tyutin and Voronov [179],
where δ(0) does not arise at all. We will always suppose that our all formal manipulations
with operators like ∆ can be supported by suitable regularization scheme. Note that acting
by ∆ on the product of two functionals F and G can reproduce the antibracket:

∆[F ·G] = (∆F ) ·G+ F · (∆G)(−1)ε(F ) + (F,G)(−1)ε(F ).
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3.3 Quantum master equation

The quantum master equation (QME) is de�ned as

1
2

(S, S) = i~∆S (3.3.41)

or, equivalently,

∆ exp
{
i

~
S

}
= 0, (3.3.42)

where S = S(φ, φ∗) is a bosonic functional satisfying the boundary condition

S|φ∗=~=0 = S0(A). (3.3.43)

The bosonic functional S is the basic object of the BV-quantization. Note, the classical part
(~ = 0) of QME ( 3.3.41) formally coinsides with the Zinn-Justin equation ( 2.14.57).

3.4 Generating functional of Green's functions

The generating functional of Green's functions Z(J) is de�ned as

Z(J) =
∫
dφ exp

{
i

~
[Seff (φ) + JAφ

A]
}
,

Seff (φ) = S(φ, φ∗ = δΨ/δφ). (3.4.44)

Here, Ψ = Ψ(φ) is a fermionic gauge functional, and JA (ε(JA) = εA) are the usual external
sources to the �elds φA.

Note [202], that the gauge-�xing procedure ( 3.4.44) in the BV-quantization can be de-
scribed in terms of anticanonical transformation of the variables φ, φ∗ ( 3.2.40) in S(φ, φ∗)
with the generating functional X

X(φ, φ∗) = φ∗Aφ
A + Ψ(φ).

3.5 BRST symmetry

To discuss some features of the BV-quantization, it is convenient to rewrite the expression
for the generating functional Z(J) in the equivalent form

Z(J) =
∫
dφdφ∗δ(φ∗ − δΨ/δφ) exp

{
i

~
[S(φ, φ∗) + JAφ

A]
}

=
∫
dφdφ∗dλ exp

{
i

~

[
S(φ, φ∗) + (φ∗A − δΨ/δφA)λA + JAφ

A

]}
(3.5.45)

where we have introduced the auxiliary (Nakanishi-Lautrup) �elds λA, ε(λA) = εA + 1.
Note, �rst of all, that the integrand in ( 3.5.45) for JA = 0 is invariant under the following

global transformations:

δφA = λAµ, δφ∗A = µ
δS

δφA
, δλA = 0.

It is very important to realize that the existence of this symmetry is the consequence of
the fact that the bosonic functional S satis�es the generating equation ( 3.3.41). These
transformations represent the BRST-transformations in the space of variables φ, φ∗, λ.
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3.6 Gauge-independence of the S-matrix

The symmetry of the vacuum functional Z(0) under the BRST transformations permits es-
tablishing the independence of the S matrix from the choice of gauge in the BV-quantization.
Indeed, suppose ZΨ ≡ Z(0). We shall change the gauge Ψ → Ψ + δΨ. In the functional
integral for ZΨ+δΨ we make the change of variables, choosing for µ :

µ = − i
~
δΨ.

After simple algebraic calculations we �nd that

ZΨ+δΨ = ZΨ. (3.6.46)

Here we need to refer to the equivalence theorem proved by Kallosh and Tyutin [135]. Accord-
ing to this theorem if one has two theories with generating functionals of Green's functions
Z(J) and Z

′
(J) of the form

Z(J) =
∫
dφ exp

{
i

~
[S(φ) + JAφ

A]
}
,

Z
′
(J) =

∫
dφ exp

{
i

~
[S(φ) + JA(φA + fA(φ))]

}
with some functions fA(φ) being the regular functions with respect to φ, then one can claim
that the S-matrices for these theories coincide. Equality ( 3.6.46) means the gauge indepen-
dence of the vacuum functional within the BV-method. Due to the equivalence theorem the
same is valid for the S-matrix.

3.7 Ward identity

Now, we shall proceed with the derivation of the Ward identity, which is a consequence of
the BRST-symmetry. To do this, consider the extended generating functional of the Green
functions

Z(J, φ∗) =
∫
dφ exp

{
i

~
[Sext(φ, φ∗) + JAφ

A]
}
, (3.7.47)

where

Sext(φ, φ∗) = S(φ, φ∗ + δΨ/δφ). (3.7.48)

From the above de�nition it follows that

Z(J, φ∗)|φ∗=0 = Z(J),

where Z(J) has been de�ned in ( 3.7.47).
Note, �rst of all, that the action Sext ( 3.7.48) satisfy the QME ( 3.3.42). Indeed, the

equality holds

exp
{
i

~
Sext(φ, φ∗)

}
= exp{[Ψ, ∆]+} exp

{
i

~
S(φ, φ∗)

}
(3.7.49)
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where S(φ, φ∗) is a solution of the master equation ( 3.3.42) and Ψ = Ψ(φ). Then

[Ψ, ∆]+ =
δΨ
δφA

δ

δφ∗A
(3.7.50)

and the operator exp{[Ψ, ∆]+} acts as the translation operator with respect to φ∗A. Note
that

[∆, [Ψ, ∆]+]− = 0, (3.7.51)

and therefore

∆ exp
{
i

~
Sext

}
= 0, (3.7.52)

where we have used the notation ( 3.7.48).
Taking into account that Sext satis�es the QME ( 3.3.42) and the fact that the integration

in ( 3.7.47) is performed over φ, we have the evident relations

0 =
∫
dφ exp

{
i

~
JAφ

A

}
∆ exp

{
i

~
Sext(φ, φ∗)

}
= (−1)εA

δ

δφ∗A

∫
dφ exp

{
i

~
JAφ

A

}
δl
δφA

exp
{
i

~
Sext(φ, φ∗)

}
.

Integrating by parts in the last integral, one �nds that the theory in question satis�es the
equality

JA
δZ
δφ∗A

= 0. (3.7.53)

This is the Ward identity written for the extended generating functional of Green's functions.
Introducing the generating functional of connected Green's functionsW =W(J, φ∗) (Z =

exp{(i/~)W}), the identity ( 3.7.53) can be presented in the form

JA
δW
δφ∗A

= 0. (3.7.54)

Let us introduce, in a standard manner, through the Legendre transformation of W , the
generating functional of the vertex functions Γ = Γ(φ, φ∗)

Γ(φ, φ∗) =W(J, φ∗)− JAφA, φA =
δW
δJA

,
δΓ
δφA

= −JA.

Rewriting the Ward identity ( 3.7.54) for the generating functional of the vertex functions,
we obtain the unique form

(Γ,Γ) = 0. (3.7.55)

Sometimes it is useful to present the Ward identities ( 3.7.53), ( 3.7.54), ( 3.7.55) in an
equivalent form. To do this, let us introduce the odd nilpotent operator V :

V = JA
δ

δφ∗A
, V 2 = 0. (3.7.56)
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Then we obtain the following representation of ( 3.7.53), ( 3.7.54)

V Z = 0, VW = 0.

The Ward identity for Γ can be presented in the form

B(Γ) · Γ = 0,

where we have used the notation B(Γ) for the so-called Slavnov-Taylor operator:

B(Γ) =
δΓ
δφA

δ

δφ∗A
− (−1)εA

δΓ
δφ∗A

δl
δφA

= (Γ, ·) (3.7.57)

The operator B(Γ) ( 3.7.57) obeys the property of nilpotency B(Γ)2 = 0 due to ( 3.7.55) and
can be considered as the Legendre transformation of V .

Among the issues related to the method in question, we shall consider only the problems
of gauge dependence of Green's functions, the existence theorem for generating equation, and
renormalizability.

3.8 Gauge dependence of Green's functions

.
It is well-known that Green's functions in gauge theories depend on the choice of gauge

[132, 74, 161, 117, 95, 55, 151, 152, 192, 150, 14]. From the gauge-independence of the S-
matrix (see 3.6.46) it follows that the gauge dependence of Green's functions in gauge theories
must be of a special character. To study the character of this dependence, let us consider an
in�nitesimal variation of the gauge functional Ψ(φ) → Ψ(φ) + δΨ(φ). Then the variation of
exp{(i/~)Sext} reads

δ

(
exp

{
i

~
Sext

})
= [δΨ, ∆]+ exp

{
i

~
Sext

}
= ∆ δΨ exp

{
i

~
Sext

}
(3.8.58)

because in the case, when Ψ and δΨ depend on the variables φ only, the operator [δΨ, ∆]+
commutes with [Ψ, ∆]+.

Next, the corresponding variation of the functional Z(J, φ∗) has the form

δZ(J, φ∗) =
∫
dφ exp

{
i

~
JAφ

A

}
∆ δΨ exp

{
i

~
Sext(φ, φ∗)

}
= (−1)εA

δ

δφ∗A

∫
dφ exp

{
i

~
JAφ

A

}
δl
δφA

δΨ exp
{
i

~
Sext(φ, φ∗)

}
= − i

~
δ

δφ∗A
JA

∫
dφ δΨ exp

{
i

~

[
Sext(φ, φ∗) + JAφ

A

]}
.

Therefore

δZ = − i
~
JA

δ

δφ∗A
δΨ̂Z(J, φ∗) = − i

~
V δΨ̂Z(J, φ∗), (3.8.59)

where we have introduced the operator δΨ̂ according to

δΨ̂ ≡ δΨ
(

~
i

δ

δJ

)
.
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and have used the de�nition ( 3.7.56) In terms of the generating functional W = W(J, φ∗)
of connected Green's functions

δZ =
i

~
δW exp

{
i

~
W
}
,

and we have

δW = −JA
δ〈δΨ̂〉
δφ∗A

= −V 〈δΨ̂〉. (3.8.60)

Here, we have taken into account the Ward identity forW ( 3.7.54) and have used the notation

〈δΨ̂〉 for vacuum expectation of the operator δΨ̂

〈δΨ̂〉 = δΨ
(
δW
δJ

+
~
i

δ

δJ

)
.

The variation of the generating functional of vertex functions Γ = Γ(φ, φ∗) obtains

δΓ =
δΓ
δφA

(
δ〈〈δΨ̂〉〉
δφ∗A

+
δφB

δφ∗A

δl〈〈δΨ̂〉〉
δφB

)
,

where we have used the equality

δ

δφ∗A

∣∣∣∣∣
J

=
δ

δφ∗A

∣∣∣∣∣
φ

+
δφB

δφ∗A

∣∣∣∣∣
J

δl
δφB

∣∣∣∣∣
φ∗

and also introduced the notations

〈〈δΨ̂〉〉 = δΨ
(
φA + i~(G

′′−1)AB
δl
δφB

)
,

(G
′′
)AB =

δl
δφA

(
δΓ
δφB

)
, (G

′′−1)ABGBC = δAC .

We can see that, at the extremals, the functional Γ does not depend on the gauge

δΓ
∣∣∣∣
δΓ
δφ=0

= 0. (3.8.61)

There are other points connected with this fact. Consider the equalities

JA
δφB

δφ∗A
= JA

δ

δφ∗A

(
δW
δJB

)
,

δ

δJB

(
JA

δW
δφ∗A

)
= 0 =

δW
δφ∗B

+ (−1)εBJA
δ

δφ∗A

(
δW
δJB

)
.

Therefore,

δΓ =
δΓ
δφA

δ〈〈δΨ̂〉〉
δφ∗A

+ (−1)εB
δΓ
δφ∗B

δl〈〈δΨ̂〉〉
δφB

=
δΓ
δφA

δ〈〈δΨ̂〉〉
δφ∗A

− δl〈〈δΨ̂〉〉
δφB

δΓ
δφ∗B

.
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The last equation has the form

δΓ = (Γ, 〈〈δΨ̂〉〉) = B(Γ) · 〈〈δΨ̂〉〉. (3.8.62)

We can see that the variation of the functional Γ under a small change of gauge may be
expressed in the form of anticanonical transformation ( 3.2.40) of the �elds and anti�elds

with the generating function X = X(φ, φ∗) = φ∗Aφ
A + 〈〈δΨ̂〉〉

φ
′A = φA +

δ〈〈δΨ̂〉〉
δφ∗A

, φ∗
′

A = φ∗A −
δ〈〈δΨ̂〉〉
δφA

.

3.9 Gauge �xing procedure

Note that there exists a freedom in the choice of a gauge �xing procedure applied to obtain
a well-de�ned generating functional of Green's functions in the BV-method. To do this, let
us consider the following vacuum functional [20]

Z(0) ≡ ZX =
∫
dφdφ∗ exp

{
i

~
(S(φ, φ∗) +X(φ, φ∗))

}
where both boson functionals S and X satisfy the QME of the BV-scheme

∆ exp
{
i

~
S(φ, φ∗)

}
= 0, ∆ exp

{
i

~
X(φ, φ∗)

}
= 0.

In [20], it was shown that ZX = TX′ for any X
′ satisfyiing the QME. Indeed, taking into

account that two solutions of the QME can be presented in the form of a maximal deformation
[37, 38]

exp
{
i

~
X ′
}

= exp[∆,Ψ]+ exp
{
i

~
X

}
with a fermionic functional Ψ, we have for an in�nitesimal transformation

δ

(
exp

{
i

~
X ′
})

= [∆,Ψ]+ exp
{
i

~
X

}
.

Then,

ZX′ − ZX =
∫
dφdφ∗ exp

{
i

~
S

}
[∆,Ψ]+ exp

{
i

~
X

}
=

∫
dφdφ∗

[
exp

{
i

~
S

}
∆Ψ exp

{
i

~
X

}
+ exp

{
i

~
S

}
Ψ∆ exp

{
i

~
X

}]
=

∫
dφdφ∗ exp

{
i

~
S

}
∆Ψ exp

{
i

~
X

}
.

Integrating by parts twice in the last functional integral, we obtain

ZX′ − ZX =
∫
dφdφ∗

(
∆ exp

{
i

~
S

})
Ψ exp

{
i

~
X

}
= 0.

One can also �nd in [97] an alternative approach to generalize gauge �xing procedure
within BV-method.
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3.10 Existence theorem

.
The question of existence of solution of Eq. ( 3.3.41) satisfying the boundary condition (

3.3.43) is principal in the construction of BV-formalism [203, 42, 43]. We restrict ourselfs to
the proof of the existence of solutions of the equation

(S, S) = 0. (3.10.63)

with the boundary condition ( 3.3.43). Note that, for local S, ∆S is proportional to δ(0),
and, using the dimensional regularization [δ(0) = 0], Eq. ( 3.3.41) becomes ( 3.10.63).

The solution of Eq. ( 3.10.63) will be sought in the special form

S(φ, φ∗) = S(φmin, φ∗min) + C̄∗sαsB
αs
s + C∗s(ns)αsB

αs
s(ns)

where the minimal set of φA and φ∗ is de�ned as

φAmin = (Ai, Cαss , s = 0, 1, ..., L, ) φ∗min A = (A∗i , C
∗
sαs , s = 0, 1, ..., L). (3.10.64)

In the minimal sector ( 3.10.65), the solution Smin = S(φmin, φ∗min) will be sought in the
form of a power series of �elds Cα

Smin = S0(A) +
∑
n=1

Sn, Sn ∼ (C)n

with ε(Sn) = 0, gh(Sn) = 0.
In what follows we consider (for simplicity) proof the existance theorem for an irreducible

theory when the minimal con�guration space of �elds and anti�elds has the form

φAmin = (Ai, Cα), φ∗min A = (A∗i , C
∗
α). (3.10.65)

Let us consider the �rst approximation S1. The most general form of the functional S1

meeting the above-mentioned requirements is

S1 = A∗iΛ
i
αC

α

where Λiα are some unknown matrices depending on the �elds Ai. Next, we require that
the functional S0(A) + S1 satis�es Eq. ( 3.10.63) to �rst order. This leads to the following
equation for Λiα:

S0,iΛiαC
α = 0. (3.10.66)

From Eq. ( 3.10.66) it follows that Λiα can be identi�ed with the generators of the gauge
transformations

Λiα = Riα. (3.10.67)

Suppose now that we have constructed the functional S
[n]
min, where

S
[n]
min = S0(A) +

n∑
k=1

Sk,
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which satis�es ( 3.10.63) up to nth order:(
S

[n]
min, S

[n]
min

)
k

= 0, k = 1, 2, ..., n. (3.10.68)

In Eq. ( 3.10.68) and hereafter ( , )k denotes the kth order in powers of �elds Cα. For the
(n+ 1)th approximation Sn+1 of Smin, we have

WSn+1 = Fn+1. (3.10.69)

The operator W in Eq. ( 3.10.69) is nilpotent and is given by

W = S0,i
δ

δA∗i
+A∗iR

i
α

δ

δC∗α
, W 2 = 0. (3.10.70)

The operator W ( 3.10.70) can be considered as lower approximation in power series of �elds
Cα to the Slavnov-Taylor operator B(Γ) ( 3.7.57). The functionals Fn+1 in Eqs. ( 3.10.69)
are constructed from Sk, k < n, by the rule

Fn+1 = −1
2

(
S

[n]
min, S

[n]
min

)
n+1

.

From Eq. ( 3.10.70) it follows that for Eq. ( 3.10.69) to be compatible it is necessary that
the relation

WFn+1 = 0 (3.10.71)

holds. It is not di�cult to prove that the relation ( 3.10.71) does hold. To this end one needs
to consider the identity (Smin, (Smin, Smin)) ≡ 0 in the (n + 1)th approximation. We take
into account that by virtue of Eqs.( 3.10.68) and the lowest approximation for the expression
(Smin, Smin) is (n + 1)th order, which is equal to WSn+1 − Fn+1. Then in the (n + 1)th
approximation the identity (Smin, (Smin, Smin)) ≡ 0 becomes

W (WSn+1 − Fn+1) = 0,

and therefore the relation ( 3.10.71) holds.
Further proof of the existence theorem rests on the following lemma.
Lemma: Any regular solution of the equation

WX = 0 (3.10.72)

vanishing for S0,i = φ∗min A = 0 has the form

X = WY

with some functional Y . In other words, cohomologies of W on space of solutions ( 3.10.72)
vanishing for S0,i = φ∗min A = 0 are trivial.

Proof: The proof is based on the possibility of reducing the operator W to the `standard`
form, i.e., to that of the operators Giδ/δPi, where both the set of Gi and Pi are functionally
independent.

The reduction of the operator W to the standard form is realized in several steps. First,
from the initial variables Ai we go over, using a nonsingular change, to the variables A

′i:

Ai = Ai(A′)↔ A
′i = A

′i(A) = (ϕm, ηα), i = (m,α). (3.10.73)
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Here, the initial classical action does not depend on the gauge �elds ηα explicitly:

S0(A) = S0(A(A′)) = S
′

0(A
′
) = S

′

0(ϕ) (3.10.74)

Given this, the gauge invariance condition ( 3.1.2) becomes

S0,i(A)Riα(A) = S
′

0,i(A
′)N i

jR
j
α(A(A′)) = S

′

0,i(A
′)R

′i
α(A′) = 0, (3.10.75)

where

R
′i
α(A′) = N i

jR
j
α(A(A′)), N i

j(A) =
δA
′i(A)
δAj

.

With allowance made for Eq. ( 3.10.74), the identity ( 3.10.75) can now be rewritten as

S
′

0,iR
′i
α(A′) = S

′

0,mR
′m
α (A′) = 0. (3.10.76)

From Eq. ( 3.10.76) we conclude that R
′m
α (A′) can be only trivial generators for the action

S
′

0(ϕ):

R
′m
α (A′) = S

′

0,nΛmnα (A′), Λmnα = −(−1)εmεnΛnmα .

The generators R
′i
α(A′) can be represented in the form

R
′i
α = (S

′

0,nΛmnα , R̄βα),

where R̄βα is a nondegenerate matrix.
In addition to the changes ( 3.10.73), we also make the following anti�eld transformations:

A∗
′

i = A∗j (N
−1)ji , C∗

′

α = C∗β(R̄−1)βα, (3.10.77)

where we have introduced the notation:

(N−1)ij(A) ≡ δAi(A′)
δA′j

, (N−1)ijN
j
k = δik.

As a result of the changes ( 3.10.73) and ( 3.10.77) the operator W →W ′,

W ′ = Jm
δ

δA∗′m
+ (A∗

′

β +A∗
′

n JmΛmnα (R̄−1)αβ)
δ

δC∗
′
β

, Jm ≡ S
′

0,m (3.10.78)

In the operator W ′ ( 3.10.78), we make the change of variables

A∗
′′

m = A∗
′

m, A∗
′′

α = A∗
′

α +A∗
′

n JmΛmnβ (R̄−1)βα, C∗
′′

α = C∗
′

α , (3.10.79)

and W ′ →W ′′, where

W ′′ = Jm
δ

δA∗′′m
+A∗

′′

α

δ

δC∗′′α
. (3.10.80)

The operator W ′′ is already of the 'standard' form. We shall now construct an operator Q′′

such that

W ′′Q′′ +Q′′W ′′ = N ′′, (Q′′)2 = 0. (3.10.81)
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The solution of Eqs. ( 3.10.81) does exist. For example, for the operator Q′′ one can
choose

Q′′ = A∗
′′

m

δ

δJm
+ C∗

′′

α

δ

δA∗′′α
. (3.10.82)

Then for operator N ′′ in Eqs. ( 3.10.80) we deduce

N ′′ = Jn
δ

δJn
A∗
′′

m

δ

δA∗′′m
+A∗

′′

α

δ

δA∗′′α
C∗
′′

α

δ

δC∗′′α
. (3.10.83)

By direct veri�cation, we make sure that the equalities

W ′′N ′′ = N ′′W ′′, Q′′N ′′ = N ′′Q′′ (3.10.84)

do hold. In Eqs. ( 3.10.80) - ( 3.10.84) we now make transformations inverse to ( 3.10.73), (
3.10.77) and ( 3.10.79), obtaining

WQ+QW = N, Q2 = 0, WN = NW, QN = NQ, (3.10.85)

where the operator W is given by the expression ( 3.10.70) and the operators Q and N have
the form

Q = A∗iP
i
j

δ

δS0,j
+ C∗αL

α
i

δ

δA∗i
, N = S0,iP

i
j

δ

δS0,j
+ φ∗Amin

δ

δφ∗Amin
, (3.10.86)

In Eqs. ( 3.10.86) we have used the notation

P ij ≡ (N−1)imN
m
j , Lαi = (R̄−1)αβN

β
i

with the following properties

P il P
l
j = P ij , Lαj P

j
i = 0.

Now let us consider the solution of Eq. ( 3.10.72). We shall act upon Eq. ( 3.10.72)
from the left by the operator Q ( 3.10.86) and take into account Eqs. ( 3.10.85). Then with
allowance made for the fact that on the solutions N > 0, we have

X = W (N−1ΓX),

which proves the validity of Lemma concerning solutions of Eq. ( 3.10.72).
We now return to the solution of Eqs. ( 3.10.69). Since gh(Fn+1) = 1 and n > 0, it follows

that Fn+1 = 0 for S0,i = φ∗min A = 0, and therefore, by virtue of the Lemma, the solution of
( 3.10.71) can be represented in the form

Fn+1 = WXn+1.

Choosing Sn+1 = Xn+1, we �nd that Eq. ( 3.10.63) is already satis�ed to within (n + 1)th-
order terms. Then by induction we conclude the proof of existence of solutions of Eq. (
3.10.63). Note that for Sn+1 we could take the functional

Sn+1 = Xn+1 +WYn+1. (3.10.87)

and, as before, Eq. ( 3.10.63) would be satis�ed to within terms of (n + 1)th order. On the
basis of the Lemma, it is not di�cult to show, given conditions ( 3.3.43) and ( 3.10.67), that
the arbitrariness ( 3.10.87) in the choice of the (n+ 1)th approximation is unique.
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Solution to CME for W3-gravity

Often for practice it is su�cient to know solutions to the classical master equation up to
second order in ghost �elds C. For irreducible gauge theories one obtains

S(φ, φ∗) = S0(A) +A∗iR
i
αC

α − 1
2
C∗γF

γ
αβC

βCα(−1)εα

+
1
4
A∗iA

∗
jM

ij
αβC

βCα(−1)εα+εj + C̄∗αB
α (3.10.88)

where F γαβ and M ij
αβ are the structure functions of gauge algebra on the second level ( 3.1.8).

The action for Yang-Mills type theories ( 2.14.49), (??) exactly belongs to this class (
3.10.88) of solutions to the classical master equation with M ij

αβ = 0.
Closed solution in the form ( 3.10.88) can be also constructed [129, 199, 71, 198] for

the W3 gravity ( 3.1.18) with non-trivial structure functions F γαβ ( 3.1.26), M ij
αβ ( 3.1.27)

(Ai ≡ (φ, h,B), Cα ≡ (c, l), Bα ≡ (u, v)):

S = S0 + S1 +
∫
d2x

[
c∗(∂c c+ ∂l l (∂φ)2) + l∗(∂l c+ 2∂c l) + 2φ∗h∗∂l l ∂φ

]
(3.10.89)

where the initial classical action S0 is de�ned in ( 3.1.18), the action S1 de�ned by the set of
gauge generators of the model is the �rst order contribution to the classical master equation

S1 =
∫
d2x[φ∗(∂φ c+ (∂φ)2l) +

+h∗(∂̄c− h ∂c+ ∂h c+ (∂φ)2(∂B l −B ∂l)) +
+B∗(∂B c− 2B ∂c+ ∂̄l − h ∂l + 2∂h l)], (3.10.90)

and we omitted trivial contributions of the form C̄∗αB
α (see ( 3.10.88)).

It was pointed out in [199] existence of arbitraryness in choosing of gauge structure func-
tions F γαβ , M

ij
αβ for the W3 gravity. It was shown by constructing of the action

S = S0 + S1 +
∫
d2x[c∗(∂c c+ (1− α)∂l l (∂φ)2) + l∗(∂l c+ 2∂c l) +

+2α h∗(∂̄h∗ − ∂h∗ h)∂l l − 2αh∗(3B∗ ∂B + 2B ∂B∗)∂l l +
+2(1 + α)φ∗h∗∂l l ∂φ]. (3.10.91)

with the help of anticanonical transformations ( 3.2.40) in action ( 3.10.89) when generating
functional of these transformations was choosen in the form

X(φ, φ∗) = E(φ, φ∗)− 2αh∗c∗∂l l,

where α is a free parameter and E(φ, φ∗) is the generating functional of identical anticanonical
transformations. The action ( 3.10.91) satis�es the classical master equation with both the
same boundary condition and the set of gauge generators {Riα} but it corresponds to another
set of gauge structure functions F γαβ

F 1
11 = δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1),
F 2

21 = δ(x− y1)∂xδ(x− y2)− 2δ(x− y2)∂xδ(x− y1),

F 1
22 = (1− α)(∂φ)2

(
δ(x− y1)∂xδ(x− y2)− δ(x− y2)∂xδ(x− y1)

)
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and non-vanishing matrices M ij
αβ

Mφh
22 = −2(1 + α)(∂φ)δ(x− y)

(
δ(y − y2)∂yδ(y − y1)− δ(y − y1)∂yδ(x− y2)

)
,

Mhh
22 = −α[∂̄x − ∂̄y + (∂y − ∂x)h(x)]δ(x− y)

(
δ(x− y2)∂xδ(x− y1)−

−δ(x− y1)∂xδ(x− y2)
)
,

MhB
22 = 2α[3∂B − 2B∂y]δ(x− y)

(
δ(x− y2)∂xδ(x− y1)− δ(x− y1)∂xδ(x− y2)

)
.

depending on the �elds φ, h, B.
Moreover it should be de�nitely stressed that arbitrariness described in ( 3.10.91) and

preserved the closed form of solutions in ghost �elds c, l is not unique.
Making use anticanonical transformations with the generating functional X

X(φ, φ∗) = E(φ, φ∗) + 6β2φ
∗h∗B∗(∂φ)−2∂l l,

we obtain the action written in closed form

S = S0 + S1 +
∫
d2x[c∗(∂c c+ ∂l l (∂φ)2) + l∗(∂l c+ 2∂c l)

−6β2 h
∗B∗(∂φ)−2(−∂̄∂φ+ ∂h ∂φ+ ∂2φ h+ (∂φ)2 ∂B + 2∂φ ∂2φ B)∂l l

−3β2φ
∗B∗∂l l + 2(1 + β2)φ∗h∗∂l l ∂φ+

+12β2φ
∗h∗B∗(∂φ)−2∂l l ∂c], (3.10.92)

and being solution to the classical master equation corresponding to realization of gauge
algebra on the second level with non-analitical gauge structure functions described in ( 3.1.23),
( 3.1.24), ( 3.1.24), ( 3.1.25). It follows from ( 3.10.92) that in the case of non-analitical
realization of gauge algebra on the second order it needs to complicate structure of gauge
algebra by adding gauge structure functions of the third level.

Solution to CME for Freedman-Townsend model

For �rst-stage reducible gauge theories the action up to second order in ghost �elds reads

S(φ, φ∗) = S0(A) +A∗iR
i
αC

α + C∗α

(
Zαα1

Cα1 − 1
2
FαγβC

βCγ(−1)εγ
)

+A∗iA
∗
j

(
1
2
Kij
α1
Cα1(−1)εi +

1
4
M ij
αβC

βCα(−1)εα+εj

)
+

+C∗α1
Pα1
β1α

Cβ1Cα(−1)εα + C∗δA
∗
iQ

δi
α1αC

α1Cα(−1)εδ+εα +

+C̄∗αB
α + C̄∗α1

Bα1 , (3.10.93)

where structure functions Pα1
β1α

, Qδiα1α ( 3.1.14) de�ne the gauge algebra on the second order.
For the Freedman-Townsend model ( 3.1.28) the action constructed by the rule ( 3.10.93)

S = =
∫
d4x

[
− 1

4
εµνρσF pµνB

p
ρσ +

1
2
ApµA

pµ +

+B∗pµν(Dpq
µ C

q
ν −Dpq

ν C
q
µ) + C∗pµDpq

µ C
q
1 +

+
1
2
B∗pµνB∗qαβεµναβf

pqrCr1 + C̄∗pµB
pµ + C̄∗pB

p
1

]
(3.10.94)
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gives the exact solution to the classical master equation.

3.11 BRST-invariant renormalization

Now let us consider the problem of renormalizability within of the BV formalism following
[202], where this problem was �rst solved (for further discussions see [204, 8, 9, 109, 12]).
It is well-known that quantum �eld theory contains divergences. Indeed, while the boson
functional S = S(φ, φ∗) ( 3.5.45) as well as Sext = Sext(φ, φ∗) ( 3.7.48) satis�es the master
equation ( 3.3.41) and does not contain divergences, the equation for the functional Γ

exp
{
i

~
Γ(φ, φ∗)

}
==

∫
dφ
′
exp

{
i

~
[Sext(φ+ φ

′
, φ∗)− δΓ(φ, φ∗)

δφA
φA
′
]
}
,

does contain divergences.
It will be proved that the BRST-symmetry is retained by renormalization. This means

that the renormalized action SR and the e�ective action ΓR satisfy the same equations

1
2

(SR, SR) = i~∆SR, (ΓR, ΓR) = 0

as the corresponding nonrenormalized quantities S (here and elsewhere we drop the index ext)
and Γ. Our proof is based on the standard assumption of the existence of a regularization
respecting the Ward identities. Moreover, the proof is given within the framework of loop
expansion.

Let us accordingly represent S and Γ in the form

S =
∞∑
n=0

~nS(n) = S(0) + ~S(1) +O(~2),

Γ = S + ~(Γ(1)
div + Γ(1)

fin) +O(~2) = S(0) + ~(Γ(1)
div + Γ̄(1)

fin) +O(~2),

where Γ̄(1)
fin = Γ(1)

fin + S(1). The functional S(0) satis�es the equation

(S(0), S(0)) = 0,

while the S(1) satis�es the following linear equation:

(S(0), S(1)) = i∆S(0).

Besides, Γ(1)
div and Γ(1)

fin denote the divergent and �nite parts of the one-loop approximation
for Γ.

The functional Γ(1)
div determines the counterterms of the one-loop renormalized action S1R:

S1R = S − ~Γ(1)
div

and satis�es the equation (because of ( 3.7.55))

(S(0), Γ(1)
div) = 0.
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Let us consider

1
2

(S1R, S1R)− i~∆S1R =

=
1
2

(S, S)− i~∆S − ~(S, Γ(1)
div) +

1
2

~2(Γ(1)
div, Γ(1)

div) + i~2∆Γ(1)
div =

= ~2

(
1
2

(Γ(1)
div, Γ(1)

div) + i∆Γ(1)
div − (S(1), Γ(1)

div)
)

+O(~3).

We �nd that S1R satis�es the master equation

1
2

(S1R, S1R)− i~∆S1R = ~2E2 +O(~3)

up to certain terms E2

E2 =
1
2

(Γ(1)
div, Γ(1)

div) + i∆Γ(1)
div − (S(1), Γ(1)

div)

of the second order in ~.
Let us construct the e�ective action Γ1R with the help of the action S1R. This functional

is �nite in the one-loop approximation and satis�es the equation

1
2

(Γ1R, Γ1R) = ~2E2 +O(~3).

Represent Γ1R in the form

Γ1R = S + ~Γ(1)
fin + +~2(Γ(2)

1,div + Γ(2)
1,fin) +O(~3) =

= S(0) + ~Γ̄(1)
fin + +~2(Γ(2)

1,div + Γ̄(2)
1,fin) +O(~3).

The divergent part Γ(2)
1,div of the two - loop approximation for Γ1R determines the two - loop

renormalization for S2R

S2R = S1R − ~2Γ(2)
1,div

and satis�es the equation

(S(0), Γ(2)
1,div) = E2.

Let us now consider

1
2

(S2R, S2R)− i~∆S2R =

=
1
2

(S1R, S1R)− i~∆S1R − ~2(S1R, Γ(2)
1,div) + i~3∆Γ(2)

1,div =

= ~3

(
(Γ(1)
div, Γ(2)

1,div) + i∆Γ(2)
1,div − (S(2),Γ

(1)
div)− (S(1),Γ

(2)
1,div)

)
+O(~3) =

= ~3E3 +O(~4).

We �nd that S2R satis�es the master equation up to terms E3

E3 = (Γ(1)
div, Γ(2)

1,div) + i∆Γ(2)
1,div − (S(2),Γ

(1)
div)− (S(1),Γ

(2)
1,div)
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of the third order in ~. Then the corresponding e�ective action Γ2R generated by S2R is �nite
in the two - loop approximation

Γ2R = S + ~Γ(1)
fin + ~2Γ(2)

1,fin + ~3(Γ(3)
2,div + Γ(3)

2,fin) +O(~4) =

= S(0) + ~Γ̄(1)
fin + ~2Γ̄(2)

1,fin + ~3(Γ(3)
2,div + Γ̄(3)

2,fin) +O(~4)

and satis�es the equation

1
2

(Γ2R, Γ2R) = ~3E3 +O(~4)

up to certain terms E3 of the third order in ~.
Applying the induction method we establish that the totally renormalized action SR

SR = S −
∞∑
n=1

~nΓ(n)
n−1,div (3.11.95)

satis�es the QME ( 3.3.41) exactly:

1
2

(SR, SR) = i~∆SR, (3.11.96)

while the renormalized e�ective action ΓR is �nite in each order of ~ powers:

ΓR = S +
∞∑
n=1

~nΓ(n)
n−1,fin = S(0) +

∞∑
n=1

~nΓ̄(n)
n−1,fin, (3.11.97)

and satis�es the identity

(ΓR, ΓR) = 0. (3.11.98)

Here, we have denoted by Γ(n)
n−1,div and Γ(n)

n−1,fin the divergent and �nite parts, respectively,
of the n - loop approximation for the e�ective action which is �nite in (n-1)th approximation
and is constructed from the action S(n−1)R.

Thus, we have established the fact that the renormalized action SR and the e�ective action
ΓR satisfy the master equation and the Ward identity, respectively.

We have thus presented the general features of the BV-quantization, constructed, in fact,
as an explicit realization of the BRST-invariance principle and have showed how this principle
can be e�ectively used in solving di�erent problems within the BV-formalism.

Of course, we did not discuss all questions related to this method. Among them we would
like to note the problem of unitarity of the S-matrix [140, 158, 183, 184, 154, 185, 105, 15],
the problem of anomalies [30, 72, 29, 17, 60, 107, 7], the quantization problem of reducible
theories [41], the cohomological aspects [122, 85, 86, 13, 16, 11, 124, 189, 190], the locality
problem [125, 106, 13, 168], gauge and global symmetries [178, 4, 5, 61, 7], the geometry of the
method [206, 175, 176, 177, 136, 137], the formulation and generalizations of the method in
genegal coordinates [36, 37, 38, 20, 186], the equivalence of the Lagrangian (BV) and Hamil-
tonian (Batalin-Fradkin-Vilkovisky [88, 39, 87, 23, 24]) quantizations [78, 115, 116, 171, 164],
the construction of quantum antibrackets [31, 32, 33], the properties of general gauge theories
with external and composite �elds [148, 19, 149, 81, 82], and so on.



Chapter 4

Sp(2)-Covariant Quantization

We have already seen that there is an example of gauge theory for which the quan-
tum action is invariant not only under BRST-transformations but also under the antiBRST-
transformations [66, 166]. A natural desire arises to �nd a quantization method based on the
principle of BRST and antiBRST symmetry for general gauge theories. For a long time the
opinion has existed that this is possible only for gauge theories with closed algebra and with
structure coe�cients independent of the �elds (for example see [131, 187]).

Recently the quantization method based on the principle of BRST-antiBRST- symmetry
has been suggested for general gauge theories [25, 26, 27] (for alternative approaches see
[127, 68, 69, 51, 190]).

4.1 Con�guration space

To construct the Sp(2)-quantization for general gauge theory described by the initial classical
action S0(A) of �elds Ai, it is necessary to introduce the total con�guration space φA, which
coinsides, in fact, with the total con�guration space in the BV formalism ( 3.2.32), but there
is di�erence in arrangement of the ghost and antighost �elds:

φA = (Ai, Bα|a1···as , Cα|a0···as , s = 0, ..., L; ai = 1, 2), ε(φA) = εA. (4.1.1)

Auxiliary �elds Bα|a1···as and ghost �elds Cα|a0···as are symmetric Sp(2) tensors of corre-
sponding ranks. The following values of the Grassmann parity are ascribed to these �elds:

ε(Bα|a1···as) = εαs + s (mod2),
ε(Cα|a0···as) = εαs + s+ 1 (mod2), s = 0, ..., L

together with the following values of the ghost number:

gh(Bα0) = 0, gh(Bα|a1···as) =
s∑

s′=1

(3− 2as′),

gh(Cα|a0···as) =
s∑

s′=0

(3− 2as′).

To each �eld φA of the total con�guration space one introduces three sets of anti�elds
φ∗Aa, ε(φ

∗
Aa) = εA + 1 and φ̄A, ε(φ̄A) = εA. We know the meaning of anti�elds in the

68
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BV-approach. They are sources of BRST transformations. In the extended BRST alge-
bra, there are three kinds of transformations; namely, BRST-transformations, antiBRST-
transformations and mixed transformations. The anti�elds φ∗Aa form Sp(2) doublets with re-
spect to the index a and can be treated as sources of BRST- and antiBRST-transformations,
while φ̄A are sources of combined transformation.

4.2 Extended antibrackets

On the space of �elds φA and anti�elds φ∗Aa one de�nes odd symplectic structures ( , )a,
called the extended antibrackets

(F,G)a ≡ δF

δφA
δG

δφ∗Aa
− (F ↔ G) (−1)(ε(F )+1)(ε(G)+1). (4.2.2)

As usually the derivatives with respect to �elds are understood as acting from the right and
those with respect to anti�elds, as acting from the left.

The extended antibrackets ( 4.2.2) have the following properties:

ε((F,G)a) = ε(F ) + ε(G) + 1,
(F,G)a = −(G,F )a(−1)(ε(F )+1)(ε(G)+1),

(F,GH)a = (F,G)aH + (F,H)aG(−1)ε(G)ε(H),

((F,G){a, H)b}(−1)(ε(F )+1)(ε(H)+1) + cycl.perm.(F,G,H) ≡ 0, (4.2.3)

where curly brackets denote symmetrization with respect to the indices a, b of the Sp(2)
group:

A{aBb} ≡ AaBb +BbAa.

The last relations in ( 4.2.3) are the graded Jacobi identities for the extended antibrackets.
In particular, for any bosonic functional S, ε(S) = 0, one can establish that

((S, S){a, S)b} ≡ 0.

4.3 Operators V a, ∆a

In addition the operators V a, ∆a are introduced

V a = εab φ∗Ab
δ

δφ̄A
, (4.3.4)

∆a = (−1)εA
δl

δφA
δ

δφ∗Aa
, (4.3.5)

where εab is the antisymmetric tensor for raising and lowering Sp(2)-indeces

εab = −εba, ε12 = 1 εab = −εab.

It can be readily established that the algebra of the operators ( 4.3.4), ( 4.3.5) has the
form

∆{a∆b} = 0,
∆{aV b} + V {a∆b} = 0.

V {aV b} = 0. (4.3.6)
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The action of the operators ∆a ( 4.3.5) on a product of functionals F and G gives

∆a(F ·G) = (∆aF ) ·G+ F · (∆aG)(−1)ε(F ) + (F, G)a(−1)ε(F ) (4.3.7)

while the action of the operators V a ( 4.3.4) upon the extended antibrackets is given by the
relations

V a(F,G)b = (V aF, G)b − (−1)ε(F )(F, V aG)b −

εab
(
δF

δφA
δG

δφ̄A
− δG

δφA
δF

δφ̄A
(−1)ε(F )(ε(G)+1)

)
.

Therefore only the symmetrized form of V a acting on the extended antibracket observes the
Leibniz rule

V {a(F,G)b} = (V {aF,G)b} − (−1)ε(F )(F, V {aG)b}. (4.3.8)

For any bosonic functional S we have

1
2
V {a(S, S)b} = (V {aS, S)b}.

It is advantageous to introduce an operator ∆̄a

∆̄a = ∆a +
i

~
V a

with the properties

∆̄{a∆̄b} = 0. (4.3.9)

4.4 Extended quantum master equations

For a boson functional S = S(φ, φ∗, φ̄), we introduce extended quantum master equations

1
2

(S, S)a + V aS = i~∆aS (4.4.10)

with the boundary condition

S

∣∣∣∣
φ∗=φ̄=~=0

= S0(A), (4.4.11)

where S0(A) is the initial classical action. An equation similar to the extended action arises
in the Yang - Mills theory invariant under the BRST - anti BRST symmetry. Indeed, let s,
s̄ be the generators of BRST - antiBRST transformations in the Yang - Mills theory. The
algebra of the operators has the form

s2 = s̄2 = s̄s + s̄s = 0. (4.4.12)

Let S(φ) be an action invariant under the BRST and antiBRST transformations

sS(φ) = 0, s̄S(φ) = 0
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Consider the extended action Sext = Sext(φ, φ∗, φ̄)

Sext = S(φ) + φ∗A1
sφA + φ∗A2

s̄φA + φ̄As̄sφA.

In terms of Sext, the property of invariance of S(φ) has the form

sS(φ) = sSext − φ∗A2
s̄sφA = 0, s̄S(φ) = s̄Sext − φ∗A1

s̄sφA = 0

or, equivalently,

δSext
δφA

sφA + φ∗A2

δSext
δφ̄A

= 0,
δSext
δφA

δSext
δφ∗A1

+ φ∗A2

δSext
δφ̄A

= 0,

δSext
δφA

s̄φA − φ∗A1

δSext
δφ̄A

= 0,
δSext
δφA

δSext
δφ∗A2

− φ∗A1

δSext
δφ̄A

= 0. (4.4.13)

We have exactly the l.h.s. of the extended quantum master equations.
The generating equation for the bosonic functional S is a set of two equations. It should

be veri�ed that these equations are compatible. The simplest way to establish this fact is to
rewrite the extended master equations in an equivalent form of linear di�erential equations

∆̄a exp
{
i

~
S

}
= 0. (4.4.14)

Due to the properties of the operators ∆̄a ( 4.3.9), we immediately establish the compatibility
of the equations.

4.5 Gauge �xing

The action S is gauge-degenerate. To lift the degeneracy, we should introduce a gauge. We
denote the action modi�ed by gauge as Sext = Sext(φ, φ∗, φ̄). The gauge should be introduced
so as, �rst, to lift the generacy in φ and, second, to retain the extended master equation, which
provides the invariance properties of the theory for Sext. To meet these conditions, the gauge
is introduced as

exp
{
i

~
Sext

}
= exp

{
−i~T̂ (F )

}
exp

{
i

~
S

}
(4.5.15)

where F = F (φ) is a bosonic functional �xing a gauge in the theory. The explicit form of the
operator T̂ (F ) is

T̂ (F ) =
δF

δφA
δ

δφ̄A
+
i~
2
εab

δ

δφ∗Aa

δ2F

δφAδφB
δ

δφ∗Bb
. (4.5.16)

Due to the properties of the operators ∆̄a, it is not di�cult to check the equality

∆̄a exp
{
−i~T̂ (F )

}
= exp

{
−i~T̂ (F )

}
∆̄a. (4.5.17)

Therefore, the action Sext satis�es the extended master equations

∆̄a exp
{
i

~
Sext

}
= 0. (4.5.18)
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4.6 Generating functional of Green's functions

We next de�ne the generating functional Z(J) of Green's functions by the rule

Z(J) =
∫
dφ exp

{
i

~
[Seff (φ) + JAφ

A]
}
, (4.6.19)

where

Seff = Sext(φ, φ∗, φ̄)|φ∗=φ̄=0. (4.6.20)

It can be represented in the form

Z(J) =
∫
dφ dφ∗ dφ̄ dλ dπa exp

{
i

~

(
S(φ, φ∗, φ̄) + φ∗Aaπ

Aa +

+
(
φ̄A −

δF

δφA

)
λA − 1

2
εabπ

Aa δ2F

δφAδφB
πBb + JAφ

A

)}
, (4.6.21)

where we have introduced a set of auxiliary �elds πAa, λA

ε(πAa) = εA + 1, ε(λA) = εA.

4.7 Extended BRST symmetry

An important property of the integrand for JA = 0 is its invariance under the following global
transformations (which, for its part , is a consequence of the extended master equation for
Sext)

δφA = πAaµa, δφ∗Aa = µa
δS

δφA
, δφ̄A = εabµaφ

∗
Ab,

δπAa = −εabλAµb, δλA = 0, (4.7.22)

where µa is an Sp(2) doublet of constant anticommuting Grassmann parameters. These
transformations realize the extended BRST transformations in the space of the variables φ,
φ∗, φ̄, π and λ.

4.8 Gauge independence of vacuum functional

The existence of these transformations enables one to establish the independence of the vac-
uum functional from the choice of gauge. Indeed, suppose ZF ≡ Z(0). We shall change the
gauge F → F + ∆F . In the functional integral for ZF+∆F we make the above-mentioned
change of variables with the parameters chosen as

µa =
i

2~
εab

δ∆F
δφA

πAb. (4.8.23)

Then we �nd

ZF = ZF+∆F (4.8.24)

and therefore the S-matrix is gauge-independent.
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4.9 Ward identities

Let us now derive the Ward identities, which follow from the fact that the boson functional
S(φ, φ∗, φ̄) satis�es the extended master equations. To do this, we introduce the extended
generating functional of Green's functions

Z(J, φ∗, φ̄) =
∫
dφ exp

{
i

~
[Sext(φ, φ∗a, φ̄) + JAφ

A]
}
. (4.9.25)

From this de�nition it follows that

Z(J, φ∗, φ̄)|φ∗=φ̄=0 = Z(J) (4.9.26)

where Z(J) has been introduced above (294), (296).
We have, ∫

dφ exp
{
i

~
JAφ

A

}
∆̄a exp

{
i

~
Sext(φ, φ∗, φ̄)

}
= 0.

Integrating by parts, under the assumption that the integrated expression vanishes, we can
write this equality as

ω̂aZ(J, φ∗, φ̄) = 0, (4.9.27)

where

ω̂a =
(
JA

δ

δφ∗Aa
− εabφ∗Ab

δ

δφ̄A

)
, ω̂{aω̂b} = 0. (4.9.28)

Eqs. ( 4.9.27) are the Ward identities for the generating functional of Green's functions. For
the generating functional W(J, φ∗, φ̄) of connected Green's functions we have

ω̂aW(J, φ∗, φ̄) = 0, (4.9.29)

Finally, for the generating functional of vertex functions

Γ(φ, φ∗, φ̄) =W(J, φ∗, φ̄)− JAφA, φA =
δW
δJA

we obtain the Ward idntities

1
2

(Γ,Γ)a + V aΓ = 0 (4.9.30)

in the form of the classical part of the extended quantum master equations.

4.10 Extended BRST invariant renormalizability

In the same manner as in the case of gauge theories considered in the BV-method, here also
one can prove the preservation of the extended BRST-symmetry under renormalization within
the usual assumptions on perturbation theory as well as on a regularization respecting the
Ward identities [27]. If

1
2

(S, S)a + V aS = i~∆aS,
1
2

(Γ,Γ)a + V aΓ = 0 (4.10.31)
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then

1
2

(SR, SR)a + V aSR = i~∆aSR,
1
2

(ΓR,ΓR)a + V aΓR = 0. (4.10.32)

We shall consider two questions concerning the method of extended BRST quantization;
namely, the physical unitarity [146], the gauge dependence of the generating functional of
Green's functions [143, 149] and the explicit solutions for irreducible closed gauge theories
[25].

4.11 Physical unitarity

One of the most important issues of the Lagrangian quantization of gauge theories is the
unitarity problem. This long-standing problem was �rst explicitly formulated by Feynman
[83]. For the Yang�Mills type theories, it was e�ciently analyzed in Ref. [140] by Kugo and
Ojima in the framework of a formalism discovered by them and based on the study of the
physical subspace Vphys of the total state vector space V with inde�nite inner product < | >
(note that vector spaces having inde�nite inner product are also commonly referred to as
vector spaces with inde�nite metric).

The subspace Vphys ≡ {|phys >} is speci�ed by the operator Q̂BRST (Q̂†BRST = Q̂BRST)

Q̂BRST|phys >= 0 (4.11.33)

being the generator of the BRST symmetry transformations and possessing an important
nilpotency property

Q̂2
BRST = 0. (4.11.34)

In the Yang�Mills type theories, the nilpotency of the operator Q̂BRST follows immediately
from the nilpotency of the BRST transformations.

Even though in arbitrary gauge theories the algebra of the BRST transformations is
generally open (o�-shell), one can still prove (on the assumption of the absence of anomalies)
that within such theories, for the corresponding operator Q̂BRST the nilpotency property holds
[154]. Thus, one can assume that the Noether charge operator Q̂BRST in the BV quantization
scheme satis�es Eq. ( 4.11.34) and that the Kugo�Ojima formalism, discovered for the Yang�
Mills type theories, applies to the analysis of the unitarity problem for general gauge theories
(see also Ref. [105]).

In discussing the property ( 4.11.34), it is important to bear in mind that the widespread
opinion that the nilpotency of the operator Q̂BRST guarantees the unitarity of a theory (see,
for example, Ref. [63]) proves to be incorrect [154], and that a more accurate examination
of physicality conditions ful�llment ensuring the unitarity of a theory is then required. To
this end, we shall now recall the main results of analysis of the unitarity problem within the
framework of the formalism proposed by Kugo and Ojima.

In Ref. [140] it was shown that if a theory satis�es the following conditions (physicality
criteria) for the Hamiltonian Ĥ and the physical subspace Vphys in the total state vector space
V with inde�nite inner product < | >

(i) hermiticity of the Hamiltonian Ĥ = Ĥ† (or (pseudo-)unitarity of the total
S-matrix S†S = SS† = 1),

(ii) invariance of Vphys under the time development
(or SVphys = S−1Vphys = Vphys) (PhC)
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(iii) positive semi-de�niteness of inner product < | > in
Vphys (Vphys 3 |ψ >: < ψ|ψ >≥ 0),

then the physical S-matrix Sphys is consistently de�ned in a Hilbert space Hphys equipped
with positive de�nite inner product (the probabilistic interpretation of the quantum theory
thus secured). Namely, Hphys can be identi�ed with a (completed) quotient space

Vphys/V0 3 |Φ̃ >, |Φ̃ >= |Φ > +V0, |Φ >∈ Vphys

of Vphys with respect to the zero-norm subspace V0

V0 = {|χ >∈ Vphys :< χ|χ >= 0}, Vphys ⊥ V0,

where positive de�nite inner product in Vphys/V0 is de�ned by < Φ̃|Ψ̃ >=< Φ|Ψ >. Given
this, for the physical S-matrix in Hphys

Hphys = Vphys/V0, Sphys|Φ̃ >= S̃|Φ >

the unitarity property holds

S†physSphys = SphysS
†
phys = 1.

In this connection, note �rst of all that the subsidiary condition ( 4.11.33) ensures, on the
assumption of hermiticity of the Hamiltonian, the ful�llment of the condition (PhC), (ii)
of invariance of Vphys under the time development (V in

phys = Vout
phys). In [140], the analysis

of the condition (PhC), (iii) for an arbitrary theory ( 4.11.34) was based on the study of
representation of the algebra of the operator Q̂BRST and the ghost charge operator iQ̂C
([Q̂C , Ĥ] = 0)

[iQ̂C , Q̂BRST] = Q̂BRST

(the other commutators trivially vanish) in the one-particle subspace of the total Fock space
V.

The one-particle subspace of the theory generally consists of the so-called BRST-singlets
and quartets [140]. By de�nition, the BRST-singlets are introduced as state vectors |k,N >
(iQ̂C |k,N >= N |k,N >) from the physical subspace Vphys which cannot be represented in

the form |k,N >= Q̂BRST|∗ > for any state |∗ >. Here, k stands for all the quantum numbers
(except the ghost one) which specify the state. At that, the BRST-singlets that belong to
the subspace of positive-de�nite norm (which implies N = 0) are called genuine ones and
identi�ed with physical states. (In this connection, note that the condition N = 0 alone
does not provide in a general case the poisitive-de�neteness of the subspace of BRST-singlet
states [186, 80].) Meanwhile, all BRST-singlets with N 6= 0 possess zero norm and form pairs
(|k,−N >, |k,N >) with non-vanishing inner product

< k,−N |k,N >= 1.

It should be pointed out that the presence of singlet pairs neccesarily leads to negative norm
states in the physical subspace [140]. Finally, the states (|k,N >, |k,−N >, |k,N + 1 >,
|k,−(N + 1) >) such that

|k,N + 1 >= Q̂BRST|k,N >, |k,−N >= Q̂BRST|k,−(N + 1) >,

< k,−(N + 1)|k,N + 1 >=< k,−N |k,N >= 1
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form a quartet. The states complexes just described (i.e. the BRST-singlets and quartets)
obviously form representations of the algebra of operators Q̂BRST, iQ̂C , while the one-particle
subspace is representable as a direct sum of these subspaces [165] (di�erent complexes being
orthogonal to one another).

The study of Ref. [140] discovered a general mechanism, called the quartet one, by virtue
of which (provided that BRST-singlets in the theory are all genuine ones) any state that
belongs to the physical subspace Vphys of the total Fock space and contains quartet particles
has vanishing norm.

Thus, the requirement [140] that all BRST-singlets of the theory possess positive-de�nite
norm (and, consequently, that singlet pairs be absent), providing the positive semi-de�niteness
(1.3), (iii) of inner product < | > in Vphys, is a condition of the physical S-matrix unitarity

in the Hilbert space Hphys = Vphys/V0.

Algebra of quantum extended BRST transformations

Here we shall discuss the algebraic properties of extended BRST symmetry transformations
and prove the existence of operators required for the unitarity conditions analysis. To this
end we now bring to mind the key points of this method.

Note �rst of all that the quantization involves introducing a complete set of �elds φA and
the set of the corresponding anti�elds φ∗Aa (a=1, 2), φ̄A (the doublets of anti�elds φ∗Aa play
the role of sources of the BRST and antiBRST transformations while the anti�elds φ̄A are the
sources of the mixed BRST and antiBRST transformations). The speci�c structure of con�g-
uration space of the �elds φA (including the initial classical �elds, the ghosts, the antighosts
and the Lagrangian multipliers) is determined by the properties of original classical theory,
i.e. by the linear dependence (reducible theories) or independence (irreducible theories) of
generators of gauge transformations. Namely, the studies of Refs. [25, 26] have shown that
the �elds φA form components of irreducible completely symmetric Sp(2)-tensors.

The scheme developed in [25, 26, 27] explicitly possesses the extended BRST symmetry
which, in terms of the generating functional of vertex functions Γ = Γ(φ, φ∗a, φ̄) (extended
e�ective action), implies the following Ward identities

1
2

(Γ,Γ)a + V aΓ = 0. (4.11.35)

The study of [27] proved the fact that the renormalized extended e�ective action satis�es the
identities of the same form. In particular, Eq. ( 4.11.35), considered at φ∗Aa = φ̄A = 0, results
in the invariance of the e�ective action Γ̃ = Γ̃(φ)

Γ̃ = Γ|φ∗a=φ̄=0 (4.11.36)

of the �elds φA under the following transformations

δφA =
δΓ
δφ∗Aa

∣∣∣∣
φ∗a=φ̄=0

µa, (4.11.37)

where µa is an Sp(2)-doublet of constant anticommuting in�nitesimal parameters (we shall
refer to Eq. ( 4.11.37) as quantum extended BRST symmetry transformations). Namely,

δΓ̃ =
δΓ
δφA

δΓ
δφ∗Aa

∣∣∣∣
φ∗a=φ̄=0

µa = −εabφ∗Ab
δΓ
δφ̄A

∣∣∣∣
φ∗a=φ̄=0

µa = 0. (4.11.38)
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By virtue of Eq. ( 4.11.35), one readily �nds that the algebra of the symmetry transformations
( 4.11.37), ( 4.11.38) is open o�-shell

δ(1)δ(2)φ
A − δ(2)δ(1)φ

A =

= (−1)εA
δΓ̃
δφB

δ2Γ
δφ∗Bbδφ

∗
Aa

∣∣∣∣∣
φ∗a=φ̄=0

µ(1){aµ(2)b} (4.11.39)

(here, the symbol { } denotes the symmetrization with respect to the Sp(2) indices: A{ab} =
Aab +Aba).

In this connection, note that the study of Ref. [154] investigated the properties of the
symmetry transformations δα which form an open algebra

δα(δβqi)− δβ(δαqi) = fγαβδγq
i + ∆i

αβ (4.11.40)

within the Lagrangian formulation of an arbitrary non-degenerate theory. Here, qi are con�g-
uration space variables, fγαβ are some structure coe�cients (depending generally on qi) and

∆i
αβ are some functions vanishing on-shell. In Ref. [154] it was shown, on the assumption

of the absence of anomalies, that within the quantum theory constructed in accordance with
the Dirac procedure, the following relations hold

[Q̂α, Ĥ] = 0, [Q̂α, Q̂β ] = fγαβQ̂γ , (4.11.41)

where Ĥ is the Hamiltonian operator and Q̂α are the Noether charge operators generating,
on the quantum level, the symmetry transformations δα.

The comparison of Eq. ( 4.11.39) with Eqs. ( 4.11.40), ( 4.11.41) yields the algebra of
the operators of Hamiltonian Ĥ and Noether charges Q̂(1) ≡ Q̂aµ(1)a, Q̂(2) ≡ Q̂aµ(2)a corre-
sponding to the transformations δ(1), δ(2) ( 4.11.41), ( 4.11.39)

[Q̂(1,2), Ĥ] = 0, [Q̂(1), Q̂(2)] = 0. (4.11.42)

By virtue of the arbitrariness of parameters µ(1)a, µ(2)a, Eq. ( 4.11.42) implies the relations

[Q̂a, Ĥ] = 0, [Q̂a, Q̂b]+ = 0.

Hence it follows that within a general gauge theory (the anomalies out of account) there exists
a doublet of nilpotent anticommuting operators Q̂a generating the quantum transformations
of the extended BRST symmetry.

Representation of the algebra of Qa, QC

Let us consider the representation of algebra

[Q̂a, Q̂b]+ = 0, [iQ̂C , Q̂a] = −(−1)aQ̂a (4.11.43)

of the operators L̂ = (Q̂a, Q̂C) in the one-particle subspace V(1) of the total Fock space V
with inde�nite inner product < | >

L̂V(1) ⊂ V(1), < Ψ|L̂Φ >=< L̂†Ψ|Φ >, |Ψ >, |Φ >∈ V(1),

(4.11.44)

(Q̂a)† = −(−1)aQ̂a, (Q̂C)† = Q̂C .
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We shall demonstrate it here that the space V(1) of representation of the algebra ( 4.11.43) is
generally a direct sum

V(1) =
⊕
n

V(1)
n , L̂V(1)

n ⊂ V(1)
n , V(1)

n

⋂
V(1)
n′ = ∅, n 6= n′, (4.11.45)

where subspaces V(1)
n include the following one-particle state complexes

(i) genuine BRST�antiBRST-singlets (physical particles),
(ii) pairs of BRST�antiBRST-singlets,
(iii) BRST-quartets,
(iv) antiBRST-quartets, (OPSC)
(v) BRST�antiBRST-quartets,
(vi) BRST�antiBRST-sextets,
(vii) BRST�antiBRST-octets.

Here, each of the state complexes (OPSC), (i)-(v), (vii) is itself a representation of the algebra
( 4.11.43). Note in this connection that even though the variety of all the state complexes
(OPSC), (vi) is by construction invariant under the action of the operators L̂, an arbitrary
state complex (OPSC), (vi) is not necessarily a representation of the algebra ( 4.11.43).

BRST�antiBRST-quartets
In order to construct the basis of representation explicitly, note that for an arbitrary state

|Φ >, one of the following conditions holds

1
2
εabQ̂

aQ̂b|Φ > 6= 0, (4.11.46)

1
2
εabQ̂

aQ̂b|Φ > = 0. (4.11.47)

If a state |φ(k,N) >∈ V
(1)
n (iQ̂C |φ(k,N) >= N |φ(k,N) >) satis�es the condition ( 4.11.46), then,

by virtue of Eq. ( 4.11.43), there exists a set of linearly independent states

|φ(k,N) >, Q̂
a|φ(k,N) >,

1
2
εabQ̂

aQ̂b|φ(k,N) >, (4.11.48)

which form the basis of a four-dimensional representation of the algebra ( 4.11.43). Given
this, owing to the properties ( 4.11.43), ( 4.11.45), the states

Q̂a|φ(k,N) >,
1
2
εabQ̂

aQ̂b|φ(k,N) >

have vanishing norm, in particular, |k,N >≡ 1
2εabQ̂

aQ̂b|φ(k,N) >

< k,N |k,N >= 0. (4.11.49)

In accordance with Ref. [140], for an arbitrary one-particle zero-norm ( 4.11.49) state |k,N >,
there exists some (generally not unique) one-particle state |k,−N > such that

< k,−N |k,N >= 1 (4.11.50)

(by virtue of Eq. ( 4.11.44), any states |k,N >, |k′, N ′ > can only have a non-vanishing inner
product < k′, N ′|k,N > when N = −N ′). Given this, it is clear that the states |k,N >,
|k,−N > ( 4.11.49), ( 4.11.50) are linearly independent, and hence can be treated as basis
state vectors in the subspace V(1).
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One readily establishes the fact that for any |k,N > ( 4.11.49), the arbitrariness in a
choice of the corresponding state |k,−N > ( 4.11.50), in any subspace containing these
vectors, can always be lifted by an appropriate choice of the basis. In fact, in the subspace of
linearly independent states (|k,−N >, {|l,−N >}) with the properties < k,−N |k,N >=<
l,−N |k,N >= 1, it is always possible to choose a basis (|k,−N >, {|l,−N >≡ |l,−N >
−|k,−N >}) such that < l,−N |k,N >= 0.

Note, owing to Eqs. ( 4.11.49), ( 4.11.50), that the basis in the subspace of states |Ψ >=
{|l, N >, l 6= k}, < k,N |Ψ >= 0 can always be chosen so as < k,−N |l, N >= 0. Indeed, in
order to go over from the basis states |k,N >, {|l, N >}

< k,N |k,N >= 0, < k,−N |k,N >= 1,

< k,N |l, N >= 0, < k,−N |l, N >= 1, ∀l

to an equivalent linearly independent set |k,N >, {|l, N >}

< k,N |k,N >= 0, < k,−N |k,N >= 1,

< k,N |l, N >= 0, < k,−N |l, N >= 0, ∀l

it is su�cient, for example, to identify

|k,N >= |k,N >, |l, N >= |l, N > −|k,N >, ∀l.

Thus, by means of an appropriate choice of the basis in an arbitrary subspace containing
a pair |k,N >, |k,−N > ( 4.11.49), ( 4.11.50), these states can always be made orthogonal
to the remaining basis state vectors.

From Eqs. ( 4.11.49), ( 4.11.50) and the hermiticity assignment ( 4.11.44) it follows that
there exists a set of four states

|φ̄(k,−N) >, Q̂
a|φ̄(k,−N) >,

1
2
εabQ̂

aQ̂b|φ̄(k,−N) >, (4.11.51)

which are also linearly independent and form the basis of a representation of the algebra (
4.11.43). Here, |φ̄(k,−N) > is a state ( 4.11.46) chosen from the condition

1
2
εab < φ̄(k,−N)|Q̂aQ̂b|φ(k,N) >= 1. (4.11.52)

By virtue of Eq. ( 4.11.52), the state vectors |φ̄a >≡ (|φ̄1 >, |φ̄2 >) satisfying the normaliza-
tion < φ̄1|Q̂1φ >=< φ̄2|Q̂2φ >= 1 that corresponds to the zero-norm states Q̂a|φ > can be
chosen in the form |φ̄a >= εba(Q̂b)†|φ̄ >.

For a more detailed analysis of the states ( 4.11.46), ( 4.11.51), ( 4.11.52), we �rst suppose
that some state |φ(k,N) > ( 4.11.43) satis�es the condition

1
2
εab < φ(k,N)|Q̂aQ̂b|φ(k,N) > 6= 0. (4.11.53)

Then, owing to Eq. ( 4.11.53), there exists such α 6= 0 that the corresponding state |φ̄(k,−N) >
( 4.11.52) can be identi�ed as

|φ̄(k,−N) >= α|φ(k,N) > . (4.11.54)
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Hence it is clear that N = 0, and that the representation subspaces corresponding to the
vector sets ( 4.11.46), ( 4.11.52) coincide. For a set of basis vectors we choose, say, ( 4.11.46),
i.e. (|φ(k,N=0) >≡ |k, 0 >)

|k, 0 >, Q̂a|k, 0 >, 1
2
εabQ̂

aQ̂b|k, 0 > . (4.11.55)

Given this, owing to Eq. ( 4.11.54), the relation holds

α∗

2
εab < k, 0|Q̂aQ̂b|k, 0 >= 1. (4.11.56)

By virtue of Eq. ( 4.11.56), the set of states ( 4.11.55) can be represented in the form of both
a BRST-quartet ((Q̂1)† = Q̂1)

|k, 0 >, |k, 0 >, |k, 1 >, |k,−1 >,

|k, 1 >= Q̂1|k, 0 >, |k, 0 >= Q̂1|k,−1 >, (4.11.57)

< k, 0|k, 0 >=< k,−1|k, 1 >= 1

(choosing for |k,−1 >≡ −αQ̂2|k, 0 >), and an antiBRST-quartet ((iQ̂2)† = iQ̂2)

|k, 0 >, |k, 0 >, |k,−1 >, |k, 1 >,

|k,−1 >= iQ̂2|k, 0 >, |k, 0 >= iQ̂2|k, 1 >, (4.11.58)

< k, 0|k, 0 >=< k,−1|k, 1 >= 1

(choosing for |k, 1 >≡ −iα∗Q̂1|k, 0 >).
By construction, the variety of linear combinations of the vectors ( 4.11.55), ( 4.11.56)

constitute a subspace (of states |Ψ >), which has non-degenerate inner product (∀|Ψ > 6= 0,
∃|Ψ′ >: < Ψ|Ψ′ > 6= 0) and is invariant under the action of the operators L̂.

In what follows, we shall consider the states ( 4.11.55), ( 4.11.56) (provided they do exist
in a speci�c theory) as part of the basis state vectors in V(1).

Eqs. ( 4.11.57), ( 4.11.58) imply, with allowance for Eqs. ( 4.11.43), ( 4.11.44), that the
whole set (|k, 0 >, |k, 0 >, |k,−1 >, |k, 1 >) of states ( 4.11.55), ( 4.11.56) form two mutually
orthogonal pair of state vectors ( 4.11.49), ( 4.11.50)

(|k, 0 >, |k, 0 >), < k, 0|k, 0 >= 1 < k, 0|k, 0 >= 0,

(|k,−1 >, |k, 1 >), < k,−1|k, 1 >= 1, < k,−1|k,−1 >= 0, < k, 1|k, 1 >= 0,

< k, 0|k,−1 >=< k, 0|k, 1 >= 0, < k, 0|k,−1 >=< k, 0|k, 1 >= 0.

Owing to the above considered properties of states ( 4.11.49), ( 4.11.50), there can always
be chosen such a basis in V(1) that either pair (|k, 0 >, |k, 0 >), (|k,−1 >, |k, 1 >) of basis
vectors ( 4.11.55), ( 4.11.56) in the subspace of states |Ψ > is orthogonal to the remaining
basis state vectors. Then, from the condition < Ψ|Φ >= 0 (|Φ > is an arbitrary state not
representable as a linear combination of the state vectors ( 4.11.55), ( 4.11.56)) it follows that
the states |Φ >

< Ψ|L̂Φ >=< L̂†Ψ|Φ >= 0
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also form a subspace of the representation of algebra of the operators L̂.
Repeating the above treatment with respect to the pointed out states |Φ >, one can

subsequently single out all the basis state complexes ( 4.11.55), ( 4.11.56), which we shall
further call BRST�antiBRST-quartets (OPSC), (v).

Clearly, the BRST�antiBRST-quartet complexes ( 4.11.55), ( 4.11.56) exhaust all the
states ( 4.11.53) (i.e. the condition ( 4.11.53) cannot be met by any linear combination of
the remaining basis vectors). By construction, any two BRST�antiBRST-quartets have no
elements in common. At the same time, the BRST�antiBRST-quartets are all chosen to be
orthogonal both to one another and to the remaining basis states, which, as shown above,
thus form a subspase of the representation of algebra of the operators L̂.

BRST�antiBRST-octets
Turning ourselves to the analysis of state vectors |Φ > not representable as linear com-

binations of the above considered BRST�antiBRST-quartet states ( 4.11.53), we shall �rst
of all proceed with the treatment of states ( 4.11.46) (or ( 4.11.52)), which are, of course,
generally not restricted to the states ( 4.11.53) only.

To this end, we observe that, by construction, any pair (|φ(k,N) >, |φ̄(k,−N) >) of state
vectors ( 4.11.52) which belong to the subspace of states |Φ > under consideration satis�es
(as all the states |Φ > do) the conditions

< φ(k,N)|Q̂aQ̂b|φ(k,N) >= 0, < φ̄(k,−N)|Q̂aQ̂b|φ̄(k,−N) >= 0. (4.11.59)

We shall now demonstrate, with Eq. ( 4.11.59) taken into account, that the states of the
whole set ( 4.11.48), ( 4.11.51), ( 4.11.52) turn out to be linearly independent. Let us assume
the reverse. Indeed, if among the numbers (β, βa, β̃, γ, γa, γ̃) there is a non-zero one, and
if (|φ(k,N) >≡ |φ >, |φ̄(k,−N) >≡ |φ̄ >)

β|φ > +βaQ̂a|φ > +
β̃

2
εabQ̂

aQ̂b|φ > +γ|φ̄ > +γaQ̂a|φ̄ > +
γ̃

2
εabQ̂

aQ̂b|φ̄ >= 0,

then, owing to Eq. ( 4.11.43), hence follows the condition (for some α 6= 0)

α

2
εabQ̂

aQ̂b|φ(k,N) >=
1
2
εabQ̂

aQ̂b|φ̄(k,−N) >,

obviously contradicting Eq. ( 4.11.59). In order to prove the above relation, su�ce it to note
that if β = γ = βa = γa = 0, then from the condition β̃ 6= 0 it follows that γ̃ 6= 0 (reversely,
γ̃ 6= 0 ⇒ β̃ 6= 0) with α = β̃γ̃−1; in the case β = γ = 0 the condition ∃a : βa 6= 0 implies
γa 6= 0 (similarly, γa 6= 0 ⇒ βa 6= 0), here α = βaγ

−1
a (no summation); �nally, if β 6= 0 (or,

equivalently, γ 6= 0), we have α = βγ−1.
By construction, the set of linearly independent states ( 4.11.48), ( 4.11.51), ( 4.11.52)

form the basis of a representation subspace with non-degenerate inner product and can be
considered as both a pair of BRST-quartets

(|φ(k,N) >, −Q̂1Q̂2|φ̄(k,−N) >, Q̂
1|φ(k,N) >, −Q̂2|φ̄(k,−N) >),

(4.11.60)

(|φ̄(k,−N) >, −Q̂1Q̂2|φ(k,N) >, Q̂
1|φ̄(k,−N) >, −Q̂2|φ(k,N) >)

and a pair of antiBRST-quartets

(|φ(k,N) >, Q̂
2Q̂1|φ̄(k,−N) >, iQ̂

2|φ(k,N) >, −iQ̂1|φ̄(k,−N) >),
(4.11.61)

(|φ̄(k,−N) >, Q̂
2Q̂1|φ(k,N) >, iQ̂

2|φ̄(k,−N) >, −iQ̂1|φ(k,N) >).
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Note that, without the loss of generality, one can assume

< φ̄(k,−N)|φ(k,N) >= 0,

since if there does exist such α 6= 0 that

< φ̄(k,−N)|φ(k,N) >= α,

then one can choose a basis in the subspace ( 4.11.48) so as

|φ′(k,N) >, Q̂
a|φ′(k,N) >,

1
2
εabQ̂

aQ̂b|φ′(k,N) >,

1
2
εab < φ̄(k,−N)|Q̂aQ̂b|φ′(k,N) >= 1, < φ̄(k,−N)|φ′(k,N) >= 0,

where |φ′(k,N) >≡ α−1|φ(k,N) >− 1
2εabQ̂

aQ̂b|φ(k,N) >. Hence, with Eqs. ( 4.11.43), ( 4.11.44),
( 4.11.52), ( 4.11.59) taken into account, it follows that the states ( 4.11.60) (or ( 4.11.61))
are representable as four mutually orthogonal pairs of states ( 4.11.49), ( 4.11.50)

(|φ(k,N) >, −Q̂1Q̂2|φ̄(k,−N) >), (Q̂1|φ(k,N) >, −Q̂2|φ̄(k,−N) >),

(|φ̄(k,−N) >, −Q̂1Q̂2|φ(k,N) >), (Q̂1|φ̄(k,−N) >, −Q̂2|φ(k,N) >),

and can therefore, when identi�ed with elements of the basis in V(1), be made orthogonal
to the remaining basis state vectors (in the subspace of states |Φ > under consideration) by
means of an appropriate choice of the latter.

Using the reasoning similar to the given above, one can subsequently single out all the
state complexes ( 4.11.48), ( 4.11.51), ( 4.11.52), ( 4.11.59), which we shall refer to as BRST�
antiBRST-octets (OPSC), (vii), in such a way that di�erent BRST�antiBRST-octets be cho-
sen mutually orthogonal and having no elements in common.

Thus, with allowance for Eqs. ( 4.11.48)�( 4.11.61), we have described the structure of
representations containing the state vectors ( 4.11.46).

BRST�antiBRST-sextets
Consider now the states |Φ >∈ V(1) not representable as linear combinations of states (

4.11.48), ( 4.11.51), ( 4.11.55) (i.e. those which do not belong to BRST�antiBRST-quartets or
octets) and make use of a choice of the basis in V(1) for which every state |Φ > is orthogonal
to all the state vectors ( 4.11.48), ( 4.11.51), ( 4.11.55), and which thus ensures the invariance
of subspace of the pointed out states |Φ > under the action of the operators L̂.

From the previous treatment it follows immediately that the states |Φ > under consider-
ation satisfy the condition ( 4.11.47) (all the states ( 4.11.46) are by construction exhausted
by BRST�antiBRST-quartet and octet state vectors).

Given this, the following conditions generally hold |Φ >≡ {|φ(k,N) >}

∃a : Q̂a|φ(k,N) >6= 0, (4.11.62)

∀a : Q̂a|φ(k,N) >= 0. (4.11.63)

Let us �rst turn ourselves to the states of the form ( 4.11.62). For such states the condition
is valid (|∗ > implies arbitrary one-particle states)

|φ(k,N) >6= Q̂a|∗ >, (4.11.64)
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since otherwise the states |φ(k,N) > under consideration would be some linear combinations
of the states ( 4.11.48). An arbitrary state |φ(k,N) > ( 4.11.47), ( 4.11.62), ( 4.11.64), in its
turn, satis�es one of the three conditions

(i) Q̂1|φ(k,N) >6= 0, Q̂2|φ(k,N) >6= 0,
(ii) Q̂1|φ(k,N) > 6= 0, Q̂2|φ(k,N) >= 0, (TC)

(iii) Q̂1|φ(k,N) >= 0, Q̂2|φ(k,N) > 6= 0.
If a state |φ(k,N) > satis�es the condition (TC), (i), then, by virtue of Eq. ( 4.11.43), there

exist linearly independent states

|φ(k,N) >, Q̂a|φ(k,N) >, (4.11.65)

which form the basis of a three-dimensional representation of the algebra ( 4.11.43). At the
same time, the states Q̂a|φ > (we omit, for the sake of brevity, the notations of quantum
numbers) have vanishing norm

< Q̂1φ|Q̂1φ >=< Q̂2φ|Q̂2φ >= 0.

From the above relations it follows, with allowance made for Eqs. ( 4.11.44), ( 4.11.49), (
4.11.50), that there exist three linearly independent states

|φa >,
1
2

(Q̂a)†|φa >, (4.11.66)

where the states |φa > 6= Q̂a|∗ >, chosen without the loss of generality as eigenvectors for the
ghost charge operator iQ̂C , satisfy the normalization conditions

< φb|Q̂aφ >= δab (4.11.67)

(the relations iQ̂C |φa >= −(N − (−1)a)|φa > immediately ensure the validity of the condi-
tions < φ2|Q̂1φ >=< φ1|Q̂2φ >= 0); at the same time, by virtue of Eqs. ( 4.11.44), ( 4.11.47),
( 4.11.67), we have

1
2
< (Q̂a)†φa|φ >= 1,

(4.11.68)

< (Q̂b)†φb|Q̂aφa >= 0, < φa|φ >= 0

(the inequality < φa|φ > 6= 0 leads one to the condition ∃a : N = N − (−1)a and, therefore,
does not hold for any N).

Let us show, with Eqs. ( 4.11.43), ( 4.11.44) taken into account, that the states of the
whole set ( 4.11.65), ( 4.11.66)

|φ >, Q̂a|φ >, |φa >,
1
2

(Q̂a)†|φa > (4.11.69)

are linearly independent. Indeed, assuming the reverse, i.e.

β|φ > +βaQ̂a|φ > +γa|φa > +
γ

2
(Q̂a)†|φa >= 0

(the numbers (β, βa, γ
a, γ) not all vanishing), one arrives, by virtue of Eq. ( 4.11.47) and

the normalization conditions ( 4.11.67), at the relation

∃a : < (Q̂a)†φ|φ >≡ αa 6= 0
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representable as
β 6= 0⇔ ∃a : γa 6= 0, αa = (−1)aγa/β,

β = γ = 0, γ 6= 0⇔ ∃a : βa 6= 0, αa = −γ/βa.
If we now suppose, for example, that a = 1, then, owing to Eq. ( 4.11.67) (< Q̂1φ1|φ >= 1),
the eigenvalues of the ghost charge operator iQ̂C that correspond to the states Q̂1|φ > and
Q̂1|φ1 >

iQ̂C |Q̂1φ >= (N + 1)|Q̂1φ >,

iQ̂C |Q̂1φ1 >= −N |Q̂1φ1 >

must coincide, i.e. N + 1 = −N . In the case a = 2 we similarly have N − 1 = −N and �nd
that neither condition can be satis�ed for an integer N . In what follows, we shall refer to the
states ( 4.11.69), ( 4.11.67) as a BRST�antiBRST-sextet (OPSC), (vi).

Owing to Eqs. ( 4.11.67), ( 4.11.68), the bases ( 4.11.65), ( 4.11.66) (|φ >, Q̂a|φ >) ≡ |ei >,
(|φa >, 1

2 (Q̂a)†|φa >) ≡ |fi > are dual with respect to each other < fi|ej >= δij . Hence
follows the non-degeneracy of bilinear form < | > de�ned on the pair X ≡ {|ei >},
Y ≡ {|fi >} of state spaces corresponding to the vector sets ( 4.11.65), ( 4.11.66). This

fact implies that in the space Y exists the (unique) representation
ˆ̃
L†|fi >= (L̂†)ij |fj >,

ˆ̃
L† = (( ˆ̃

Qa)†, ˆ̃
Q†C) of the algebra ( 4.11.43) conjugate to the representation L̂|ei >= (L̂)ij |ej >

de�ned in X, i.e. (ˆ̃
L†)ij = (L̂)

∗
ji. Namely,

( ˆ̃
Qa)†|φb >=

1
2
δab (Q̂c)†|φc >,

(4.11.70)

( ˆ̃
Qa)†(Q̂b)†|φb >= 0

(for the ghost charge operator iQ̂C , the basis states of the subspace Y are by construction

eigenvectors, i.e.
ˆ̃
Q†C |fi >= Q̂†C |fi >).

Note that an arbitrary BRST�antiBRST-sextet ( 4.11.69), ( 4.11.67) is generally not
invariant under the action of the operators L̂. Indeed, if ∀a: Q̂a|φ1 > 6= 0, (< φ1Q̂

1|φ >= 1,
∀a: Q̂a|φ > 6= 0, |φ >≡ |k,N >), then the state |φ1 >≡ |k,−(N + 1) > gives rise to some
BRST�antiBRST-sextet, which does not coincide with the given set ( 4.11.69), ( 4.11.67) (for
example, it is clear that the state Q̂2|k,−(N + 1) >≡ |k,−(N + 2) > 6= 0 does not belong
to the initial state vectors ( 4.11.69), ( 4.11.67)); and if ∀a: Q̂a|φ2 >6= 0, (< φ2|Q̂2φ >= 1,
|φ2 >≡ |k,−(N − 1) >), we similarly have Q̂1|k,−(N − 1) >≡ |k,−(N − 2) > 6= 0 and �nd
that there is another BRST�antiBRST-sextet associated with the state |φ2 >, which also
di�ers from ( 4.11.69), ( 4.11.67).

Repeating the above considerations, we come to the variety of states that belong to all
the BRST�antiBRST-sextets thus associated with the given set ( 4.11.69), ( 4.11.67). By
construction, the linear combinations of these states form a subspace invariant under the
action of the operators L̂ and having non-degenerate inner product. The basis states of
subspace concerned can in a general case be chosen as BRST- (or antiBRST-) quartets and
singlets and thus made orthogonal to the remaining basis state vectors (in the subspace of
states |Φ > under consideration) by means of their appropriate choice.

Note that if the set of state vectors ( 4.11.66) is invariant under the action of the oper-

ators Q̂a (i.e. ( ˆ̃
Qa)†|fi >= (Q̂a)†|fi >), the states ( 4.11.69), ( 4.11.67), ( 4.11.70) can be

represented in the form of a BRST-quartet

|φ >, Q̂1|φ1 >, Q̂1|φ >, |φ1 >,
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< Q̂1φ1|φ >=< φ1|Q̂1φ >= 1

and a pair of BRST-singlets (Q̂2|φ >, |φ2 >)

< φ2|Q̂2φ >= 1,
(4.11.71)

Q̂1|Q̂2φ >= Q̂1|φ2 >= 0, |φ2 > 6= Q̂1|∗ >, |Q̂2φ >6= Q̂1|∗ >,

as well as in the form of an antiBRST-quartet ((Q̂1)†|φ1 >= (Q̂2)†|φ2 >)

|φ >, −Q̂2|φ2 >, iQ̂2|φ >, i|φ2 >,

< iφ2|iQ̂2φ >= − < Q̂2φ2|φ >= 1

and a pair of antiBRST-singlets (Q̂1|φ >, |φ1 >)

< φ1|Q̂1φ >= 1,
(4.11.72)

Q̂2|Q̂1φ >= Q̂2|φ1 >= 0, |φ1 > 6= Q̂2|∗ >, |Q̂1φ >6= Q̂2|∗ > .

Let us consider the two-dimentional subspace of states |Ψ >= {|k,N >, |k,−N >}
being linear combinations of vectors of the BRST-singlet pair ( 4.11.71) (Q̂2|φ >≡ |k,N >,
|φ2 >≡ |k,−N >). There are two alternatives to be studied separately. First supposing that
N 6= 0, we, as is well-known [140], have unphysical particles leading to negative norm states.
If we now turn to the case N = 0, then from the non-degeneracy ( 4.11.71) of inner product
in the space under consideration, it follows, by virtue of |k, 0 > 6= 0, < k, 0|k, 0 >= 0, that
there exists [140] a state |ψ >= β|k, 0 > +γ|k, 0 >, β 6= 0 (clearly, iQ̂C |ψ >= 0) having
negative norm < ψ|ψ >< 0. Moreover, this implies that in the subspace of states |Ψ > there

can always be chosen such a basis (|k, 0 >, |k̃, 0 >= |k, 0 >+α|k, 0 >) that

< k̃, 0|k, 0 >= 1, < k̃, 0|k̃, 0 >< 0.

Quite similar considerations show that the antiBRST-singlet pair ( 4.11.72), too, always
implies negative norm states and cannot evidently be treated as physical states (not for
N = 0).

Let us show that any representation subspace (of states |Φ >) having non-degenerate
inner product and including a BRST�antiBRST-sextet complex always contains a BRST-
or an antiBRST-singlet pair. Assuming the reverse, we single out, in the subspace under
consideration, some states of the form

|k,N >, ∀a : Q̂a|k,N >6= 0,

|k,−N + 1 >, < k,−N + 1|Q̂2|k,N >= 1

(such states |k,N >, |k,−N + 1 > must exist, since we consider a subspace containing some
BRST�antiBRST-sextet). The above state |k,−N + 1 > satis�es the condition

Q̂1|k,−N + 1 >6= 0,

since we would otherwise deal with a BRST-singlet pair (|k,−N + 1 >, Q̂2|k,N >)

(|k,−N + 1 >, Q̂2|k,N >) 6= Q̂1|∗ >, Q̂1|k,−N + 1 >= 0, Q̂1Q̂2|k,N >= 0,
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< k,−N + 1|Q̂2|k,N >= 1,

and hence there exists a state |k,N − 2 > such that

< k,N − 2|Q̂1|k,−N + 1 >= 1.

Then, making allowance for the fact that the condition Q̂2|k,N − 2 >= 0 leads to an
antiBRST-singlet pair

(|k,N − 2 >, Q̂1|k,−N + 1 >) 6= Q̂2|∗ >,

we have
∀a : Q̂a|k,N − 2 > 6= 0.

By repetition of the above treatment, we �nd that for any integer n ≥ 0, there exist some
states of the form

|k,N − 2n >, ∀a : Q̂a|k,N − 2n >6= 0,

|k,−N + 2n+ 1 >, < k,−N + 2n+ 1|Q̂2|k,N − 2n >= 1,

Q̂1|k,−N + 2n+ 1 > 6= 0,

and then for any integer L ≥ 0, there exists such a state |k,N >6= 0, N ≥ L+ 1 that

Q̂1|k,N >≡ |k,N + 1 > 6= 0.

Since the one-particle subspace V(1) of an arbitrary L-stage reducible gauge theory is restricted
to the states |k,N >, |N | ≤ L + 1, the above inequality |k,N + 1 >6= 0, N ≥ L + 1 does
not hold, and therefore the assumption of the absence of a BRST- (antiBRST-) singlet pair
proves to be incorrect.

The above considerations imply that the variety of states that belong to the BRST�
antiBRST-sextet complexes contain all the states (TC), (i); at the same time, the sextet
representations ( 4.11.69), ( 4.11.70) generally include part of the states (TC), (ii), (iii), that
is to say

(|φ1 >, |φ2 >) 6= Q̂a|∗ >,
(4.11.73)

Q̂1|φ1 >= −Q̂2|φ2 > 6= 0, Q̂2|φ1 >= Q̂1|φ2 >= 0.

Reversely, any states ( 4.11.73) belong to a BRST�antiBRST-sextet

|φ >, Q̂1|φ >, Q̂2|φ >, |φ1 >, |φ2 >, Q̂
1|φ1 >= −Q̂2|φ2 >, (4.11.74)

where |φ > is chosen from the relations

< Q̂1φ1|φ >= − < Q̂2φ2|φ >= 1.

BRST- and antiBRST-quartets
The above treatment implies that for the further analysis of representations of the algebra

( 4.11.43) which contain the state vectors speci�ed by the conditions ( 4.11.47), ( 4.11.62), (
4.11.64), (TC), (ii), (iii) it is su�cient to con�ne ourselves to the states not repreresentable
as linear combinations of BRST�antiBRST-sextet vectors. These states are without the loss
of generality all orthogonal to the representation subspace containing the variety of BRST�
antiBRST-sextet complexes and, therefore, belong to a subspace that is invariant under the



87

action of the operators L̂ and does not contain any BRST�antiBRST-sextet elements. For
the states

|φ >6= Q̂a|∗ >, Q̂1|φ >6= 0, Q̂2|φ >= 0, (4.11.75)

|φ̄ >6= Q̂a|∗ >, Q̂2|φ̄ >6= 0, Q̂1|φ̄ >= 0 (4.11.76)

under consideration, the following supplementary conditions hold

Q̂1|φ >6= Q̂2|∗ >, (4.11.77)

Q̂2|φ̄ >6= Q̂1|∗ > . (4.11.78)

Let us show that the violation of Eq. ( 4.11.77), for instance, leads one to a contradiction.
In fact, |∗ > is, by de�nition, not representable as a linear combination of BRST�antiBRST-
sextet states, and, consequently, the relation Q̂1|φ >= Q̂2|∗ > is only possible when |∗ >
belongs to the states ( 4.11.76), i.e. without the loss of generality, one has

Q̂1|φ >= −Q̂2|φ̄ > .

From the above relation it follows, by virtue of Eqs. ( 4.11.73)�( 4.11.76), that the states
(|φ >, |φ̄ >, Q̂1|φ >= −Q̂2|φ̄ >) belong to some BRST�antiBRST-sextet ( 4.11.74). The
inequality ( 4.11.78) is proved in a similar way. Eqs. ( 4.11.77), ( 4.11.78) imply, in particular,
that the representation subspaces ( 4.11.75) and ( 4.11.76) respectively cannot be transformed
into each another by the action of the operators L̂.

By repetition of the given above reasoning with respect to Eqs. ( 4.11.75)�( 4.11.78), we
�nd that the state complexes of the form ( 4.11.75), ( 4.11.77) constitute some BRST-quartets
(OPSC), (iii)

|φ >, |φ′ >, Q̂1|φ >, Q̂1|φ′ >,

< φ′|Q̂1φ >=< Q̂1φ′|φ >= 1, (4.11.79)

|Φ >≡ (|φ >, |φ′ >),

Q̂2|Φ >= 0, |Φ >6= Q̂a|∗ >, Q̂1|Φ > 6= Q̂2|∗ >

(|φ > ( 4.11.79) is orthogonal to all the BRST�antiBRST-sextet states and, in particular,
to any state |ψ >: ∀a, Q̂a|ψ >6= 0; hence, |φ′ > also satis�es Eqs. ( 4.11.75), ( 4.11.77)),
representable as well in the form of two mutually orthogonal pair of antiBRST-singlets

(|φ >, Q̂1|φ′ >), (|φ′ >, Q̂1|φ >), (4.11.80)

which we shall, as usual, identify with some basis state vectors, making them orthogonal to
the remaining elements of the basis. Similarly, the states ( 4.11.76), ( 4.11.78), also considered
as basis state vectors, constitute some antiBRST-quartets (3.4), (iv)

|φ̄ >, |φ̄′ >, iQ̂2|φ̄ >, iQ̂2|φ̄′ >,

< φ̄′|iQ̂2φ̄ >=< iQ̂2φ̄′|φ̄ >= 1, (4.11.81)
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|Φ >≡ (|φ̄ >, |φ̄′ >),

Q̂1|Φ >= 0, |Φ > 6= Q̂a|∗ >, Q̂2|Φ >6= Q̂1|∗ >
and BRST-singlet pairs

(|φ̄ >, iQ̂2|φ̄′ >), (|φ̄′ >, iQ̂2|φ̄ >), (4.11.82)

orthogonal both to one another and to the rest of the basis states. By construction, the
state complexes ( 4.11.79) and ( 4.11.81) form bases of some representation subspaces with
non-degenerate inner product.

Thus, with allowance for Eqs. ( 4.11.65)�( 4.11.72), ( 4.11.75)�( 4.11.82), we have de-
scribed the structure of representations containing states of the form ( 4.11.47), ( 4.11.62), (
4.11.64).

BRST�antiBRST-singlets
Finally, we turn to the states |Φ > that do not belong to the representation subspace consti-

tuted by the above considered BRST�antiBRST-quartets, sextets, octets and state complexes
( 4.11.75)�( 4.11.78) (the subspace of states |Φ > is without the loss of generality orthogonal
to all the state complexes just mentioned and is therefore invariant under the action of the
operators L̂). One readily �nds that these restrictions can only be met by the states

|Φ >≡ {|φ(k,N) >} 6= Q̂a|∗ >

of the form ( 4.11.72) ∀a : Q̂a|Φ >= 0. Proceeding along the lines similar to the above
presented ones, we �rstly single out the states |Φ >≡ (|φ(k,−N) >, |φ(k,N) >, N 6= 0)

< φ(k,−N)|φ(k,N) >= 1, < φ(k,−N)|φ(k,−N) >=< φ(k,N)|φ(k,N) >= 0 (4.11.83)

and the states |Φ >≡ (|φk >, |φ̄k >, N = 0)

< φ̄k|φk >= 1, < φk|φk >= 0, , < φ̄k|φ̄k >< 0 (4.11.84)

which we shall call BRST�antiBRST-singlet pairs (OPSC), (ii).
Taking into account that the state vectors ( 4.11.84) contain all the zero-norm states

|Φ >, iQ̂C |Φ >= 0 under consideration, one readily establishes the fact that the subspace
of the remaining states (if any) must possess de�nite inner product. Indeed, assuming the
reverse, i.e. that there exist at least two states |k >, |k̄ > with the properties < k|k >= 1,
< k̄|k̄ >= −1, we can easily �nd such α 6= 0 that |l >= α|k > +|k̄ >, < l|l >= 0.

In this connection, to have a physically meaningful theory, we require that the subspace
of the remaining states be positive de�nite and identify these states with physical particles
|φk > (genuine BRST�antiBRST-singlets (OPSC), (i))

< φk|φk >= 1, Q̂a|φk >= 0, |φk > 6= Q̂a|∗ > . (4.11.85)

At the same time, it is clear that the state complexes ( 4.11.83), ( 4.11.84) and ( 4.11.85) are
orthogonal to each other.

Thus, taking Eqs. ( 4.11.48)�( 4.11.85) into account, we have in a general case described

the structure (OPSC) of the one-particle state subspace V(1) ⊃ V(1)
n , (V(1)

n ⊥ V(1)
n′ , n 6= n′) as

a space of the representation L̂V ⊂ V, L̂ = (Q̂a, iQ̂C) of algebra ( 4.11.43) of the generators
Q̂a of extended BRST symmetry transformations and the ghost charge operator iQ̂C . By

construction, inde�nite inner product < | > is non-degenerate in each subspace V(1)
n (see the

normalization conditions ( 4.11.52), ( 4.11.67), ( 4.11.79), ( 4.11.81), ( 4.11.83), ( 4.11.84), (

4.11.85)), while they themselves have no elements in common (V(1)
n
⋂
V(1)
n′ = ∅, n 6= n′) and

form a direct sum ( 4.11.45) of representation subspaces.
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Physical unitarity conditions

We now consider, with allowance for Eqs. ( 4.11.45), (OPSC), ( 4.11.48)�( 4.11.85), the
conditions of the physical S-matrix unitarity in the Hilbert space Hphys = Vphys/V0, where
the physical subspace Vphys 3 |phys > is speci�ed by the Sp(2)-covariant subsidiary condition

Q̂a|phys >= 0 (4.11.86)

(which, clearly, ensures the invariance of Vphys under the time development). By virtue of
Eq. ( 4.11.86), the structure of Vphys has the form

Vphys = V1
phys

⋂
V2

phys,

where

V ⊃ V1
phys, Q̂1V1

phys = 0,

V ⊃ V2
phys, Q̂2V2

phys = 0.

In particular, for the zero-norm subspace V0 ⊂ V we have

V0 = V1
0

⋂
V2

0 ,

(4.11.87)

V1
0 ⊂ V1

phys, V2
0 ⊂ V2

phys.

The analysis of representations ( 4.11.45), (OPSC), ( 4.11.48)�( 4.11.85) on the basis of
the quartet mechanism [140] shows that if BRST- and antiBRST-singlet pairs are absent in
the theory, then, �rstly, the remaining BRST�antiBRST-singlets have positive-de�nite norm,
and, secondly, the state vectors from Vphys containing particles of BRST�antiBRST-quartets
(OPSC), (v) and octets (OPSC), (vii) (i.e. state complexes simultaneously representable
as BRST- ( 4.11.57), ( 4.11.60) and antiBRST- ( 4.11.58), ( 4.11.61) quartets) belong to
the zero-norm subspace V0 ( 4.11.87). At the same time, the state complexes (OPSC), (ii),
(iii), (iv), (vi) generally contain BRST- (antiBRST-) singlet pairs ( 4.11.71), ( 4.11.72), (
4.11.80), ( 4.11.82), ( 4.11.83), ( 4.11.84). In this connection, the unitarity conditions (pro-
viding positive semi-de�neteness of < | > in Vphys) of physical S-matrix in Hphys is, within
the suggested approach, the requirement of absence of the pointed out state complexes, i.e.
BRST�antiBRST-singlet pairs (OPSC), (ii), BRST-quartets (OPSC), (iii) (antiBRST-singlet
pairs ( 4.11.80)), antiBRST-quartets (OPSC), (iv) (BRST-singlet pairs ( 4.11.82)) and BRST�
antiBRST-sextets (OPSC), (vi).

4.12 Gauge dependence of Green's functions

First, consider an in�nitesimal variation of the gauge functional F → F + δF . It leads to a
small variation of the action Sext. This variation can be represented in terms of the functional
δF depending only on the �elds φA, in the form

δ

(
exp

{
i

~
Sext

})
= −i~T̂ (δF ) exp

{
i

~
Sext

}



90

Then we have

δZ(J, φ∗, φ̄) =
i~
2
εab

∫
dφ exp

{
i

~
JAφ

A

}
∆̄a∆̄bδF exp

{
i

~
Sext

}
.

Performing two subsequent integration by parts in the above integral, we obtain

δZ(J, φ∗, φ̄) =
i

2~
εabω̂

bω̂aδ̂FZ(J, φ∗, φ̄), (4.12.88)

where

δ̂F ≡ δF
(

~
i

δ

δJ

)
. (4.12.89)

Therefore, the variation of the generating functional W of connected Green's functions
has the form

δW =
i

2
εabω̂

bω̂a〈δ̂F 〉, (4.12.90)

where

〈δ̂F 〉 ≡ δF
(

~
i

δ

δJ
+
δW
δJ

)
is the vacuum expectation value of the operator δ̂F .

For the generating functional of vertex functions Γ = Γ(φ, φ∗, φ̄) this results in

δΓ =
i

2
εab B̂b B̂a 〈〈δ̂F 〉〉, (4.12.91)

where

B̂a(Γ) = (Γ, ·)a + V a ≡ δΓ
δφA

δ

δφ∗Aa
+ (−1)εA

δΓ
δφ∗Aa

δl
δφA

+ V a, B̂{aB̂b} = 0, (4.12.92)

〈〈δ̂F 〉〉 = δF (φ̂), φ̂A = φA + i~(Γ′′−1)AB
δl
δφB

, (4.12.93)

(Γ′′−1)AC(Γ′′)CB = δAB , (Γ′′)AB =
δl
δφA

(
δΓ
δφB

)
. (4.12.94)

The gauge dependence of Γ can also be presented in the form [143]

δΓ(φ, φ∗, φ̄) =
δΓ
δφA

GA(φ, φ∗, φ̄) + φ∗AaD
Aa(φ, φ∗, φ̄) (4.12.95)

with some functionals GA and DAa.

We can see that the generating functional of vertices, calculated on its extremals δΓ/δφA =
0 does not depend on the gauge on the surface φ∗Aa = 0.
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4.13 Irreducible gauge theories with a closed algebra

To illustrate the formalism, we consider irreducible gauge theories of so-called rank 1 with a
closed algebra. Such theories are characterized by the fact that in the algebra of generators
we have M ij

αβ = 0, and the solution of any equation of the form RiαX
α = 0 is Xα = 0. The

majority of theories discussed in the literature belong to the indicated class (Yang - Mills,
gravity, supergravity with auxiliary �elds, ets.). From the viewpoint of extended BRST
quantization, for all these theories the solution of extended master equantion exists as a
linear functional in the anti�elds φ∗Aa and φ̄A

S(φ, φ∗, φ̄) = S0(A) + φ∗AaX
Aa + φ̄AY

A (4.13.96)

where XAa (ε(XAa) = ε(φ∗Aa)) and Y A (ε(Y A) = ε(φ̄A)) are functionals of the �elds φA and
have the sense of extended BRST- and mixed BRST-transformations respectively.

Substituting the functional ( 4.13.96) into the extended master equations, we obtain a
system of equations for �nding XAa and Y A:

δS0(A)
δφA

XAa = 0,

δXAa

δφB
XBb +

δXAb

δφB
XBa = 0,

Y A =
1
2
εab

δXAa

δφB
XBb

δY A

δφB
XBa = 0.

Let

XAa = (Xia
1 , X

αa
2 , Xαab

3 ), Y A = (Y i1 , Y
α
2 , Y

αa
3 ).

Then we obtain for solutions to the above equations

Xia
1 = RiαC

αa,

Xαa
2 = −1

2
FαγβB

βCγa − 1
12

(−1)εβ (2Fαγβ,jR
j
δ + FαγσF

σ
βδ)C

δbCβaCγcεcb,

Xαab
3 = −εabBα − 1

2
(−1)εβFαβγC

γbCβa,

Y i1 = RiαB
α +

1
2

(−1)εαRiα,jR
j
βC

βbCαaεab,

Y a2 = 0, Y αa3 = −2Xαa
2 .

and the closed form of action S = S(φ, φ∗, φ̄) for any irreducible gauge theory of rank 1 with
a closed algebra and initial action S0(A)

S = S0(A) +A∗iaR
i
αC

αa − 1
2
B∗αaF

α
γβB

βCγa − (4.13.97)

− 1
12

(−1)εβB∗αa(2Fαγβ,jR
j
δ + FαγσF

σ
βδ)C

δbCβaCγcεcb − εabC∗αabBα −

−1
2

(−1)εβC∗αabF
α
βγC

γbCβa + ĀiR
i
αB

α +
1
2

(−1)εαĀiRiα,jR
j
βC

βbCαaεab +

+C̄αaFαγβB
βCγa + +

1
6

(−1)εβ C̄αa(2Fαγβ,jR
j
δ + FαγσF

σ
βδ)C

δbCβaCγcεcb.
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Note that the existence of solutions of the extended classical master equations

1
2

(S, S)a + V aS = 0

(for both irreducible and reducible gauge theories!) in the form ( 4.13.96) can be expressed
in terms of global symmetries of action S [99]. Indeed, let us introduce the set of operators
sa(S)

sa(S) = (−1)εA
δS

δφ∗Aa

δl
δφA

+ V a. (4.13.98)

It is not very di�cult to �nd the algebra of these operators

{sa(S), sb(S)} = 0

and to see that the action S is invariant under the following global supertransformations
(extended BRST transformations):

δφA = − δS

δφ∗Aa
µa = −sa(S)φAµa, δφ∗Aa = 0, δφ̄A = µaε

abφ∗Ab = µasa(S)φ̄A.

Therefore, the operators sa(S) should be considered as the symmetry operators of S

sa(S)S = 0.

Now, we shall show that in the class of gauges F (φ) depending only on the initial �elds
Ai

F (φ) = F (A)

the generating functional is reduced to the standard FP result. Indeed, the integration over
variables φ̄A, φ

∗
Aa, λ

A and πAa is trivial and yields

Z(J) =
∫
dφ exp

{
i

~

[
S0(A)− 1

2
εabX

ia
1

δ2F

δAiδAj
Xjb

1 +
δF

δAi
Y i1 + JAφ

A

]}
.

Taking into account the explicit expressions for Xia
1 and Y i1 , we come to

δF

δAi
Y i1 −

1
2
εabX

ia
1

δ2F

δAiδAj
Xjb

1 =

δF

δAi
RiαB

α +
1
2

(−1)εα
(
δF

δAi
Riα,jR

j
β +

δ2F

δAiδAj
RjαR

i
β(−1)εi(εj+εα)

)
CβbCαaεab.

If we introduce the functions

χα =
δF

δAi
Riα

and identify Cα1 ≡ Cα and Cα2 ≡ C̄α, then the functional integral can �nally be written as

Z(J) =
∫
dφ exp

{
i

~
[S0(A) + C̄αχα,iR

i
βC

β + χαB
β + JAφ

A]
}
. (4.13.99)

Eq. ( 4.13.99) is the standard FP result for gauge theories with closed algebra when the gauge
is introduced by means of the functional χα.

In the end of this Chapter we would like to list some problems considered in connection
with the Sp(2)-covariant quantization. A geometric interpretation of the scheme was given
in [123, 110, 201]. Reformulations based on the Schwinger-Dyson extended symmetry were
presented in [68, 69]. Geometry underlying the Sp(2) method was studied in [160]. Quantum
Sp(2) antibrackets were introduced and studied in [34].



Chapter 5

Triplectic Quantization

In the Sp(2) covariant approach one introduces a con�guration space of �elds φA ( 4.1.1).
In addition one needs to introduce to each φA three kinds of anti�elds: Sp(2)-doublet φ∗Aa, a =
1, 2 and Sp(2)-singlet φ̄A. These three kinds of anti�elds are involved in the Sp(2)-method in
a nonsymmetrical way. While the anti�elds φ∗Aa are anticanonically conjugate with respect
to the antibrackets ( 4.2.2), the anti�elds φ̄A have no corresponding conjugated �elds. We
have seen that in order to present a gauge �xing procedure of the Sp(2)-formalism in the
form of a functional integral ( 4.6.21) explicitly, one needs to make use of auxiliary �elds πAa

to parametrize the di�erential operator containing the gauge functional F .
The main idea of the triplectic quantization proposed by Batalin, Marnelius and Semikha-

tov [28, 35, 29] was to consider �elds πAa as anticanonical partners to the anti�elds φ̄A in the
usual sense.

5.1 Con�guration space and extended antibrackets

The starting point of triplectic quantization is the con�guration space of �elds φA, ε(φA) ≡ εA
which coincides with con�guration space of Sp(2) - method. Then to each of φA one introduces
a pair of anti�elds φ∗Aa, a = 1, 2 with opposite statistics ε(φ∗Aa) = εA+1. Next one introduces
a set of pairs of �elds πAa, ε(πAa) ≡ εA + 1. On the space of variables introduced above one
de�nes an extended antibrackets by the rule

(F,G)a ≡
(
δF

δφA
δG

δφ∗Aa
+ εab

δF

δπAb
δG

δφ̄A

)
− (F ↔ G) (−1)(ε(F )+1)(ε(G)+1). (5.1.1)

The extended antibrackets have the properties which formally coincide with properties of
extended antibrackets within the Sp(2) formalism ( 4.2.3).

5.2 Operators V a, ∆a

The operators V a, ∆a are introduced

V a =
1
2

(
εab φ∗Ab

δ

δφ̄A
− (−1)εAπAa

δl
δφA

)
, (5.2.2)
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∆a = (−1)εA
δl

δφA
δ

δφ∗Aa
+ (−1)εA+1εab

δl

δπAa
δ

δφ̄A
. (5.2.3)

It can be readily established that the algebra of operators ( 5.2.2), ( 5.2.3) has the form

V {aV b} = 0, ∆{a∆b} = 0, (5.2.4)

∆aV b + V b∆a = 0. (5.2.5)

The action of the operators ∆a (( 5.2.3)) on a product of functionals F and G gives

∆a(F ·G) = (∆aF ) ·G+ F · (∆aG)(−1)ε(F ) + (F, G)a(−1)ε(F ). (5.2.6)

Eq.( 5.2.6) may be considered as an alternative de�nition of the extended antibracket ( 5.1.1).
The action of the operators V a ( 5.2.2) upon the extended antibrackets is given by the relations

V a(F,G)b = (V aF, G)b − (−1)ε(F )(F, V aG)b. (5.2.7)

Note that de�nition of the operators V a ( 5.2.2) di�ers from the Sp(2) one (see Eq.( 4.3.4)).
As a consequence, formulas ( 5.2.5) and ( 5.2.7) are valid without symmetrizazion in the
indices a and b in comparison with the Sp(2) formalism (see, ( 4.3.6), ( 4.3.8)).

It is usefully to introduce an operator ∆̄a

∆̄a = ∆a +
i

~
V a (5.2.8)

with the properties

∆̄{a∆̄b} = 0. (5.2.9)

5.3 Vacuum functional

The vacuum functional in this approach is de�ned by the rule

Z(0) =
∫
dφdφ∗dπdφ̄dλ exp

{
i

~
(S +X)

}
(5.3.10)

where boson functional S = S(φ, φ∗, π, φ̄; ~) satis�es the following master equations

∆̄a exp
{
i

~
S

}
= 0. (5.3.11)

or, equivalently,

1
2

(S, S)a + V aS = i~∆aS, (5.3.12)

and boson functional X = X(φ, φ∗, π, φ̄, λ; ~) is a hypergauge �xing action depending on new
variables λA, ε(λA) = εA and satis�ng the following quantum equations:

1
2

(X, X)a − V aX = i~∆aX, (5.3.13)

which di�ers from Eq.( 5.3.12) by the opposite sign of the V-term. It is expected that the
classical part of the gauge �xing functional has the form

X|~=0 = GAλ
A +KY (5.3.14)

where GA and Y are functions and K is the di�erential operator

K = εabV
aV b. (5.3.15)
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5.4 Extended BRST symmetry

The vacuum functional ( 5.3.10) possesses an important property of invariance under the
following global transformations

δφA =
(
− δS

δφ∗Aa
+

δX

δφ∗Aa
+ πAa

)
µa,

δφ∗Aa = µa

(
δS

δφA
− δX

δφA

)
,

δφ̄A = µaε
ab

(
δS

δπAb
− δX

δπAb
+ φ∗Ab

)
,

δπAb = εab
(
− δS

δφ̄A
+
δX

δφ̄A

)
µa,

δλA = 0, (5.4.16)

where µa is an Sp(2) doublet of constant anticommuting Grassmann parameters. These
transformations realize in the triplectic quantization the extended BRST transformations in
the space of the variables φ, φ∗, φ̄, πa and λ.

The transformations ( 5.4.16) can be presented in condensed notation

δG = (G, −S +X)aµa + 2µaV aG, (5.4.17)

where G denotes the complete set of variables.

5.5 Gauge independence

If we consider the transformations ( 5.4.16) with µa dependind on G and λ it is not di�cult
to obtain the following representation for vacuum functional

Z(0) =
∫
dφdφ∗dπdφ̄dλ exp

{
i

~

[
S +X − i~(µa, S)a + i~(µa, X)a + 2i~V aµa

]}
(5.5.18)

Let us make an additional change of variables in the integral ( 5.5.18)

δG =
1
2

(G, δFa)a. (5.5.19)

This change gives

Z(0) =
∫
dφdφ∗dπdφ̄dλ exp

{
i

~
[S +X − i~(µa, S)a + i~(µa, X)a +

+2i~V aµa +
1
2

(S, δFa)a +
1
2

(X, δFa)a − i~∆aδFa]
}

(5.5.20)

If we identify

δFa(G) ≡ 2~
i
µa(G, λ) (5.5.21)

then we have

Z(0) =
∫
dφdφ∗dπdφ̄dλ exp

{
i

~

[
S +X + δX

]}
(5.5.22)
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where notation has been introduced

δX = (X, δFa)a − V aδFa − i~∆aδFa. (5.5.23)

One can now check (for detailes, see [28])

(X, δX)a − V aδX = i~∆aδX (5.5.24)

provided δFa is chosen to have the following form

δFa = εab

{
(X, δY )b − V bδY − i~∆bδY

}
. (5.5.25)

On the other hand, any small admissible variation of hypergauge �xing action δX in Eq.(
5.3.10) has to satisfy Eqs.( 5.5.24). It means that one can compensate for a variation of
hypergauge �xing action in vacuum functional by suitable choice of δFa in ( 5.5.19) (or δY
in ( 5.5.25)). Therefore vacuum functional ( 5.3.10) does not depend on the gauge.

5.6 Modi�ed triplectic quantization

Notice that the essential original point of the triplectic quantization consists in dividing the
entire task of constructing the quantum e�ective action into the following two steps: �rst,
the construction of the quantum action S, and second the construction of the corresponding
gauge-�xing functional. Either problem is solved by means of an appropriate master equation.

Despite considering these new ideas as very promising, as to their concrete realization there
exists [96] a di�erent, modi�ed scheme of the triplectic quantuzation, which � especially from
some geometrical viewpoint � changes the meaning of the latter. Namely, remaining in the
same con�guration space of �elds, and accepting the idea of a separate treatment of the two
above mentioned actions, one proposes to change both systems of master equations by using
a new set of two Sp(2)-doublets of generating operators: V a and Ua. Such a modi�cation is
inspired by the experience of the super�eld formulation of the Sp(2) method [144] (see Chapter
7), in which the above operators acquire the geometrical interpretation of the generators of
(super)transformations in a superspace spanned by �elds and anti��elds. In this approach,
the �rst master equation, determining the quantum action S is de�ned by means of the
operators V a, whereas the other master equation determining the gauge �xing functional X,
is de�ned by means of the operators Ua. As in the original triplectic quantization, we may
expect that the generating functional of Green's functions does not depend on the choice
of gauge. It is important to emphasize that within the modi�ed triplectic quantization the
entire information contained in the initial classical action of the theory is conveyed to the
quantum e�ective action via the corresponding boundary conditions. At the same time,
the classical action obeys the �rst modi�ed master equation in complete analogy with all
previously known schemes of Lagrangian quantization. The original triplectic quantization
gives no explicit relation to the initial classical action. If one assumes that such a classical
action occurs, as usual, in the boundary condition to the solution of the master equation
(with vanishing auxiliary �elds and quantum corrections), then this classical action does not
obey the master equation.

Using the same de�nitions of the extended antibrackets ( 5.1.1) and the operators ∆a (
5.2.3), let us introduce the following set of operators V a and Ua:

V a = εabφ∗Ab
δ

δφ̄A
, (5.6.26)

Ua = (−1)εA+1πAa
δl
δφA

. (5.6.27)
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Notice that the operators V a in Eq.( 5.6.26) di�er from the corresponding operators of the
triplectic quantization ( 5.2.2), they coincide, at the same time, with the operators applied
in the framework of the Sp(2) method ( 4.3.4). The use of the operators Ua in Eq.( 5.6.27)
exhibits an essentially new feature as compared to both the Sp(2) method and the triplectic
quantization in its original version [28].

One easily establishes the following algebra of the operators ( 5.2.3), ( 5.6.26), ( 5.6.27):

∆{a∆b} = 0,
V {aV b} = 0,
∆{aV b} + V {a∆b} = 0,
U{aU b} = 0, (5.6.28)

∆{aU b} + U{a∆b} = 0,
V aU b + U bV a = 0,
∆aV b + V b∆a + ∆aU b + U b∆a = 0.

The action of the operators ∆a ( 5.2.3) on the product of any two functionals F , G is given
by Eq.( 5.2.6). The action of each of the operators ∆a, V a and Ua ( 5.2.3), ( 5.6.26) and (
5.6.27) on the extended antibrackets is given by the rule (Da = (∆a, V a, Ua))

D{a(F,G)b} = (D{aF,G)b} − (F,D{aG)b}(−1)ε(F ). (5.6.29)

It is also useful to introduce the operators

∆̄a ≡ ∆a +
i

~
V a, (5.6.30)

∆̃a ≡ ∆a − i

~
Ua. (5.6.31)

From Eqs.( 5.6.28) it follows that the algebra of these operators has the form

∆̄{a∆̄b} = 0,
∆̃{a∆̃b} = 0, (5.6.32)

∆̄{a∆̃b} + ∆̃{a∆̄b} = 0.

Let us denote by S = S(φ, φ∗, π, φ̄) the quantum action, corresponding to the initial
classical theory with the action S0, and de�ned as a solution of the following master equations:

1
2

(S, S)a + V aS = i~∆aS, (5.6.33)

with the standard boundary condition

S|φ∗=φ̄=~=0 = S0. (5.6.34)

Eq.( 5.6.33) can be represented in the equivalent form

∆̄a exp
{
i

~
S

}
= 0. (5.6.35)

Let us further de�ne the vacuum functional as the following functional integral:

ZX =
∫
dφ dφ∗dπ dφ̄ dλ exp

{
i

~
(
S +X + φ∗Aaπ

Aa
)}

, (5.6.36)
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where X = X(φ, φ∗, π, φ̄, λ) is a bosonic functional depending also on the new variables λA,
ε(λ) = εA, which serve as gauge-�xing parameters. We require that the functional X satis�es
the following master equation:

1
2

(X,X)a − UaX = i~∆aX, (5.6.37)

or, equivalently,

∆̃a exp
{
i

~
X

}
= 0. (5.6.38)

Notice that the generating equations determining the quantum action S in Eq.( 5.6.33) (or (
5.6.35)) and the gauge-�xing functional X in Eq.( 5.6.37) (or ( 5.6.38)) di�er�along with the
vacuum functional Z in Eq.( 5.6.36)�from the corresponding de�nitions ( 5.3.12), ( 5.3.13),
( 5.3.10).

One can easily obtain the simplest solution of Eq. ( 5.6.37) (or Eq. ( 5.6.38)) determining
the gauge-�xing functional X

X =
(
φ̄A −

δF

δφA

)
λA − 1

2
εabU

aU bF =

=
(
φ̄A −

δF

δφA

)
λA − 1

2
εabπ

Aa δ2F

δφAδφB
πBb, (5.6.39)

where F = F (φ) is a bosonic functional depending only on the �elds φA. As a straightforward
exercise, one makes sure that the functional X in Eq.( 5.6.39) does satisfy Eq.( 5.6.37). If
we further demand that the quantum action S does not depend on the �elds πA, then the
functional ( 5.6.36) with the gauge functional X in ( 5.6.39) becomes exactly the vacuum
functional of the Sp(2) quantization scheme (see ( 4.6.21).

Let us consider a number of properties inherent in the present scheme of triplectic quan-
tization, i.e. modi�ed according to Eq.( 5.6.33)�( 5.6.38). In the �rst place, the vacuum
functional ( 5.6.36) is invariant under the following transformations:

δG = (G,−S +X)aµa + µa(V a + Ua)G, (5.6.40)

where µa is an Sp(2) doublet of constant anticommuting parameters, and G stands for any of
the variables φ, φ∗, π, φ̄. Eq.( 5.6.40) de�nes the transformations of extended BRST symme-
try, realized on the space of the variables φ, φ∗, π, φ̄. In the particular case, corresponding
to the gauge-�xing boson chosen as in Eq.( 5.6.39), we have

δφA = −
(

δS

δφ∗Aa
− πAa

)
µa, (5.6.41)

δφ∗Aa = µa

(
δS

δφA
+

δ2F

δφAδφB
λB +

1
2

(−1)εAεbcπBb
δ3F

δφBδφAδφC
πCc

)
, (5.6.42)

δπAa = εab
(
δS

δφ̄A
− λA

)
µb, (5.6.43)

δφ̄A = µaε
ab

(
δS

δπAb
+ φ∗Ab

)
+ µa

δ2F

δφAδφB
πBa . (5.6.44)

Consider now the question of gauge dependence in the case of the vacuum functional Z,
Eq.( 5.6.36). Any admissible variation δX should satisfy the equations

(X, δX)a − UaδX = i~∆aδX. (5.6.45)
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It is convenient to consider an Sp(2) doublet of operators Ŝa(X), de�ned by the rule

(X,F )a ≡ Ŝa(X) · F, (5.6.46)

and possessing the properties

Ŝ{a(X)Ŝb}(X) = Ŝ{a
(

1
2

(X,X)b}
)
, (5.6.47)

which follow from the generalized Jacobi identities for extended antibrackets. Eq.( 5.6.45)
can be, consequently, represented in the form

Q̂a(X)δX = 0, (5.6.48)

where we have introduced an Sp(2) doublet of operators Q̂a, de�ned by the rule

Q̂a(X) = Ŝa(X)− i~∆̃a. (5.6.49)

With allowance for Eq.( 5.6.37) the operators Q̂a form a set of nilpotent anticommuting
operators, i.e.

Q̂{a(X)Q̂b}(X) = 0. (5.6.50)

By virtue of Eq.( 5.6.50), any bosonic functional of the form

δX =
1
2
εabQ̂

a(X)Q̂b(X)δY, (5.6.51)

with an arbitrary bosonic functional δY , is a solution of Eq.( 5.6.47). Moreover, by analogy
with the theorems proved in [27], one establishes the fact that any solution of Eq.( 5.6.47)�
vanishing when all the variables in δX are equal to zero�has the form ( 5.6.51), with a certain
bosonic functional δY . In the particular case of the gauge functional X ( 5.6.39), its variation
δX can be easily represented in the form of Eq.( 5.6.51), i.e.

δX = −δ(δF )
δφA

λA − 1
2
εabπ

Aa δ
2(δF )

δφAδφB
πBb = −1

2
εabQ̂

a(X)Q̂b(X)δF (5.6.52)

with δY = −δF .
Let us denote by ZX ≡ Z the value of the vacuum functional ( 5.6.36) corresponding to

the gauge condition chosen as a functional X.
In the vacuum functional ZX+δX we �rst make the change of variables ( 5.6.40), with

µa = µa(G, λ), and then, accompanying it with a subsequent change of variables

δG = (G, δYa)a, ε(δYa) = 1, (5.6.53)

with δYa = −i~µa(G, λ), we arrive at

ZX+δX =
∫
dφ dφ∗dπ dφ̄ dλ exp

{
i

~

(
S +X + δX + δX1 + φ∗Aaπ

Aa

)}
, (5.6.54)

where we have used the notation

δX1 = 2
(

(X, δYa)a − UaδYa − i~∆aδYa

)
= 2Q̂a(X)δYa. (5.6.55)
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Let us choose the functional δYa in the form

δYa =
1
4
εabQ̂

bδY , ε(δY ) = 0. (5.6.56)

Then, representing δX as in Eq.( 5.6.51), and identifying δY = −δY , we �nd that

ZX+δX = ZX , (5.6.57)

i.e. the vacuum functional (and hence, by virtue of the equivalence theorem [135], also the S
matrix) does not depend on the choice of gauge.

Finally notice that investigations of the structure and properties of triplectic quantization
are at starting point only [113, 1, 112, 96].



Chapter 6

Super�eld BRST Quantization

In Section 4, we have presented the BV quantization method [40, 41] which may be applied
for construction of suitable quantum theory for general gauge theories. The antisympletic
manifold of the BV method contains the �elds φA (including the initial classical �elds, the
ghosts, the antighosts and the Lagrangian multipliers) with assigned to them anti�elds φ∗A of
the opposite Grassmann parity, the usual sources JA to the �elds φA and �nally, the auxiliary
�elds λA, introducing the gauge to the theory.

In turn, the Yang�Mills theories permit to realize the BRST symmetry transformations
in superspace [53, 54, 126, 44]. At the same time, the crucial point of the formulations
[53, 54, 126, 44, 130] is the manifest structure of con�guration space of the theories concerned.
On the other hand, no consistent form of Lagrangian quantization rules for general gauge
theories that would enable one to give the BRST transformations a completely geometrical
description has yet been discovered.

The purpose of this Section is formulation of Lagrangian quantization rules [145] within
functional integration technique on the basis of a super�eld approach, revealing the geo-
metrical contents of the BRST symmetry. The functional integration over supervariables is
understood as integration over their components. We also use the usual assumptions of both
gauge invariant regularization and absence of anomalies.

6.1 Superspace, antibracket and operators ∆, U , V

Let us consider superspace D+1, parametrizied by coordinates (xµ, θ); xµ are the space-time
coordinates, µ = (0, 1, . . . , D− 1); θ is a scalar Grassmann coordinate. Let ΦA(θ) be a set of
super�elds and Φ∗A(θ) be a set of the corresponding super-anti�elds

ε(ΦA) ≡ εA, ε(Φ∗A) = εA + 1.

In terms of super�elds and super-anti�elds we de�ne an antibracket by the rule

(F,G) =
∫
dθ

{
δF

δΦA(θ)
∂

∂θ

δG

δΦ∗A(θ)
(−1)εA+1

−(−1)(ε(F )+1)(ε(G)+1)(F ↔ G)
}
, (6.1.1)

101
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where F = F [Φ,Φ∗], G = G[Φ,Φ∗] are arbitrary functionals depending on supervariables.
From the de�nition ( 6.1.1) one can �nd that the antibracket ( 6.1.1) obeys the same properties
that the antibracket in the BV-formalism ( 3.2.36).

Let us also introduce operators ∆, U , V of the form

∆ = −
∫
dθ(−1)εA

δl
δΦA(θ)

∂

∂θ

δ

δΦ∗A(θ)
, (6.1.2)

U = −
∫
dθ
∂ΦA(θ)
∂θ

δl
δΦA(θ)

, (6.1.3)

V = −
∫
dθ
∂Φ∗A(θ)
∂θ

δ

δΦ∗A(θ)
. (6.1.4)

Here, one has to take into account the expressions of the derivatives

δlΦA(θ)
δΦB(θ′)

= (−1)εAδ(θ
′
− θ)δAB = (−1)εA

δΦA(θ)
δΦB(θ′)

,

δΦ∗A(θ)
δΦ∗B(θ′)

= (−1)εA+1δ(θ
′
− θ)δBA ,

following from the de�nition of integration over the Grassmann variable θ∫
dθ θ = 1,

∫
dθ = 0, F (θ) =

∫
dθ
′
δ(θ

′
− θ)F (θ

′
),

δ(θ
′
− θ) = θ

′
− θ.

The algebra of the operators ( 6.1.2), ( 6.1.3), ( 6.1.4) has the form

∆2 = 0 U2 = 0 V 2 = 0,
∆U + U∆ = 0, ∆V + V∆ = 0, UV + V U = 0. (6.1.5)

The action of the operators D = (∆, U, V ) upon the antibracket is given by the following
relation

D(F,G) = (DF,G)− (−1)ε(F )(F,DG). (6.1.6)

Finally, let us introduce the operator ∆

∆ = ∆ +
i

~
V (6.1.7)

with the properties

∆
2

= 0, ∆U + U∆ = 0,
∆(F,G) = (∆F,G)− (−1)ε(F )(F,∆G), (6.1.8)

readily veri�ed with allowance made for Eqs. ( 6.1.5), ( 6.1.6).
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6.2 Generating functional of Green's functions

Now we de�ne the generating functional of Green's functions Z = Z[Φ∗] as a functional
depending on the super-anti�elds in the form

Z[Φ∗] =
∫
dΦ´dΦ∗́ρ[Φ∗́] exp

{
i

~

(
S[Φ´,Φ∗́]

−U´Ψ[Φ´] + (Φ∗́ − Φ∗)Φ
)́}

. (6.2.9)

In Eq.( 6.2.9), S = S[Φ,Φ∗] is a quantum action satisfying the generating equation

∆ exp
{
i

~
S

}
= 0, (6.2.10)

or, equivalently,

1
2

(S, S) + V S = i~∆S, (6.2.11)

Ψ = Ψ[Φ] is a fermion functional introducing the gauge; ~ is the Planck constant. Besides,
the following notations

ρ[Φ∗] = δ

(∫
dθΦ∗(θ)

)
, Φ∗Φ =

∫
dθΦ∗A(θ)ΦA(θ) (6.2.12)

are used.
An important property of the integrand in Eq. ( 6.2.9) for Φ∗ = 0 is its invariance under

the following global supersymmetry transformations with a Grassmann parameter µ:

δΦA(θ) = µ
∂ΦA(θ)
∂θ

,

δΦ∗A(θ) = µ
∂Φ∗A(θ)
∂θ

+ µ
∂

∂θ

δS

δΦA(θ)
. (6.2.13)

In fact, owing to Eqs. ( 6.1.2), ( 6.1.3), ( 6.1.4), ( 6.2.10), ( 6.2.11), the transformations (
6.2.13) yield

δS = µ

(
1
2

(S, S) + (U + V )S
)

= i~µ∆S + µUS, (6.2.14)

δ(Φ∗Φ) = −µUS, δρ[Φ∗] = 0, δ(UΨ) = µU2Ψ = 0,

and the corresponding Berezinian Y is equal to

Y = exp{µ∆S}. (6.2.15)

6.3 Gauge independence

The transformations ( 6.2.13) permit one to establish the fact that the vacuum functional
ZΨ ≡ Z[0] is independent of a choice of the gauge. Indeed, we shall change the gauge by the
rule Ψ → Ψ + δΨ. In the functional integral for ZΨ+δΨ we make the change of variables (
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6.2.13) with the parameter µ = µ[Φ]. By virtue of Eq. ( 6.2.13), the Berezinian Y
′
of the

change of variables in question reads

Y
′

= exp{µ∆S − Uµ}, (6.3.16)

hence the set of variables Φ´ = Φ + δΦ, Φ∗́ = Φ∗ + δΦ∗ is equivalent to the initial set Φ, Φ∗.
Owing to Eqs. ( 6.2.14), ( 6.2.15) ZΨ+δΨ takes on the form

ZΨ+δΨ =
∫
dΦ dΦ∗ρ[Φ∗] exp

{
i

~

(
S[Φ,Φ∗]− UΨ[Φ]

−U(δΨ[Φ]− i~µ[Φ]) + Φ∗Φ
)}

. (6.3.17)

Then, choosing for the parameter µ the functional

µ = − i
~
δΨ , (6.3.18)

we �nd that ZΨ+δΨ = ZΨ and conclude that the S-matrix is gauge independent. Note that
by virtue of the de�nitions ( 6.1.1), ( 6.1.3), ( 6.1.4), the transformations ( 6.2.13) take on
the form

δΦA(θ) = µUΦA(θ) ,

δΦ∗A(θ) = µV Φ∗A(θ) + µ

(
S,Φ∗A(θ)

)
. (6.3.19)

Eq. ( 6.3.19) implies that from the geometrical viewpoint the operators U and V ( 6.1.3),
( 6.1.4) can be considered as generators of supertranslations realized on the supervariables
ΦA(θ) and Φ∗A(θ) respectively.

6.4 Ward identity

Another consequence of the validity of the transformations ( 6.2.13) are the Ward identities
for the generating functional of Green's functions. In fact, making in the functional integral
( 6.2.9) the change of variables ( 6.2.13) and taking Eqs. ( 6.2.14), ( 6.2.15) into account, we
arrive at the relation ∫

dΦ´dΦ∗́ρ[Φ∗́]
∫
dθ
∂Φ∗A(θ)
∂θ

ΦÁ(θ) exp
{
i

~

(
S[Φ´,Φ∗́]

−U´Ψ[Φ´] + (Φ∗́ − Φ∗)Φ
)́}

= 0 , (6.4.20)

representable, with allowance made for Eqs. ( 6.1.4), ( 6.2.9), in the form

−
∫
dθ
∂Φ∗A(θ)
∂θ

δ

δΦ∗A(θ)
Z[Φ∗] = V Z[Φ∗] = 0 . (6.4.21)

Geometrically, the Ward identities ( 6.4.21) imply the fact that the functional Z[Φ∗] is in-
variant under supertranslations of Φ∗A with respect to the coordinate θ.
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It appears very important to establish a relation between the super�eld approach in ques-
tion and the BV quantization rules. To this end, note that the components of super�elds
ΦA(θ) and super-anti�elds Φ∗A(θ) are de�ned by expansions in θ

ΦA(θ) = φA + λAθ , Φ∗A(θ) = φ∗A − θJA , (6.4.22)

ε(φA) = ε(JA) = εA , ε(φ∗A) = ε(λA) = εA + 1

and coincide with the set of variables in the BV quantization scheme (the choice of signs in
Eq. ( 6.4.22) is due to considerations of convenience).

6.5 Component representation

Consider by virtue of Eq. ( 6.4.22) the component form of the basic de�nitions and relations
given above.

First, the antibracket ( 6.1.1) and the operator ∆ ( 6.1.2) can be represented in terms of
the component �elds as follows

(F,G) =
δF

δφA
δG

δφ∗A
− (−1)(ε(F )+1)(ε(G)+1)(F ↔ G) , (6.5.23)

∆ = (−1)εA
δl
δφA

δ

δφ∗A
. (6.5.24)

Eqs. ( 6.5.23), ( 6.5.24) coincide with the usual de�nitions of the antibracket and the operator
∆ in the framework of the BV quantization method (see Eqs. ( 3.2.35), ( 3.2.41)).

Second, the corresponding component expressions for the operators U , V ( 6.1.3), ( 6.1.4)
read

U = −(−1)εAλA
δl
δφA

, (6.5.25)

V = −JA
δ

δφ∗A
. (6.5.26)

In virtue of Eqs. ( 6.5.23), ( 6.5.25), ( 6.5.26) we �nd that the transformations ( 6.2.13)
(or, equivalently, ( 6.3.19)) take on the form

δφA = λAµ, δλA = 0,

δφ∗A = µ

(
δS

δφA
− JA

)
, δJA = 0. (6.5.27)

Note that for J = 0 the component form ( 6.5.27) of Eqs. ( 6.2.13), ( 6.3.19) coincides
formally with the BRST transformations ( 3.5.46) in the BV quantization scheme. In this
connection, Eqs. ( 6.2.13), ( 6.3.19) may be considered as a super�eld form of the BRST
symmetry transformations.

Next, making use of Eq. ( 6.5.26), one readily obtains the component representation of
the Ward identities ( 6.4.21) for the functional Z(J, φ∗) ≡ Z[Φ∗]

JA
δ

φ∗A
Z(J, φ∗) = 0. (6.5.28)
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It should also be pointed out that Eq. ( 6.5.28) realizes the usual form of the Ward identities
for gauge theories.

All things considered, the connection between the super�eld approach concerned and the
BV quantization scheme is then established as follows. To begin with, note that owing to Eqs.
( 6.2.12), ( 6.4.22), the integration measure in Eq. ( 6.2.9) is given in terms of the component
variables by

dΦ dΦ∗ ρ(Φ∗) = dφ dφ∗ dλ dJ δ(J), (6.5.29)

and the component representation of the functional Φ∗Φ ( 6.2.12) reads

Φ∗AΦA = φ∗Aλ
A − JAφA . (6.5.30)

It turns out to be su�cient for our purpose to con�ne ourselves to a special choice
of solution to the generating equation ( 6.2.11) in the form of a functional S = S[Φ,Φ∗]
independent on the variables λA

δS

δλA
=
∫
dθ θ

δS

δΦA(θ)
= 0

and linear in JA

S[Φ,Φ∗] = S(φ, φ∗) + JAφ
A, (6.5.31)

where S = S(φ, φ∗) satis�es the usual QME ( 3.3.41)

1
2

(S, S) = i~∆S. (6.5.32)

Let us now choose the boundary condition to Eq. ( 6.5.32) in the form

S
∣∣
Φ∗=~=0

= S0, (6.5.33)

where S0 is a classical gauge invariant action (note that Eq. ( 6.5.33) is compatible with the
generating equation ( 6.2.11)). Then, making use of Eqs. ( 6.5.25), ( 6.5.29), ( 6.5.30) and
supposing Ψ = Ψ(φ), we arrive at the following representation of the generating functional of
Green's functions Z = Z(J) for the �elds φA

Z(J) = Z[Φ∗]|φ∗=0 =
∫
dφ dφ∗ dλ exp

{
i

~

[
S(φ, φ∗)

+
(
φ∗A −

δΨ
δφA

)
λA + JAφ

A

]}
. (6.5.34)

The above relation de�nes, with allowance made for Eqs. ( 6.5.31)�( 6.5.33), the generating
functional of Green's functions in the framework of the BV quantization formalism.

6.6 Generalization of gauge �xing

Note that there exists [97] generalization of gauge �xing procedure within super�eld BRST
quantization which allows to present the BRST transformations in more symmetrical way
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and simultaneously to povide a natural generalization of the BV-formalism. To this end, we
de�ne the vacuum functional Z as the following functional integral:

Z =
∫
dΦ dΦ∗ρ[Φ∗] exp

{
i

~

(
S[Φ,Φ∗] +X[Φ,Φ∗] + Φ∗Φ

)}
. (6.6.35)

Here, S = S[Φ,Φ∗] obeys the generating equation ( 6.2.11) while the (bosonic) gauge-�xing
functional X = X[Φ,Φ∗] is required to satisfy the equation

1
2

(X,X)− UX = i~∆X. (6.6.36)

We have used the same de�nitions of antibracket ( , ) ( 6.1.1), operators ∆ ( 6.1.2), U (
6.1.3), V ( 6.1.4) and the weight functional ρ[Φ∗] ( 6.2.12).

It is convenient to recast the equations ( 6.2.11), ( 6.6.36) into the equivalent form

∆̄ exp
{
i

~
S

}
= 0, (6.6.37)

∆̃ exp
{
i

~
X

}
= 0, (6.6.38)

using the operators

∆̄ = ∆ +
i

~
V, ∆̃ = ∆− i

~
U, (6.6.39)

whose algebra reads as follows:

∆̄2 = 0, ∆̃2 = 0, ∆̄∆̃ + ∆̃∆̄ = 0. (6.6.40)

Using the nilpotency of the operator U , we observe that any functional X = UΨ[Φ], with
Ψ[Φ] being an arbitrary fermionic functional, is obviously a solution of Eq. ( 6.6.36). The
above expression gives the precise form of the gauge-�xing functional proposed in ( 6.2.9)
when formulating the rules of super�eld BRST quantization.

A remarkable property of the integrand in ( 6.6.35) is its invariance under the following
transformations of global supersymmetry with an anticommuting parameter µ:

δΦA(θ) = µUΦA(θ) + (ΦA(θ), X −W )µ,
δΦ∗A(θ) = µV Φ∗A(θ) + (Φ∗A(θ), X −W )µ. (6.6.41)

Eqs. ( 6.6.41) being symmetrical ones are the transformations of BRST symmetry in the
framework of super�eld quantization based on the gauge-�xing functional X introduced as a
solution of the corresponding generating equation ( 6.6.36).

It is not di�cult to prove the gauge-dependence of the vacuum functional Z, Eq. ( 6.6.35).
Note, in the �rst place, that any admissible variation δX of the gauge-�xing functional X
should satisfy the equation

(X, δX)− UδX = i~∆δX,

which can be represented in the form

Q̂(X)δX = 0. (6.6.42)
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Here, we have introduced the graded linear, nilpotent operator Q̂(X),

Q̂(X) = B̂(X)− i~∆̃, Q̂2(X) = 0, (6.6.43)

where B̂(X) stands for an operator acting by the rule

(X,F ) ≡ B̂(X)F, (6.6.44)

and possessing the property

B̂2(X) = B̂
(

1
2

(X,X)
)
. (6.6.45)

By the nilpotency of the operator Q̂(X), any functional of the for

δX = Q̂(X)δΨ, (6.6.46)

with δΨ being an arbitrary fermionic functional, obeys the equation ( 6.6.42). Furthermore,
as in the theorems proved by the study of [25, 27], one can establish the fact that any solution
δX of Eq. ( 6.6.42), vanishing when all the variables entering δX are equal to zero, has the
form ( 6.6.46), with a certain fermionic functional δΨ.

Let ZX ≡ Z be the value of the vacuum functional ( 6.6.35) related to the gauge condition
chosen as a functional X. In the vacuum functional ZX+δX we now make the change of
variables ( 6.6.41) with a functional µ = µ[Φ,Φ∗], accompanied by an additional change

δΦA = (ΦA, δY ), δΦ∗A = (Φ∗A, δY ), ε(δY ) = 1, (6.6.47)

where δY = −i~µ[Φ,Φ∗]. We obtain

ZX+δX =
∫
dΦ dΦ∗ρ[Φ∗] exp

{
i

~

(
S +X + δX + δX1 + Φ∗Φ

)}
. (6.6.48)

In ( 6.6.48), we have denoted

δX1 = 2
(

(X, δY )− UδY − i~∆δY
)

= 2Q̂(X)δY. (6.6.49)

Let the functional δY be chosen in the form (recall that δX = Q̂(X)δΨ)

δY = −1
2
δΨ. (6.6.50)

Thereby we �nd

ZX+δX = ZX , (6.6.51)

which implies the fact that the vacuum functional (and, hence, the S-matrix, by the equiva-
lence theorem [135]) does not depend on the gauge.

In component form, restricting ourselves to functionals S independent of λA, and taking
into account ( 6.2.12), we arrive at the following representation of the vacuum functional in
Eq. ( 6.6.35):

Z =
∫
dφ dφ∗ dλ exp

{
i

~

[
S(φ, φ∗) +X(φ, φ∗, λ) + φ∗Aλ

A

]}
, (6.6.52)
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where S = S(φ, φ∗) obeys the QME ( 3.3.41).
The above result may be considered as an extention of the BV quantization procedure [39]

to a more general case of gauge-�xing. In fact, as stated above, the functional X = UΨ[Φ]
is a solution of the generating equation ( 6.6.36). From the component representation of the
operator U

U = −(−1)εAλA
δl
δφA

,

provided the functional Ψ is independent of the �elds λA, Ψ = Ψ(φ), it follows that the
gauge-�xing functional X

X(φ, λ) = −δΨ(φ)
δφA

λA

becomes identical with the gauge applied by the BV quantization method, thus leading to
the usual expression for the vacuum functional

Z =
∫
dφ dφ∗ dλ exp

{
i

~

[
S(φ, φ∗) +

(
φ∗A −

δΨ
δφA

)
λA
]}
. (6.6.53)

It is well-known that the fermionic functional Ψ can always be chosen so as to ensure the non-
degeneracy of ( 6.6.53), which implies the fact that there always exists at least one permissible
choice of gauge (i.e. satisfying the generating equation ( 6.6.36)) which leads to the correct
vacuum functional in ( 6.6.35).

Note that there has been a fairly large amount of papers [130, 58, 59, 145, 2, 133, 97]
devoted to various super�eld extensions of the BV-quantization method for gauge theories.
Thus, in [130, 58, 133] a superspace formulation of the action and BRST transformations for
Yang-Mills theories was found; in [2] a super�eld representation of the generating operator ∆
in the BV-method was suggested; in [59] a superspace formulation of the BV-formalism was
given, in [145, 97] a closed super�eld form of the BV quantization method [39] was obtained.
In the study of [21, 22], a super�eld quantization in canonical formalism has been proposed.

Recall once again that the Lagrangian quantization rules for general gauge theories on a
basis of a super�eld realization of the standard BRST symmetry [145] allow to consider both
the BRST transformations and the Ward identities from geometrical point of view. The Ward
identities ( 6.4.21) imply the invariance of the generating functional Z[Φ∗] under translations
in superspace (xµ, θ) with respect to the Grassmann coordinate θ. The BRST transformations
of �elds are realized in the form of translantions in superspace along the coordinate θ.



Chapter 7

Super�eld extended BRST Quantization

In this Chapter we will demonstrate a possibility to construct for general gauge theories
a super�eld covariant quantization [144] based on the BRST-antiBRST invariance principle.

7.1 Superspace, extended antibrackets, operators ∆a, V a,

Ua

As usually, the condensed notations by De Witt [75] are used. Scalar anticommuting coordi-
nates θa form an Sp(2)�doublet. Lowering the Sp(2) indices is given by the rule θa = εabθ

b.
Derivatives with respect to θa are understood as the left-hand ones. Integration over θa is
given by ∫

d2θ = 0,
∫
d2θ θa = 0,

∫
d2θ θaθb = εab.

For any function f(θ) the equalities hold∫
d2θ

∂f(θ)
∂θa

= 0.

Any function of θ can be represented in the form

f(θ) = f0 + faθ
a +

1
2
f3θaθ

a.

Now let us introduce a superspace with coordinates (xµ, θa), where xµ (µ = 0, 1, ..., d− 1)
are the space-time coordinates and θa (a = 1, 2) are anticommuting scalar coordinates. Let
ΦA(θ), ε(ΦA(θ)) ≡ εA be a set of super�elds with the following restriction

ΦA(θ)
∣∣
θ=0

= φA,

where φA are the �elds of con�guration space in the Sp(2)�covariant Lagrangian quantiza-
tion [25, 26]. With each super�eldΦA(θ) we associate one supersource Φ̄A(θ) of the same
Grassmann parity

ε(Φ̄A(θ)) = εA.

110
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In terms of supervariables ΦA(θ), Φ̄A(θ) we de�ne for any functionals F = F (Φ, Φ̄), G =
G(Φ, Φ̄) the super-antibrackets

(F,G)a =
∫
d2θ

{
δF

δΦA(θ)
(−1)εA+1 ∂

∂θa

δG

δΦ̄A(θ)
(7.1.1)

−(F ↔ G)(−1)(ε(F )+1)(ε(G)+1)

}

which have the algebraic properties coinciding with properties of the extended antibrackets
in the Sp(2)-formalism ( 4.2.2).

Let us introduce the operators ∆a, V a and Ua by the rule

∆a = −
∫
d2θ

δl

δΦA(θ)
∂

∂θa

δ

δΦ̄A(θ)
, (7.1.2)

V a =
∫
d2θ

∂Φ̄A(θ)
∂θa

δ

δΦ̄A(θ)
, (7.1.3)

Ua =
∫
d2θ

∂ΦA(θ)
∂θa

δl
δΦA(θ)

. (7.1.4)

Operators V a and Ua have simple geometrical interpretation in terms of representation of
the translation operators along Grassmann variables θa realized on supervariables Φ∗A and
ΦA respectively.

One can easily check that the algebra of the operators ( 7.1.2), ( 7.1.3), ( 7.1.4) coin-
cides with the algebra of correspoinding operators used in the modi�ed version of triplectic
quantization ( 5.6.28) while the action of these operators Da = (∆a, V a, Ua) upon the super-
antibrackets is given by the relations ( 5.6.29).

It is also convenient to introduce the extended operators ∆̄a

∆̄a = ∆a +
i

~
V a. (7.1.5)

These operators satisfy the relations

∆̄{a∆̄b} = 0. (7.1.6)

7.2 Generating functional of Green's functions

The basic object of the super�eld quantization in question is the quantum action S = S(Φ, Φ̄).
We require S to be a solution to the following generating equations

∆̄a exp
{
i

~
S

}
= 0

or, equivalently,

1
2

(S, S)a + V aS = i~∆aS. (7.2.7)



112

The generating functional of the Green functions Z = Z(Φ̄) for super�elds ΦA(θ) we de�ne
as

Z(Φ̄) =
∫

[dΦ′][dΦ̄′]ρ(Φ̄′) exp
{
i

~

[
S(Φ′, Φ̄′) + Φ̄′Φ′− (7.2.8)

− 1
2
εabU

′aU ′
b
F (Φ′)− Φ̄Φ′

]}
,

where F (Φ) is the boson gauge functional, ρ(Φ̄) is the weight functional having the form of
functional δ�function

ρ(Φ̄) = δ

(∫
d2θ Φ̄(θ)

)
, (7.2.9)

and the notation

Φ̄Φ ≡
∫
d2θ Φ̄A(θ)ΦA(θ) (7.2.10)

is used.

7.3 Extended BRST symmetry and gauge independence

The introduced above generating functional ( 7.2.8) possesses two important properties.
Firstly, the integrand in ( 7.2.8) for Φ̄ = 0 is invariant under the transformations of global
supersymmetry

δΦA(θ) = µa
∂ΦA(θ)
∂θa

, ε(µa) = 1, (7.3.11)

δΦ̄A(θ) = µa
∂Φ̄A(θ)
∂θa

+ µa
∂

∂θa

δS

δΦA(θ)
(7.3.12)

on account of the generating equations ( 7.2.7) and invariance of the weight functional ( 7.2.9)
under the transformations ( 7.3.12)

δρ(Φ̄) = 0. (7.3.13)

In ( 7.3.11), ( 7.3.12) µa is a Sp(2)�doublet of the constant anticommuting Grassmann pa-
rameters. Secondly, the vacuum functional Z(0) does not depend on a choice of the gauge
boson F within the super�eld scheme proposed ( 7.2.7), ( 7.2.8), ( 7.2.9). Indeed, suppose
ZF ≡ Z(0). We shall change the gauge F (Φ)→ F (Φ) + δF (Φ). In the functional integral for
ZF+δF we make the change of variables ( 7.3.11), ( 7.3.12), choosing for the parameters µa

µa = − i

2~
εabU

bδF (Φ).

Taking into account properties of Ua, ( 7.2.7) and ( 7.3.13), we �nd that

ZF+δF = ZF (7.3.14)

and, hence, the S�matrix is gauge-invariant.



113

The transformations ( 7.3.11), ( 7.3.12) realize the BRST- and antiBRST- symmetry in
the super�eld approach to quantum gauge theory. Allowing for ( 7.1.1), ( 7.1.3), ( 7.1.4) one
can rewrite these transformations in the form

δΦA(θ) = µaU
aΦA(θ), (7.3.15)

δΦ̄A(θ) = µaV
aΦ̄A(θ) + µa(W, Φ̄A(θ))a. (7.3.16)

From ( 7.3.15), ( 7.3.16) we conclude that the BRST-antiBRST transformations are realized
as supertranslations in the θa�directions on supervariables ΦA(θ). This gives a geometric
interpretation of the BRST- and antiBRST- symmetry for arbitrary gauge theory.

7.4 Ward identities

The invariance of the vacuum functional Z(0) under the BRST- and antiBRST- transforma-
tions leads to the presence of gauge Ward identities. Let us consider the derivation of these
identities. To do this we shall use the standard assumptions on functional integral properties,
in particular,∫

[dΦ][dΦ̄]ρ(Φ̄)
δF (Φ, Φ̄)

δΦ
= 0,

∫
[dΦ][dΦ̄]ρ(Φ̄)

δF (Φ, Φ̄)
δΦ̄

= 0. (7.4.17)

Taking into account the explicit form of the operators ∆̄a and ( 7.4.17), we have the following
equalities ∫

[dΦ′][dΦ̄′]ρ(Φ̄′)∆̄′a exp
{
i

~
[S(Φ′, Φ̄′) + Φ̄′Φ′− (7.4.18)

− 1
2
εabU

′aU ′
b
F (Φ′)− Φ̄Φ′]

}
= 0.

Let us act on the exponential by the operators ∆̄a and take into account the algebra of the
operators ∆a, V a, Ua ( 5.6.28) and ( 7.2.7). We obtain

V aZ(Φ̄) = 0. (7.4.19)

Equations ( 7.4.19) represent the super�eld form of Ward identities for generating functional
of Green functions.

From ( 7.4.19) one can establish a new (geometric) interpretation of the Ward identities in
quantum gauge theory. Indeed, the Ward identities express the invariance of the generating
functionals Z under supertranslations in the θa�directions.

7.5 Component representation

It is useful to compare the suggested super�eld extended BRST quantization for general gauge
theories with the Sp(2)�covariant Lagrangian quantization [25, 26, 27] considered in Section
4 and with the triplectic quantization presented in Section 5. To this end, we present, �rst
of all, the above super�eld quantization scheme in the component form.
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For the supervariables ΦA(θ) and Φ̄A(θ) we shall use the following notations in the θa�
expansions

ΦA(θ) = φA + πAaθa +
1
2
λAθaθ

a,

ε(πAa) = εA + 1, ε(λA) = εA,

Φ̄A(θ) = φ̄A − θaφ∗Aa −
1
2
θaθ

aJA,

ε(φ∗Aa) = εA + 1, ε(JA) = εA.

Then the operators ∆a ( 7.1.2), V a ( 7.1.3), Ua ( 7.1.4) and the super-antibrackets ( 7.1.1)
have the form

(F,G)a =
δF

δφA
δG

δφ∗Aa
+ εab

δF

δπAb
δG

δΦ̄A
− (7.5.20)

−(F ↔ G) (−1)(ε(F )+1)(ε(G)+1),

∆a = (−1)εA
δl

δφA
δ

δφ∗Aa
+ (−1)εA+1εab

δl

δπAb
δ

δφ̄A
, (7.5.21)

V a = εabφ∗Ab
δ

δφ̄A
− JA

δ

δφ∗Aa
, (7.5.22)

Ua = (−1)εAεabλA
δl

δπAb
− (−1)εAπAa

δl

δφA
. (7.5.23)

From ( 7.5.20), ( 7.5.21) there follow the de�nitions of super-antibrackets and ∆a used in con-
struction of the super�eld extended BRST quantization lead to analogous objects of triplectic
quantization ( 5.1.1), ( 5.2.3).

In the component form the gauge-�xing action reads

1
2
εabU

aU bF (Φ) =
1
2
εabπ

Aa δ2F

δφAδφB
πBb +

δF

δφA
λA − (7.5.24)

−1
2
εabλA

δ2F

δπAaδπBb
λB + πAa

δ2F

δφAδπBa
λB .

For the functional Φ̄Φ ( 7.2.10), we have

Φ̄Φ = φ̄Aλ
A + φ∗Aaπ

Aa − JAφA.

The integration measure

[dΦ][dΦ̄]ρ(Φ̄) = [dφ][dφ∗][dπ][dφ̄][dλ][dJ ]δ(J) (7.5.25)

coincides, in fact, with the measures in functional integrals of the Sp(2)�quantization [25, 26,
27] and the triplectic quantization [28, 35, 96].

One can now readily establish a connection with both the Sp(2)-covariant quantization.
To do this, we note that due to the special form of the integration measure ( 7.5.25) it
is su�cient to consider a solution to the generating equations ( 7.2.7) when JA = 0 and
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to require, in addition, that the functional S be independent on the variables πAa, λA,
i.e. S = S(φ, φ∗, φ̄). From component representations ( 7.5.20), ( 7.5.21), ( 7.5.22) we can
conclude that the functional S = S(φ, φ∗, φ̄) satis�es the generating equations of the Sp(2)�
covariant quantization method. Choose the gauge �xing functional F as to depend on the
variables φA only

F = F (φ).

Next, suppose that the boundary condition for S(φ, φ∗, φ̄) has the form

S(φ, φ∗, φ̄) |φ∗=φ̄=~=0= S0, (7.5.26)

where S0 is a classical gauge invariant action. Then we �nd in ( 7.2.8) the exact form of the
generating functional of Green functions in the Sp(2)�covariant quantization.

In turn, let us consider the case when S does not depend on λA and JA = 0. Then the
action S = S(φ, φ∗, π, φ̄) satis�es the generating equations of modi�ed triplectic quantiza-
tion ( 5.6.33). Note that the action X = 1

2εabU
aU bF (Φ) ( 7.5.24) satis�es the generating

equations for gauge �xing functional ( 5.6.37) within the modi�ed triplectic method. Then
the generating fuctional in ( 7.2.8) presents the functional ( 5.6.36) corresponding to special
choice of the gauge in the modi�ed triplectic formalism.

The form ( 7.4.19) of the Ward identities for Z(Φ̄), rewritten in terms of the components

JA
δZ

δφ∗Aa
− εabφ∗Ab

δZ

δφ̄A
= 0, (7.5.27)

coincides with the one derived in [25].
The BRST-antiBRST symmetry transformations ( 7.3.11), ( 7.3.12) (or, equivalently, (

7.3.15), ( 7.3.16)) for arbitrary gauge theories acquire, within the super�eld formalism, a clear
geometric meaning, since they are realized as supertranslations in superspace (xµ, θa) along
the Grassmann coordinates θa.

The super�eld description provides a new outlook of the Ward identities in the quantum
theory of gauge �elds, thus revealing their geometric contents. Indeed, the identities ( 7.4.19)
for the generating functional of Green's functions Z = Z(Φ̄) are nothing but the fact that Z
is invariant under supertranslations in superspace. Also revealed are the role and geometric
origin of the operators V a, Ua which realize the supertranslations in terms of the variables
ΦA(θ), Φ̄A(θ).



Chapter 8

osp(1,2)�Covariant Quantization

In Chapter 4 we have presented the general method for quantizing gauge theories in the
Lagrangian formalism proposed in [25, 26, 27] which is based on extended BRST symmetry,
i.e. simultaneous invariance under both BRST and antiBRST transformations.

Although this formalism is seemingly manifestly Sp(2)-covariant, among the solutions
of the master equations, despite those allowed by the above requirements, there are both
Sp(2)-symmetric and Sp(2)-nonsymmetric ones. The symmetric solutions may be singled out
by the explicit requirement of invariance under Sp(2) transformations by additional master
equations whose generating di�erential operators ∆̄α (α = 0,+,−) are related to the gen-
erators of the symplectic group Sp(2). The algebra of these operators may be chosen to
obey the orthosymplectic superalgebra osp(1, 2). Moreover, if also massive �elds should be
considered to circumvent possible infrared singularities occuring in the process of subtracting
ultraviolet divergences, without breaking the extended BRST symmetry, then this algebra
appears necessarily. Let us also mention that the osp(1, 2) superalgebra is present in many
problems in which N = 1 superconformal symmetry is involved; e.g. in the minimal N = 1
superconformal models this symmetry appears in the light-cone approach to two-dimensional
supergravity [169].

The goal of the present Chapter will be to generalize the Sp(2) - quantization procedure to
another one being osp(1, 2)-covariant [98, 99] and to get an answer on the intrigue question:
What happens if we extend in a non-trivial way the usual algebra of generating operators
∆a in the Sp(2) formalisn to that when the fundamental property of nilpotency for every
operator ∆̄a, a = 1, 2 will be lost?. We will show that an answer to this question consists
in the concluzion of gauge independence violation of the S-matrix when the characteristic
parameter destroying the nilpotency of ∆̄a, a = 1, 2 is not equal to zero.

8.1 New algebraic structure

The total con�guration space φA of osp(1, 2) coincides with the con�guration space of Sp(2)
method (see ( 4.1.1)). To realize the osp(1, 2) symmetry, one needs, except anti�elds φ∗Aa and
φ̄A, also to introduce additional variables ηA, ε(ηA) ≡ εA.

Now let us introduce the extended antibrackets (F,G)a in the same manner as in the

116



117

Sp(2)-formalism Eqs.( 4.2.2) and a new even graded algebraic structure {F,G}α by the rule

{F,G}α = (σα) A
B

(
δF

δφA
δG

δηB
+ (−1)ε(F )ε(G) δG

δφA
δF

δηB

)
, (8.1.1)

where we used the following notations

(σα)BA ≡ (σα)ba(P+)BaAb . (8.1.2)

Here, we have introduced the matrix (P+)BaAb

(P+)BaAb ≡ {δijδab (ifA = i, B = j); δβ0
α0
δab (ifA = α0, B = β0);

δβ0
α0

(δab δ
a0
b0

+ δaa0
δb0b ) (ifA = α0a0, B = β0b0); 0 (otherwise)}, (8.1.3)

and the matrices σα(α = 0,+,−) ,which are de�ned by the rule

(σ0)ba =
(
−1 0
0 1

)
, (σ+)ba =

(
0 0
1 0

)
, (σ−)ba =

(
0 1
0 0

)
.

From the de�nitions ( 4.2.2) and ( 8.1.1) it follows

ε({F,G}α) = ε(F ) + ε(G), {F,G}α = {G,F}α(−1)ε(F )ε(G),

ε((F,G)a) = ε(F ) + ε(G) + 1, (F,G)a = −(G,F )a(−1)(ε(F )+1)(ε(G)+1), (8.1.4)

i.e. {F,G}α ((F,G)a) de�nes an even (odd) graded bracket. Furthermore, it holds

{F,GH}α = {F,G}αH +G{F,H}α(−1)ε(F )ε(G),

(F,GH)a = (F,G)aH +G(F,H)a(−1)(ε(F )+1)ε(G), (8.1.5)

i.e. both brackets act on the algebra of functions under multiplications.
Next, one can arrive at the following Jacobi identities satis�ed by two brackets:

{{F,G}[α, H}β](−1)ε(F )ε(H) + cyclic(F,G,H) ≡ 0, (8.1.6)

((F,G){a, H)b}(−1)(ε(F )+1)(ε(H)+1) + cyclic(F,G,H) ≡ 0, (8.1.7)(
{(F,G)a, H}α − ({F,G}α, H)a(−1)ε(G)

)
(−1)ε(F )(ε(H)+1) + (8.1.8)

+cyclic(F,G,H) ≡ 0.

where the square (curly) bracket means antisymmetrization (symmetrization) in the indices α
and β (a and b), respectively. Identities ( 8.1.8) are usual Jacobi ones for extended antibrackets
while Eqs.( 8.1.6), ( 8.1.9) present new type of Jacobi identities in this formalism.

Then the operators ∆̄a
m, ∆̄α are introduced

∆̄a
m = ∆a +

i

~
V am, ∆̄α = ∆α +

i

~
Vα, (8.1.9)

where we used the notations

∆a = (−1)εA
δl
δφA

δ

δφ∗Aa
, ∆α = (−1)εA(σα) A

B

δl
δφA

δ

δηB
. (8.1.10)

V am = εabφ∗Ab
δ

δφ̄A
− ηA

δ

δφ∗Aa
+m2(P+)BaAb φ̄B

δ

δφ∗Ab
−m2εab(P−)BcAbφ

∗
Bc

δ

δηA
(8.1.11)
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Vα = φ̄B(σα)BA
δ

δφ̄A
+
(
φ∗Ab(σα)ba + φ∗Ba(σα)BA

) δ

δφ∗Aa
+ ηB(σα)BA

δ

δηA
(8.1.12)

and the following abbrevations:

(P−)BaAb ≡ (P+)BaAb − (P+)BAδ
a
b + δBAδ

a
b , (P+)BA ≡ δba(P+)BaAb .

It is known that the extended antibrackets, being odd graded, may be exstracted from
the action of second-order operators ∆a on a product of two functionals F and G

∆a(FG) = (∆aF )G+ F (∆aG)(−1)ε(F ) + (F,G)a(−1)ε(F ).

A similar statement is valid for the new even graded brackets ( 8.1.1)

∆α(FG) = (∆αF )G+ F (∆αG) + {F,G}α

in contrast with the Poisson bracket which is the even graded bracket de�ned on a phase
space but for which does not exist a creating operator in the sence discussed here. The
reason is di�erent symmetry properties of these two kinds of brackets: the Poisson bracket is
antisymmetrical while new brackets are symmetrical.

From de�nitions ( 8.1.10), ( 8.1.11), ( 8.1.12) one can straightforwardly derive the following
algebra of operators ∆a,∆α, V

a
m, Vα

[∆α,∆β ] = 0, {∆a,∆b} = 0, [∆α,∆a] = 0, (8.1.13)

[Vα, Vβ ] = ε γ
αβ Vγ , {V am, V bm} = −m2(σα)abVα, [Vα, V am] = V bm(σα) ab . (8.1.14)

[∆α, Vβ ] + [Vα,∆β ] = ε γ
αβ ∆γ , (8.1.15)

{∆a, V bm}+ {V am,∆b} = −m2(σα)ab∆α, (8.1.16)

[∆α, V
a
m] + [Vα,∆a] = ∆b(σα) ab . (8.1.17)

Applying the identities ( 8.1.13) � ( 8.1.17) to a product of two functions F and G, one
can ectablish the following relations which de�ne the action of the operators ∆a, ∆α, V

a
m and

Vα upon the brackets:

∆[α{F,G}β] = {∆[αF,G}β] + {F,∆[αG}β],

∆{a(F,G)b} = (∆{aF,G)b} + (F,∆{aG)b}(−1)ε(F )+1,

∆α(F,G)a −∆a{F,G}α(−1)ε(F ) = (∆αF,G)a + (F,∆αG)a −
−{∆aF,G}α(−1)ε(F ) − {F,∆aG}α,

V[α{F,G}β] = ε γ
αβ {F,G}γ + {V[αF,G}β] + {F, V[αG}β],

V {am (F,G)b} = −m2(σα)ab{F,G}α + (V {am F,G)b} + (F, V {am G)b}(−1)ε(F )+1,

Vα(F,G)a − V am{F,G}α(−1)ε(F ) = (F,G)b(σα) ab + (VαF,G)a + (F, VαG)a −
−{V amF,G}α(−1)ε(F ) − {F, V amG}α.
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For any bosonic functional S, ε(S) = 0 the following relations hold:

{{S, S}[α, S}β] ≡ 0, ((S, S){a, S)b} ≡ 0, {(S, S)a, S}α − ({S, S}α, S)a ≡ 0, (8.1.18)

1
2∆[α{S, S}β] = {∆[αS, S}β],

1
2∆{a(S, S)b} = (∆{aS, S)b}, (8.1.19)

1
2

(
∆α(S, S)a −∆a{S, S}α

)
= (∆αS, S)a − {∆aS, S}α,

and

1
2V[α{S, S}β] = {V[αS, S}β] + 1

2ε
γ

αβ {S, S}γ ,
1
2V
{a
m (S, S)b} = (V {am S, S)b} − 1

2m
2(σα)ab{S, S}α, (8.1.20)

1
2

(
Vα(S, S)a − V am{S, S}α

)
= (VαS, S)a − {V amS, S}α + 1

2 (S, S)b(σα) ab .

As long as m 6= 0 (the new (mass) parameter of the approach), the operators ∆̄a
m are

neither nilpotent nor do they anticommute among themselves; instead, together with the
operators ∆̄α they generate a superalgebra isomorphic to osp(1, 2) (see Appendix A):

[∆̄α, ∆̄β ] = (i/~)ε γ
αβ ∆̄γ ,

[∆̄α, ∆̄a
m] = (i/~)∆̄b

m(σα) ab ,

{∆̄a
m, ∆̄

b
m} = −(i/~)m2(σα)ab∆̄α, (8.1.21)

where εαβγ is the antisymmetric tensor, ε0+− = 1. From Eqs.( 8.1.21) we see that when
m = 0 it follows the usual anticommutative relations ( 4.3.6) for operators ∆̄a of Sp(2) -
quantization.

8.2 Generating equations

Let us introduce a boson action Sm = Sm(φ, φ∗, φ̄, η) which is required to satisfy the gener-
ating equations of osp(1, 2) - quantization:

∆̄a
m exp{(i/~)Sm} = 0, (8.2.22)

∆̄α exp{(i/~)Sm} = 0 (8.2.23)

or equivalently

1
2

(Sm, Sm)a + V amSm = i~∆aSm,

1
2
{Sm, Sm}α + VαSm = i~∆αSm

with the usual boundary condition

Sm|φ∗=φ̄=η=~=0 = S0.
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In order to lift the degeneracy of Sm we follow the general gauge-�xing procedure intro-
ducing the gauge �xed action

exp{(i/~)Sm,ext} = Ûm(F ) exp{(i/~)Sm},

where the operator Ûm(F ) = exp{(~/i)T̂m(F )} is de�ned by the rule

T̂m(F ) =
1
2
εab{∆̄b

m, [∆̄
a
m, F ]}+ (i/~)2m2F

If the gauge-�xing boson functional is assumed to depend only on the �elds, F = F (φA), then
one gets

T̂m(F ) =
δF

δφA

(
δ

δφ̄A
− 1

2m
2(P−)AB

δ

δηB

)
− ~

2i
εab

δ

δφ∗Aa

δ2F

δφAδφB
δ

δφ∗Bb
+
i

~
m2F. (8.2.24)

When m = 0 operator T̂m(F ) ( 8.2.24) coincide with operator T̂ (F ) ( 4.5.16) in the Sp(2)-
scheme.

Let us prove that Sm,ext obeys the generating equations ( 8.2.22) and ( 8.2.23) as well.

Clearly, since ∆̄a
m, ∆̄α and Ûm(F ) do not commute with each other this proof will be more

involved than in the Sp(2)- approach. This is due to the fact that, neither

[∆̄a
m, T̂m(F )] = 1

2 (i/~)m2(σα)ab[∆̄
b
m, [∆̄

α, F ]]

nor

[∆̄α, T̂m(F )] = 1
2εab{∆̄

b
m, [∆̄

a
m, [∆̄α, F ]]}+ (i/~)2m2[∆̄α, F ]

does vanish, since due to the nonlinearity of ∆̄α one cannot require the strong condition
[∆̄α, F ] = 0. However, a direct veri�cation shows that T̂m(F ) commutes with any term on
the right-hand side of both previous relations, i.e. it holds

[T̂m(F ), [∆̄a
m, T̂m(F )]] = 0, [T̂m(F ), [∆̄α, T̂m(F )]] = 0.

Then, by the help of ( 8.2.22) and ( 8.2.23) one obtains

[∆̄a
m, Ûm(F )] = (~/i)Ûm(F )[∆̄a

m, T̂m(F )], [∆̄α, Ûm(F )] = (~/i)Ûm(F )[∆̄α, T̂m(F )].

Let us require

[∆̄α, F ]Sm ≡ (σα) A
B

δF

δφA
δSm
δηB

= 0,

then, taking into account that Sm solves the generating equations, it is easily seen that
[∆̄a

m, Ûm(F )] and [∆̄α, Ûm(F )] vanish after acting on exp{(i/~)Sm},

[∆̄a
m, Ûm(F )] exp{(i/~)Sm} = 0, [∆̄α, Ûm(F )] exp{(i/~)Sm} = 0.

Summarizing, we have the results

∆̄a
m exp{(i/~)Sm,ext} = 0, ∆̄α exp{(i/~)Sm,ext} = 0, (8.2.25)

i.e. the gauge-�xed action Sm,ext satis�es the same generating equations ( 8.2.22) and ( 8.2.23)
as Sm.
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8.3 Vacuum functional

Now let us de�ne the vacuum functional the theory in question

Zm(0) =
∫
dφA exp{(i/~)Sm,eff(φA)},

where

Sm,eff(φA) = Sm,ext(φA, φ∗Aa, φ̄A, ηA)|φ∗a=φ̄=η=0.

It can be represented in the form

Zm(0) =
∫
dφA dηA dφ

∗
Aa dπ

Aa dφ̄A dλ
A δ(ηA) exp{(i/~)(Sm,ext +WX)} (8.3.26)

with

WX = (ηA − 1
2m

2(P+)BAφ̄B)φA + φ∗Aaπ
Aa + φ̄A(λA − 1

2m
2(P−)ABφ

B).

where we have extended the space of variables by introducing the auxiliary �elds πAa and
λA.

Then we express δ(ηA) by

δ(ηA) =
∫
dζA exp{(i/~)ηAζA}

and change in ( 8.3.26) the integration variables φA and λA according to φA → φA + ζA and
λA → λA + 1

2m
2((P−)AB − (P+)AB)ζB . Then, for Zm(0) this yields

Zm(0) =
∫
dφA dηA dζ

A dφ∗Aa dπ
Aa dφ̄A dλ

A exp{(i/~)(Sζm,ext +WX)},

where Sζm,ext is obtained from Sm,ext by performing the replacement φA → φA + ζA.
The term WX may be cast into the osp(1, 2)-invariant form

WX = ( 1
2εab(V

b
m − U bm)(V am − Uam) +m2)X, X = φ̄Aφ

A, (Vα + Uα)X = 0,

with V am and Vα de�ned in ( 8.1.11) and ( 8.1.12), satisfying the osp(1, 2)-superalgebra

[Vα, Vβ ] = ε γ
αβ Vγ , [Vα, V am] = V bm(σα) ab , {V am, V bm} = −m2(σα)abVα

and the operators Uam and Uα are de�ned according to

Uam = −(−1)εAπAa
δl
δφA

+ (−1)εAεabλA
δl

δπAb
+

(−1)εAm2εac(P+)AbBcφ
B δl
δπAb

− (−1)εAm2(P−)AaBbπ
Bb δl
δλA

(8.3.27)

Uα = φB(σα) A
B

δl
δφA

+ λB(σα) A
B

δl
δλA

+(
πAb(σα) ab + πBa(σα) A

B

)
δl

δπAa
+ ζB(σα) A

B

δl
δζA

. (8.3.28)
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The operators Uam and Uα obey the osp(1, 2)-superalgebra as well

[Uα, Uβ ] = −ε γ
αβ Uγ , [Uα, Uam] = −U bm(σα) ab , {Uam, U bm} = m2(σα)abUα

Inserting into ( 8.3.26) the relation ( 8.2.24) and integrating by parts this yields

Zm(0) =
∫
dφA dηA dζ

A dφ∗Aa dπ
Aa dφ̄A dλ

A exp{(i/~)(Sζm +W ζ
F +WX)} (8.3.29)

with the following expression for WF :

WF = − δF

δφA
(λA + 1

2m
2(P+)ABφ

B)− 1
2εabπ

Aa δ2F

δφAδφB
πBb +m2F

which may be recast into the osp(1, 2)-invariant form

WF = ( 1
2εabU

b
mU

a
m +m2)F, UαF = 0.

(Again, Sζm and W ζ
F are obtained from Sm and WF , respectively, by carrying out the replace-

ment φA → φA + ζA.)

8.4 Global supersymmetries

We assert now that ( 8.3.26) is invariant under the following (global) transformations:

δmφ
A = µaU

a
mφ

A, δmζ
A = 0, δmφ̄A = µaV

a
mφ̄A,

δmπ
Ab = µaU

a
mπ

Ab, δmφ
∗
Ab = µaV

a
mφ
∗
Ab + µa(Sζm, φ

∗
Ab)

a,

δmλ
A = µaU

a
mλ

AUam, δmηA = µaV
a
mηA, (8.4.30)

where µa, ε(µa) = 1, is a Sp(2)-doublet of constant anticommuting parameters. The trans-
formations ( 8.4.30) realize the m-extended BRST symmetry in the space of variables φA,
φ̄A, φ

∗
Aa, ηA, π

Aa, λA and ζA.
Moreover, it is straightforward to check that ( 8.3.26) is also invariant under the following

transformations:

δφA = θαUαφ
A, δζA = θαUαζ

A, δφ̄A = θαVαφ̄A,

δπAb = θαUαπ
Ab, δφ∗Ab = θαVαφ

∗
Ab, δλA = θαUαλ

A,

δηA = θαVαηA + θα{Sζm, ηA}α, (8.4.31)

where θα, ε(θα) = 0, are constant commuting parameters. The transformations ( 8.4.31)
realize the Sp(2)-symmetry in the space of variables φA, φ̄A, φ

∗
Aa, ηA, π

Aa, λA and ζA.
In principle, for a general gauge functional F , µa may be assumed to depend on all these

variables φA, φ̄A, φ
∗
Aa, ηA, π

Aa, λA and ζA. As long as F depends only on the �elds it is
su�cient for µa to depend on φ

A and πAa only. Then the symmetry of the vacuum functional
Zm(0) with respect to the transformations ( 8.4.30) and ( 8.4.31) permits to study the question
whether the mass dependent terms of the action violate the independence of the S-matrix on
the choice of the gauge.

Indeed, let us change the gauge-�xing functional F (φ)→ F (φ) + δF (φ). Then the gauge-
�xing term WF changes according to

WF →WF+δF = WF +WδF , WδF = ( 1
2εabU

b
mU

a
m +m2)δF (φ). (8.4.32)
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Now, performing in ( 8.3.29) the transformations ( 8.4.30), we choose

µa = µa(φ, π) ≡ − i

2~
εabU

b
mδF (φ).

This induces the factor exp(Uamµa) in the integration measure. Combining its exponent with
WF leads to

WF →WF + (~/i)µaUam = WF − 1
2εabU

b
mU

a
mδF (φ) = WF −WδF +m2δF (φ).

By comparison with ( 8.4.32) we see that the mass termm2F inWF violates the independence
of the vacuum functional Zm(0) on the choice of the gauge. This result, together with the
equivalence theorem [135], is su�cient to prove that the same is true also for the S-matrix.

One may try to compensate this undesired term m2δF (φ) by means of an additional
change of variables. But this change should not destroy the form of the action arrived at the
previous stage. However, an additional change of variables leads to a Berezinian which is equal
to one because σα are traceless. Therefore, the unwanted term could never be compensated
and the S-matrix within this formalism becomes gauge dependent when m 6= 0. It means to
obtain physical results in this formalism one needs after performing of all calculations to take
the limit m→ 0 and to wait for the gauge independence of the S-matrix.

8.5 Ward identities

Finally, we shall derive the Ward identities for the extended BRST- and the Sp(2)-symmetries.
To begin with, let us introduce the generating functional of the Green functions:

Zm(JA;φ∗Aa, φ̄A, ηA) =
∫
dφA exp

{
(i/~)

(
Sm,ext(φA, φ∗Aa, φ̄A, ηA) + JAφ

A
)}
. (8.5.33)

If we multiply Eqs. ( 8.2.25) from the left by exp{(i/~)JAφA} and integrate over φA we get∫
dφA exp{(i/~)JAφA}∆̄a

m exp
{

(i/~)Sm,ext(φA, φ∗Aa, φ̄A, ηA)
}

= 0,∫
dφA exp{(i/~)JAφA}∆̄α exp

{
(i/~)Sm,ext(φA, φ∗Aa, φ̄A, ηA)

}
= 0. (8.5.34)

Now, integrating by parts and assuming the integrated expressions to vanish, we can rewrite
the resulting equalities by the help of the de�nition ( 8.5.33) as

(JA
δ

δφ∗Aa
− V am)Zm(JA;φ∗Aa, φ̄A, ηA) = 0,

(
(σα) A

B JA
δ

δηB
− Vα

)
Zm(JA;φ∗Aa, φ̄A, ηA) = 0, (8.5.35)

which are the Ward identities for the generating functional of Green's functions.
Introducing as usual the generating functional of the vertex functions,

Γm(φA;φ∗Aa, φ̄A, ηA) = (~/i) lnZm(JA;φ∗Aa, φ̄A, ηA)− JAφA,

φA = (~/i)
δlnZm(JA;φ∗Aa, φ̄A, ηA)

δJA
, (8.5.36)
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we obtain

1
2 (Γm,Γm)a + V amΓm = 0, 1

2{Γm,Γm}α + VαΓm = 0. (8.5.37)

For Yang-Mills theories the �rst identities in ( 8.5.37) are the Slavnov-Taylor identities of
the extended BRST symmetries. Furthermore, choosing for σα the representation mentioned
above the second identities in ( 8.5.37) express for α = 0 the ghost number conservation and,
in Yang-Mills theories, for α = (+,−) the Delduc-Sorella identities of the Sp(2)-symmetry
[102].



Appendix A

Lie Groups and Lie Algebras, Lie
Superalgebras and Lie Groups with

Grassmann Structure

A Lie group G is de�ned by the following properties:

1. G is an abstract group,

2. G is an analytic manifold of dimension dG = n, i.e. their elements depend analytically
on the local group parameters, g(ξ), ξ = (ξ1, . . . , ξn),

3. the map
(
g(ξ), g(ξ′)

)
7→ g(ξ)g−1(ξ′) is analytic.

Usually the parametrization will be chosen such that g(0) = e (the unit element).
A Lie group may be considered as the group of continuous transformations acting on some

(vector) space V with elements x ∈ V according to

g(ξ) : x 7→ x′(ξ) = (gx)(ξ) with x = (gx)(0). (A.0.1)

Given a linear independent basis {ei} of the space V the in�nitesimal transformations of the
coordinates in this basis, x = xiei, are given by

dxi = uia(x)dξa with uia(x) =
∂(gx)i

∂ξa

∣∣∣∣
ξ=0

. (A.0.2)

An in�nitesimal change of a function F (x) on V is given by

dF (x) =
∂F

∂xi
dxi = dξaXaF with Xa = uia(x)

∂

∂xi
(A.0.3)

being the in�nitesimal generators of the Lie group. The quantities uia(x) de�ne a velocity
�eld on the space V which determine the orbit of x under the group actions generated by Xa;
the condition of integrability reads

uja(x)
∂uib(x)
∂xj

− ujb(x)
∂uia(x)
∂xj

= fab
cuic(x) with fab

c = −fbac; (A.0.4)

125



126

the quantities fab
c are called structure constants of the Lie group. The equation (xxx) for

the generators of the gauge transformations on the functionals of the (bosonic) �elds is a
generalization of ( A.0.4).

The in�nitesimal generators Xa of the Lie group form a linear independent basis of the Lie
algebra Lie (G) of the group G. Because of eq. ( A.0.4) the obey the following commutation
relations

[Xa, Xb] = fab
cXc (A.0.5)

which uniquely determine the Lie algebra (having arbitrary elements X = ξaXa ∈ Lie (G))
with the Lie product de�ned by

(Lie (G),Lie (G)) 3 (X,Y ) 7→ X ◦ Y ≡ [X,Y ] ∈ Lie (G) ∀X,Y ∈ Lie (G). (A.0.6)

Because of the Jacobi identity an analogous relation for the structure constants follow:

[[Xa, Xb], Xc] + [[Xb, Xc], Xa] + [[Xc, Xa], Xb] ≡ 0 (A.0.7)

fab
dfdc

e + fbc
dfda

e + fca
dfdb

e ≡ 0. (A.0.8)

A Lie group is called abelian if all its generators commute, i.e. if fab
c ≡ 0. A subset of the

generators, Xρ, ρ = 1, . . . , r < n generates a subgroup H ⊂ G i� fρσ
τ = 0 for ρ, σ ≤ r, τ > r;

this subgroup is called an invariant subgroup i� fρσ
τ = 0 for ρ ≤ r, τ > r.

By the help of the structure constants a symmetric second rank tensor gab, the so-called
Cartan metric, can be introduced:

gab = fad
cfbc

d, (A.0.9)

which serves to specify the Lie groups. A Lie group is called semi-simple i� the Cartan
metric is non-degenerate, i.e. det|gab| 6= 0, and it is compact if the Cartan metric is positive
(or negative) de�nite. Furthermore, by the help of the Cartan metric the group indices can
be raised and lowered. Especially, it can be shown that

fabc = fab
dgdc (A.0.10)

can be choosen totally antisymmetric; from this it follows that a semi-simple Lie group does
not have any abelian invariant subgroup (besides the unit element). A Lie group is called
simple if it has no invariant subgroup besides the unit element. In the case of semi-simple Lie
groups the connection withGrassmann Variables, Berezinian and All That the correcponding
Lie algebra is given by 1

g(ξ) = exp {ξaXa} with Xa =
∂g(ξ)
∂ξa

∣∣∣∣
ξ=0

(A.0.11)

and the generators Xa are skew-hermitian X
†
a = −Xa.

Let us furthermore note that by the help of the Cartan metric an in�nitesimal line element
on the group manifold is de�ned,

ds2(ξ) = gabdξ
adξb, (A.0.12)

1Contrary to the normal use in physical context where the generators of the group transformations are
taken to be hermitian operators and being related to the observables of the theory here we have taken the
mathematicians convention. therwise, we had to to change the generators according to Xa → −iXa.



127

which is left (and right) invariant under the action of the group. Therefore, the group manifold
is a Riemannian (or pseudo Riemannian) space if the metric is de�nite (or inde�nite). If the
group is compact there exists a left (and right) invariant measure µ(·), the Haar measure,
such that for any function f there exists an integral over the group,

Iµ(f) =
∫
G

f(g)dµ(g) with dµ(g0g) = dµ(gg0) = dµ(g); (A.0.13)

in terms of the group parameters it is given according to

dµ(g) =
∏
a

dξaρ(ξ) =
∏
a

dξ′
a
ρ(ξ′) (A.0.14)

with the measure function ρ(ξ) ensuring invariance under parameter changes. Of course, the
group volume is given by µ(1) = vol (G) <∞. That measure may be constructed by starting
with the observation that

ω(g−1, dg) := g−1(ξ)dg(ξ) ≡ g−1(ξ)
∂g(ξ)
∂ξa

dξa = ωa(ξ)Xa (A.0.15)

de�nes a left (and right) invariant di�erential form on the Lie algebra, such that the volume
element may be given by

dg = ω1 ∧ ω2 ∧ . . . ∧ ωn = ρ(ξ)dξ1 ∧ dξ2 ∧ . . . ∧ dξn. (A.0.16)

Remark: In the case of Euler's parametrization of the group SO(3),

g(φ, θ, ψ) = Rz(φ)Ry(θ)Rz(ψ), 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π,

we obtain for the normalized measure

dg =
1

8π2
sin θdφdθdψ, volG = 1.

Because of the Jacobi identity the structure constants determine a (matrix) representation
of the Lie algebra, the so-called adjoint or regular representation,

Lie (G) 3 X 7→ adX : [X,Y ] = (adX)Y (A.0.17)

which is uniquely determined through the following equivalence for their basis elements:
(Xa)b

c ≡ (adXa)b
c = fab

c. It can be understood as the action of the (�xed) element ξaXa of
the Lie algebra on an arbitrary basis element Xb to give another basis element Xc according
to ξa [Xa, Xb] = ξa(adXa)b

c
Xc, i.e. the Lie algebra itself � by their property to be a vector

space � serves as representation space for arbitrary elements X = ξaXa of the Lie algebra.
In terms of the adjoint representation it is possible to introduce a bilinear form, the Killing
form which, taken for the basis elements, de�nes the Cartan metric:

K(X,Y ) := tr ((adX) · (adY )) =⇒ gab = K(Xa, Xb). (A.0.18)

The adjoint representation of the Lie group G is de�ned on Lie(G) according to

Ad g : X 7→ g X g−1 ∀g ∈ G, X ∈ Lie(G), (A.0.19)

or, equivalently, in the case of semi-simple Lie groups

Ad g(ξ) = exp {ξa(adXa)} . (A.0.20)
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The above introduced notions of Lie groups and Lie algebras have a natural extension to
Z2�graded Lie supergroups and Lie superalgebras. Let us �rst consider the latter ones because
they are used in Chapter 8. A Lie superalgebra G (over the �eld R or C) is an associative,
Z2�graded algebra that is a direct sum of two vector spaces G(e) ≡ G(0) and G(o) ≡ G(1)

of even and odd elements, respectively, in which a (Z2�graded) product, the so-called Lie
superbracket or supercommutator, [·, ·}, is de�ned with[

G(i),G(j)

}
⊂ G(k) with k = i+ j(mod2), (Z2 − gradation), (A.0.21)

[Xi, Xj} = −(−1)ε(Xi)ε(Xj) [Xj , Xi} , (graded antisymmetry), (A.0.22)

(−1)ε(Xi)ε(Xk) [Xi, [Xj , Xk}}+ (−1)ε(Xj)ε(Xi) [Xj , [Xk, Xi}}
+(−1)ε(Xk)ε(Xj) [Xk, [Xi, Xi}} ≡ 0, (Z2 − graded Jacobi identity) (A.0.23)

If ε(Xi)ε(Xj) = 0 the supercommutator coincides with the usual commutator, otherwise it is
the anticommutator, i.e.

[X,Y } = XY − (−1)ε(X)ε(Y )Y X, ∀ X,Y ∈ G. (A.0.24)

The even (or bosonic) part G0 of a Lie superalgebra G is an ordinary Lie algebra, while the
odd (or fermionic) part G1 is not an algebra but, because of G0 G1 ⊂ G1, it is a module where
G0 is represented. To be more explicit let us write a Lie superalgebra as follows:

[Xα, Xβ ] = fαβ
γXγ , [Xα, Ya] = fαa

bYb, {Ya, Yb} = fab
γXγ . (A.0.25)

Here we used the obvious notation: Xα ∈ G0, Ya ∈ G1.
The most simple example of a Lie superalgebra, generalizing the simplest nontrivial Lie

algebra su(2), is the orthosymplectic superalgebra osp(1, 2) which plays a crucial role in
Chapter 8 of this book.

The supercommutation relations of the superalgebra osp(1, 2) in the Cartan-Weyl basis
according to ( A.0.25) read:

[L0, L±] = ±L±, [L+, L−] = 2L0, (A.0.26)

[L0, R±] = ± 1
2R±, [L±, R∓] = −R±, [L±, R±] = 0, (A.0.27)

{R±, R±} = ± 1
2L±, {R+, R−} = 1

2L0, (A.0.28)

and for the fundamental representation these generators are given by:

L0 =

 1
2 0 0
0 − 1

2 0
0 0 0

 , L+ =

0 1 0
0 0 0
0 0 0

 , L− =

0 0 0
1 0 0
0 0 0

 ;

R+ =

0 0 1
2

0 0 0
0 1

2 0

 , R− =

0 0 0
0 0 − 1

2
1
2 0 0

 .

The superalgebra ( A.0.26)�( A.0.28) in the main part is obtained by the following identi�-
cations:

(~/i)∆0 = 2L0, (~/i)∆± = L±, (~/i)∆1

m = 2mR+, (~/i)∆2

m = 2mR−;
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so the relations ( A.0.26)�( A.0.28) may be rewritten as follows (α = 0,+,−):

[∆α,∆β ] = (i/~)εαβγ∆
γ
, (A.0.29)

[∆α,∆
a

m] = (i/~)∆
b

m(σα) ab , (A.0.30)

{∆a

m,∆
b

m} = −(i/~)m2(σα)ab∆
α
. (A.0.31)

Here, eq. ( A.0.29) is a realization of the Lie algebra sl(2) with the antisymmetric structure
coe�cients εαβγ which are determined by ε0+− = 1; eq. ( A.0.30) determines the fundamental
representation (σα)b

a
of that Lie algebra with σασβ = gαβ+ 1

2εαβγσ
γ , on the spinorial doublet

of the odd generators ∆
a

m; and eq. ( A.0.31) constitutes the anticommutator of the odd
generators with the structure coe�cients given by (σα)ab. Raising and lowering of indicies is
obtained by

gαβ =

1 0 0
0 0 2
0 2 0

 , gαγgγβ = δαβ ; εab = −εab =
(

0 1
−1 0

)
, εacεcb = δab .

From eqs. ( A.0.27) and ( A.0.28) the following realization of the structure coe�cients in
eqs. ( A.0.30) and ( A.0.31) may be read o�:

(σ+) ba =
(

0 −1
0 0

)
, (σ−) ba =

(
0 0
−1 0

)
, (σ0) ba =

(
1 0
0 −1

)
,

and by raising the �rst index according to (σα)ab = εac(σα) bc we get

(σ+)ab =
(

0 0
0 1

)
, (σ−)ab =

(
−1 0
0 0

)
, (σ0)ab =

(
0 −1
−1 0

)
.

The quadratic Casimir operator of the supergroup osp(1, 2) is given by C2 = 1
2εab∆

b

m∆
a

m +
m2∆

α
∆α.

A (linear) representation π of a Lie superalgebra G is obtained as a homomorphism of G
into the superalgebra of endomorphisms of a Z2�graded vector space V = V(0) ⊕ V(1) such
that

π(cX) = cπ(X), π(X + Y ) = π(X) + π(Y ), (A.0.32)

π([X,Y }) = [π(X), π(Y )} (A.0.33)

∀X,Y ∈ G, c ∈ C. The dimension resp. superdimension of the representation is the dimension
resp. graded dimension of the vector space V, i.e.

dimπ = dimV0 + dimV1, sdimπ = dimV0 − dimV1. (A.0.34)

The adjoint representation is obtain according to

(adX)Y := [X,Y }, i.e. ad : G 7→ EndG (A.0.35)

and the Killing form is obtained by

K(Xi, Xj) = str(ad(Xi)ad(Xj)) = (−1)ε(Xj)CimnCjnm = gij (A.0.36)
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The Killing form is an inner product, this means that it is
consistent, i.e. K(X,Y ) = 0 ∀X ∈ G0, ∀Y ∈ G1,
supersymmetric, i.e. K(X,Y ) = (−1)ε(X)ε(Y )K(Y,X), and
invariant, i.e. K([X,Y } , Z) = K(X, [Y, Z}). There are analogous results as in the case of
ordinary Lie algebras. Namely, it holds
(1) A Lie superalgebra G with a non-degenerate Killing form is a direct sum of

simple Lie superalgebras each having a non-degenerate Killing form.
(2) A Lie superalgebra is called simple if it does not contain any non-trivial ideal.
(3) A necessary condition for a Lie superalgebra to be simple is that

(i) the representation of G0 on G1 is faithful and irreducible,
(ii) {G1,G1} = G0

A Lie supergroup or, more correctly, a Lie group with Grassmann structure is associated with
a (simple) Lie superalgebra. Let G(n) = G(n)0 ⊕ G(n)1 be the complex Grassmann algebra
of order n, and let A(G be the Grassmann enveloppe of a superalgebra A) which consists of
formal linear combinations

∑
i η
iai of elements η

i ∈ G and ai ∈ A both being either even

or odd. Then, the commutator [X,Y ] :=
∑
ij η

iη′
j [ai, aj} confers A(A) with a Lie algebra

structure. Now, a supergroup A associated with the superalgebra A is � according to the
de�nition of Berezin � the exponential map of the Grassmann envelope A(A).

The Lie supergroups of linear transformations are obtained from the even (square) (m+
n)× (m+ n)�supermatrices

M =
(
A B
C D

)
with A,D even, B,C odd, (A.0.37)

de�ning supermatrix groups for an arbitrary �eld K:
GL(m,n|K) 3M being even and invertible
SL(m,n|K) 3M : sdetM = 1
U(m,n) : M ∈ GL(m,n|C,M M+ = 1
OSP (m,n = 2p|K) : M stHM = H with

H =
(

1m 0
0 J2p

)
, J2p =

(
0 1p
−1p 0

)
; (A.0.38)

a special one is the supergroup OSP (1, 2|C).



Appendix B

Path Integral Representation of
Transition Amplitude

In Chapter 1 we presented the generating functional Z(J) of Green's functions by the
path integral ( 1.7.28) over trajectories in phase space. Its derivation rests on a corresponding
representation of the matrix elements of the time ordered product T

(
q̂i1(t1)...q̂in(tn)

)
between

eigenstates of the position operator. Here we like to present this derivation. Thereby we
restrict ourselves to a quantum mechanical system with one degree of freedom only (for a
more detailed exposition see, for example, [170]).

The eigenstates of the position operator are introduced as follows:

q̂(t)|q, t〉 = q|q, t〉 Heisenberg picture,
q̂S |q〉 = q|q〉 Schrödinger picture,

with the following connection between these states

|q〉 = exp
(
− i

~
Ĥt

)
|q, t〉,

where Ĥ denotes the Hamiltonian of the system. Therefore the matrix element

〈q′, t′|q, t〉 = 〈q′| exp
(
− i

~
Ĥ(t′ − t)

)
|q〉 (B.0.1)

corresponds to the transition from the eigenstate |q〉 at the moment t to the eigenstate |q′〉
at the moment t′, and it de�nes a Green function. Namely, introducing |t〉 as the solution of
the Schr�odinger equation Ĥ|t〉 = i~∂|t〉/∂t, then

〈q′|t′〉 =
∫
dq 〈q′| exp

(
− i

~
Ĥ(t′ − t)

)
|q〉〈q|t〉

describes the time evolution of Schr�odinger's wave function 〈q|t〉.
Let us �rst show how the matrix element ( B.0.1) can be represented as a functional

integral; afterwarts its relation to the Green functions (1.24) will be given. We start by
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representing ( B.0.1) as a multiple integral from which, by some limiting procedure, the
corresponding functional integral is obtained.

To begin with we divide the time interval (t′ − t) into (n + 1) equal parts with length ε,
i.e.

t′ = t+ (n+ 1)ε, and tj = t+ jεt, (j = 1, ..., n).

Using the completeness relation at each moment tj ,
∫
dqj |qj , tj〉〈qj , tj | = 1, we represent the

transition amplitude by

〈q′, t′|q, t〉 =
∫ ∏

j

dqj 〈q′, t′|qn, tn〉 · · · 〈qj1 , tj1 |qj−1, tj−1〉 · · · 〈q1, t1|q, t〉

together with

〈qj , tj |qj−1, tj−1〉 = 〈qj | exp
{
− i

~
Ĥε

}
|qj−1〉 = 〈qj |qj−1〉 −

iε

~
〈qj |Ĥ|qj−1〉+O(ε2),

where q0, qn+1, t0 and tn+1 are to be considered as q, q′, t and t′, respectively. Now, choosing
the Hamiltonian Ĥ = H(p̂, q̂) to be of the form Ĥ = T (p̂) + V (q̂), we can write

〈qj |Ĥ|qj−1〉 =
∫
dpj 〈qj |pj〉〈pj |Ĥ|qj−1〉

=
∫

dpj
2π~

exp
{
i

~
pj(qj − qj−1)

}
H(pj , qj−1),

where H(p, q) is now the classical Hamiltonian. Using these equations we get

〈qj , tj |qj−1, tj−1〉 =
∫

dpj
2π~

exp
{
i

~
pj(qj − qj−1)

}[
1− i

~
εH(pj , qj−1)

]
+O(ε2)

=
∫

dpj
2π~

exp
{
i

~
pj(qj − qj−1)− i

~
εH(pj , qj−1)

}
+O(ε2) (B.0.2)

and thus the following expression for the matrix element obtains ( B.0.1):

〈q′, t′|q, t〉 = lim
n→∞

∫ n∏
j=1

dqj

∫ n+1∏
j=1

dpj
2π~

exp
{
i

~

n+1∑
j=1

[
pj(qj − qj−1)−H(pj , qj−1)(tj − tj−1)

]}
,

where the limit n→∞(ε→ 0) has been assumed, with the O(ε2) terms neglected.
This result will be represented in the compact form

〈q′, t′|q, t〉 =

q(t′)=q′∫
q(t)=q

DqDp exp
{
i

~

t′∫
t

dτ [pq̇ −H(p, q)]
}
, (B.0.3)

where the expression

q(t′)=q′∫
q(t)=q

DqDp ≡
∫ ∏

τ

(
dq(τ)dp(τ)

2π~

)
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is referred to as functional integration over the entire phase space, with the boundary condi-
tions taken as q(t) = q, q(t′) = q′. Let us point to the fact that the whole manifold of curves
to be integrated over are given by (limits of) continuous curves q(t) in con�guration space
and piecewise constant curves p(t) in momentum space. Furthermore, we remark that this
derivation has been given for a special functional form of the Hamiltonian only. The �nal
result, however, is assumed to be true for any Hamiltonian.

If the Hamiltonian has the simple form H = p2/2m+V (q), the integration over momenta
in ( B.0.2) can be performed: Shifting the integration variables, pj → pj − m(4qj/ε), we
obtain by Gaussian integration∫

dpj
2π~

exp
{
i

~
(pj 4 qj −

p2
j

2m
ε)
}

= exp
{
i

~
ε
m

2

(
4qj
ε

)2}
where 4qj = qj − qj−1 and

1
Nj

=
∫

dpj
2π~

exp
{
− i

~
p2
j

2m
ε

}
.

The �nal result has the form of a functional integral over the con�guration space

〈q′, t′|q, t〉 =
1
N

q(t′)=q′∫
q(t)=q

Dq exp
{
i

~
S[q]

}
. (B.0.4)

Here, S[q] =
∫ t′
t
dτ L(q, q̇) is the action integral over the trajectory q(τ), where L(q, q̇) =

mq̇2/2− V (q) is the Lagrange function, and the normalization factor N is given by

1
N

=
∫
Dp exp

{
− i

~

∫ t′

t

dτ
p2

2m

}
with Dp ≡

∏
τ

(
dp(τ)
2π~

)
. (B.0.5)

The matrix element 〈q′, t′|q, t〉 determines all transition probabilities between quantum
mechanical states. In view of further applications of the functional formalism to quantum
�eld theories it is important also to know the path integral representation of the matrix
elements of the product of position operators, corresponding to the product of �eld operators
in quantum �eld theory. For the time�ordered product of n such operators the following
expression holds:

〈q′, t′|T
(
q̂(t1) · · · q̂(tn)

)
|q, t〉 =

q(t′)=q′∫
q(t)=q

DqDp q(t1)...q(tn) exp
{
i

~

∫ t′

t

dτ [pq̇ −H(p, q)]
}
.(B.0.6)

Let us check eq. ( B.0.6) for the product of two operators: q̂(τ1)q̂(τ2) at τ1 > τ2. Here again,
we divide the time axis into small intervals, choosing t1...tn in such a way that

τ1 = ti1 , τ2 = ti2 ,

and then we apply the relation of completeness at each ti. We thus have

〈q′, t′|q̂(τ1)q̂(τ2)|q, t〉 =
∫ ∏

i

dqi〈q′, t′|qn, tn〉 · · · 〈qi1 , ti1 |q̂(τ1)|qi1−1, ti1−1〉 · · ·

· · · 〈qi2 , ti2 |q̂(τ2)|qi2−1, ti2−1〉 · · · 〈q1, t1|q, t〉

=
∫ ∏

i

dqi qi1qi2〈q′, t′|qn, tn〉 · · · 〈q1, t1|q, t〉 .
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Proceeding exactly as for the derivation of ( B.0.3), we obtain the expression ( B.0.6) for
n = 2. Note that the last equation holds for τ1 > τ2. When τ1 < τ2, the r.h.s. of that equation
corresponds to the matrix element 〈q′, t′|q̂(τ2)q̂(τ1)|q, t〉. Therefore, the path integral, like (
B.0.6), de�nes the matrix element of the time�ordered product of two position operators

q(t′)=q′∫
q(t)=q

DqDp q(t1)q(t2) exp
{
i

~

∫ t′

t

dτ [pq̇ −H(p, q)]
}

= 〈q′, t′|T
(
q̂(t1)q̂(t2)

)
|q, t〉.

As before, it is possible to make a transition from path integrals over phase space to path
integrals over con�guration space.

Let us introduce also that the transition amplitude in the presence of an external source
J(τ),

〈q′, t′|q, t〉J =

q(t′)=q′∫
q(t)=q

DqDp exp
{
i

~

∫ t′

t

dτ [pq̇ −H(p, q) + J(τ)q(τ)]
}
, (B.0.7)

which corresponds to a Hamiltonian modi�ed by a source term H → H − Jq. It can be used
as generating functional of the matrix elements of the position operators, which are given by
the functional derivatives with respect to J(τ):

〈q′, t′|T
(
q̂(t1)...q̂(tn)

)
|q, t〉 =

(
~
i

)n
δn

δJ(t1)...δJ(tn)
〈q′, t′|q, t〉J |J=0. (B.0.8)

Let us now relate these matrix elements to the Green's functions, i.e. the vacuum expection
value of the various products of position operators. Assume the Lagrangian L of the system
to be (explicitly) time�independent. The energy eigenstates correspond to the wave functions
Φn(q) = 〈q|n〉. In particular, the ground state, or the vacuum, is described by the function
Φ0(q) = 〈q|0〉. It will be convenient to use Φ0(q, t) de�ned as

Φ0(q, t) = exp
(
− i

~
E0t

)
〈q|0〉 = 〈q| exp

(
− i

~
Ĥt

)
|0〉 = 〈q, t|0〉.

We are interested in the matrix element

〈0|T
(
q̂(t1)...q̂(tn)

)
|0〉 =

∫
dq′dqΦ∗0(q′, t′)〈q′, t′|T q̂(t1)...q̂(tn)|q, t〉Φ0(q, t).

Using for the matrix element 〈q′, t′|T q̂(t1)...q̂(tn)|q, t〉 the functional form given by eq. ( B.0.6)
this may be written in the following way

〈0|T
(
q̂(t1)...q̂(tn)

)
|0〉 =

(
~
i

)n
δn

δJ(t1)...δJ(tn)
Z(J)|J=0, (B.0.9)

where the generating functional Z(J) is given by

Z(J) = 〈0|0〉J =
∫
dq′dqΦ∗0(q′, t′)〈q′, t′|q, t〉JΦ0(q, t) (B.0.10)

with 〈q′, t′|q, t〉J de�ned by ( B.0.7). However, because of the integration in eq. ( B.0.10) over
any value of q′ and q, this is nothing else then

Z(J) =
∫
DqDp exp

{
i

~

∫
dt [pq̇ −H(p, q) + Jq]

}
, (B.0.11)
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where the integrations are taken over the whole space of trajectories in phase space.
The above results can be generalized to the case of more than one degree of freedom. If the

number of degrees of freedom equals to N , the coordinate q should then be replaced by an N -
component vector qi. The functional integral now corresponds to the sum over all trajectories
in the N -dimensional con�guration space, satis�ng appropriate boundary conditions.



Appendix C

Grassmann Variables, Berezinian and All
That

In the Hamiltonian approach to quantum �eld theory fermionic �elds, like Dirac �elds,
have be quantized by the canonical anticommutation relations. Correspondingly, in the for-
mulation of quantum �eld theory by functional integrals one has to deal with (classical)
anticommuting �elds. These entities may be considered as �elds over the Minkowski space
having values in some algebra of supernumbers'. The appropriate mathematical theory is
that of a Berezin algebra [47], [48] which will be introduced in the following. In addition we
summarize some of their properties like di�erentiation, integration and change of variables,
which will be relevant for a mathematical consistent formulation of quantum �eld theory in
the functional formalism. (For a more detailed presentation see [47], [48], [49], [103].)
Let us �rst introduce a Grassmann algebra G as an associative algebra with unit over the
�eld of complex numbers C which is generated by a �nite (or in�nite) set of anticommuting
elements ξα, α = 1, 2, · · · , n,

ξαξβ + ξβξα = 0, (C.0.1)

and being endowed with an involution. Every element of G may be written as

g = f0 + fαξ
α + · · ·+ fα1···αnξ

α1 · · · ξαn where f0, · · · , fα1···αn ε C. (C.0.2)

The indices of the coe�cients f0, · · · , fα1···αn because of ( C.0.1) are assumed to be completely
antisymmetric. The involution which in the operator formulation corresponds to hermition
conjugation has to be required necessarily (therefore, after de�ning some conjugation of the
generating elements, g ε G ful�l relations being equivalent to hermitian conjugation). The
elements of that Grassmann algebra are the above mentioned supernumbers. In principle,
the objects f0, · · · , fα1···αn could be elements of some function algebra, e.g. C1 or C∞ of
continuous or in�nitely di�erentiable functions; since we are interested in quantum �eld theory
these functions are assumed to be de�ned over Minkowski space (or Euclidean space).
The Berezin algebra B is de�ned as the associative algebra with involution over the �eld C
of complex numbers where the coe�cients of the Grassmann variables are elements of some
function algebra. Every element φ ε B, being a (generalized classical) �eld, can be represented
in the form

φ(x) = f0(x) + fα(x)ξα + fα1α2(x)ξα1ξα2 + · · ·+ fα1···αn(x)ξα1 · · · ξαn , (C.0.3)
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where ξα, α = 1, ..., n are the generating elements of a Grassmann algebra G and f0(x), fα1α2(x),
· · · , fα1···αn(x) are functions of the (in our case: real) variables xi, i = 1, ...,m, belonging to
some function space determined through the (physical) �elds under consideration. 1

Let us now introduce the notion of odd and even elements of the algebra B. The element φ(o)

whose representation ( C.0.3) contains only odd powers of ξ is called d'. The element φ(e)

whose representation ( C.0.3) involves only even powers of ξ is called even'. Note that the
set of all even elements φ(e) forms a subalgebra of the algebra B. Obviously, even elements
commute with all elements of the algebra B, and odd elements anticommute among themselfs.
For each odd φ(o) (even φ(e)) element we introduce the quantity ε(φ(o)) and ε(φ(e))), called
the Grassmann parity, by the rule: ε(φ(o)) = 1 and ε(φ(e)) = 0, respectively. The parity of
the element φ3 = φ1φ2, when φ1 and φ2 have de�nite parities, is equal to

ε(φ3) = (ε(φ1) + ε(φ2))(mod 2) (C.0.4)

and the commutation relation between both elements can be presented as

φ1φ2 = (−1)ε(φ1)ε(φ2)φ2φ1. (C.0.5)

The set of all elements {φ} having de�nite Grassmann parity in the algebra B forms the
so-called Z2�graded algebra. This case is very important for purposes of quantum �eld theory
dealing only with quantities having de�nite Grassmann parity. Now, and afterwards, we will
assume every variable or quantity to have de�nite Grassmann parities. It is also convenient
to introduce the Grassmann parity of indices. In what follows we denote the parity of the
index A � being related to some quantity � by εA.
We shall now consider matrices in the algebra B which will be called supermatrices. The
supermatrix M is characterized by its matrix elements MAB which belong to B, and each of
which has de�nite parity being characterized by the parities of their indices (εA, εB). The
parities of the matrix elements of the supermatrix M are assumed to obey

ε(MAB) = εA + εB . (C.0.6)

For supermatrices of equal size having the same order of succession of odd and even
indices one can consider the operations of summation and multiplication. The results of
these operations are again supermatrices. This opens the possibility to consider also regular
functions f(M) of a supermatrix M in an obvious way.
The normal form of the supermatrix M is called the supermatrix M (N) which is constructed
from M by means of a simultaneous permutation of equally numbered rows and columns to
obtain a supermatrix with a de�nite order of succession of indices: �rst come all even indices
and then all odd ones. The supermatrix M (N) can be presented in the following block�form:∣∣∣∣∣∣∣∣M (N)

AB

∣∣∣∣∣∣∣∣ =
(

(M1)ij (M2)iβ
(M3)αj (M4)αβ

)
, (C.0.7)

where A = (i, α), B = (j, β), εi = εj = 0, εα = εβ = 1, and the matrix elements of matrices
M1, M4 are even ones whereas the matrix elements of matrices M2, M3 are odd ones.
The supertrace (sTrM) of a supermatrix M is de�ned by the rule

sTrM =
∑
A

(−1)εAMAA. (C.0.8)

1Of course, this de�nes only a subclass of Berezin algebras which is su�cient for our purposes.
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With the help of the supertrace ( C.0.8) one introduces the superdeterminant (sDetM) by

sDetM = exp(sTr lnM). (C.0.9)

Supertrace and superdeterminant possess many properties of trace and determinant of usual
matrices. Let us now present some properties of the supertrace and the superdeterminant
which are used essentially in the main text:

1) sTr(M +N) = sTrM + sTrN,
2) sTrM = sTrM (N) = TrM1 − TrM4,

3) sDetM = sDetM (N) = DetM1 −Det−1(M4 −M3M
−1
1 M2),

4) sTrMN = sTrNM,

5) sDetMN = sDetMsDetN,
6) sDetM−1 = sDet−1M.

Here we have introduced the inverse supermatrix M−1 of a nonsingular supermatrix M by
MM−1 = M−1M = 1. The conditions of nonsingularity can be expressed in the form

DetM0
1 6= 0, DetM0

4 6= 0,

where the matrices M0
i are obtained from the matrices Mi by taking the limit ξ → 0. In

addition the rank of a supermatrix is de�ned by to numbers (n1, n2) being given according to

rankM = (n1, n2) with rankM0
1 = n1, rankM0

4 = n2.

Let us now introduce the notion of derivation and integration in the Berezin algebra B, eq. (
C.0.3). Notice, �rst of all, that the derivation and integration with respect to the variables
{xi} coincides with that of the ordinary derivation and integration, respectively, namely

∂φ

∂xi
=

∂f0(x)
∂xi

+
∂fα(x)
∂xi

ξα +
∂fα1α2(x)

∂xi
ξα1ξα2 + · · ·+ ∂fα1···αn(x)

∂xi
ξα1 · · · ξαn ,∫

dxiφ =
∫
dxif0(x) +

(∫
dxifα(x)

)
ξα +

(∫
dxifα1α2(x)

)
ξα1ξα2 +

+ · · ·+
(∫

dxifα1···αn(x)
)
ξα1 · · · ξαn .

Derivatives with respect to the Grassmann variables ξα are linear operations as well, and it
is su�cient to de�ne them on products of generating elements ξα only. Because generating
elements anticommute among themselves, there exist two types of derivatives: right and left
ones. The left derivative is de�ned by the rule:

∂l
∂ξα

ξα1ξα2 · · · ξαk =
k∑
i=1

(−1)Piδαiα ξ
α1 · · · ξαi−1ξαi+1 · · · ξαk , (C.0.10)

where Pi is the parity of the permutation from (1, 2, ..., i, ..., k) to (i, 1, ..., i − 1, i + 1, ..., k).
The right derivative is de�ned as:

∂r
∂ξα

ξα1ξα2 · · · ξαk =
k∑
i=1

(−1)Pk−i+1δαiα ξ
α1 · · · ξαi−1ξαi+1 · · · ξαk . (C.0.11)
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Let us now combine xi and ξα into the common set zA of variables: zA = (xi, ξα), ε(zA) ≡
εA. Then we can present a few essential properties and relations for the derivatives with
respect to variables z acting on elements of the Z2�graded algebra:

1)
∂l
∂zA

∂l
∂zB

φ = (−1)εAεB
∂l
∂zB

∂l
∂zA

φ,

2)
∂r
∂zA

∂r
∂zB

φ = (−1)εAεB
∂r
∂zB

∂r
∂zA

φ,

3)
∂l
∂zA

∂r
∂zB

φ =
∂r
∂zB

∂l
∂zA

φ,

4)
∂l
∂zA

φ = (−1)εA(ε(φ)+1) ∂r
∂zA

φ,

5)
∂l
∂zA

(φ1φ2) =
∂lφ1

∂zA
φ2 + (−1)εAε(φ1)φ1

∂lφ2

∂zA
,

6)
∂r
∂zA

(φ1φ2) = (−1)εAε(φ2) ∂rφ1

∂zA
φ2 + φ1

∂rφ2

∂zA
.

Derivatives of a composite function Φ(z) = φ(ϕ(z)) of z with respect to z can be calculated
as

∂lΦ
∂zA

=
∂lϕ

B

∂zA
∂lΦ
∂ϕB

,
∂rΦ
∂zA

=
∂rΦ
∂ϕB

∂rϕ
B

∂zA
.

Now let us introduce the de�nition of the integral in the Berezin algebra B. To this end
one needs, in fact, an de�nition of the integral over odd elements. Introducing formal symbols
dξα, ε(dξα) = 1 with the following properties

ξαdξβ = −dξβξα, dξαdξβ = −dξβdξα,

the integral over odd elements is de�ned by the rules∫
dξα = 0,

∫
dξαξα = 1.

Formally, the integral over odd elements coincides with the derivative:∫
dξα1 · · · dξαkφ =

∂l
∂ξα1

· · · ∂l
∂ξαk

φ =
∂r
∂ξαk

· · · ∂r
∂ξα1

φ.

In the general case, we consider dzA = (dxi, dξα), ε(dzA) ≡ εA with the properties

dzAzB = (−1)εAεBzBdzA, dzAdzB = (−1)εAεBdzBdzA.

The integral over the Grassmann variables zA possesses a number of properties of usual
integrals.
(1) The integral of a total derivative is equal to zero:∫

dzA
∂rφ

∂zA
=
∫
dzA

∂lφ

∂zA
= 0, (C.0.12)

when appropriate boundary conditions with respect to the even variables are assumed. From
eq. ( C.0.12) the formula of integration by parts follows:∫

dzA
∂lφ1

∂zA
φ2 = −(−1)εAε(φ1)

∫
dzAφ1

∂lφ2

∂zA
; (C.0.13)
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in eqs. ( C.0.12), ( C.0.13) no summation over repeated indices has been assumed.
(2) The integral is invariant under shifts of the integration variables:∫

dzφ(z + y) =
∫
dzφ(z),

where yA belongs to B and does not depend on the integration variables zA.
(3) The rules of integration formulated above allow to derive the following formula for a
change of variables: ∫

dz φ(z) =
∫
dz Ber y(z) φ(y(z)),

where Ber y(z) is the Berezinian of the change of variables yA = yA(z)

Ber y(z) = sDetR, RAB =
∂ry

A(z)
∂zB

= sDetL, LAB =
∂ly

B(z)
∂zA

.

The Berezinian can be considered as the extension of the Jacobian according to the change
of variables in the case of usual integrals. The properties of the Berezinian follow from the
properties of superdeterminants.
(4) Finally, we give the expression for the Gaussian integral (ε(JA) = εA):∫

dz exp
(
− 1

2
zAMABz

B + JAz
A

)
= (2π)l/2(sDet−1/2M) exp

(
1
2
JAΛABJB

)
, (C.0.14)

where the matrix M ful�lls the equality MAB = (−1)(εA+εB+εAεB)MBA, l is number of even
components zA, and we have used the notation

ΛAB = (M−1)AB(−1)εA .



Appendix D

Functional Integrals in Perturbation
Theory

Let us consider the de�nition of functional integrals in Quantum Field Theory su�cient
to present the generating functionals of Green's functions in the framework of perturba-
tion theory. The main object of such de�nition is a functional Z(J) of varialbes (sources)
JA, ε(JA) ≡ εA given in the form of functional integral

Z(J) =
∫
Dφ exp

{
i

~
[S(φ) + JAφ

A]
}
≡
∫
Dφ F (φ, J). (D.0.1)

In Eq.( D.0.1) it is assumed that the boson fuctional S of �elds φA, ε(φA) ≡ εA can be
presented in the form

S(φ) =
1
2
φAMABφ

B + V (φ) (D.0.2)

where supermairix M with matrix elements MAB , ε(MAB) = εA + εB does not depend on
�elds φA and is not singular one. Moreover we assume the matrix M to satisfy the following
properties of symmetry:

MAB = (−1)εA+εB+εAεB MBA.

In Eq.( D.0.2) the functional V (φ) is considered as regular functional with respect to �elds
φA, i.e.

V (φ) =
∑
n>2

1
n!
VA1···An φ

An · · · φA1 .

By de�nition the functional integral ( D.0.1) within perturbation theory is presented by
the following rule

Z(J) = exp
{
i

~
V

(
~
i

δ

δJ

)}
Z0(J), (D.0.3)

where the functional Z0(J) has the Gaussian form

Z0(J) =
∫
Dφ exp

{
i

~

[
1
2
φAMABφ

B + JAφ
A

]}
141
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and is de�ned as

Z0(J) = (sDetM)−1/2 exp
{
− i

2~
JAΛABJB

}
. (D.0.4)

In Eq.( D.0.4) we have used the following notation

ΛAB = (M−1)AB(−1)εB

where supermatrix M−1 is inverse to M . Notice, the superdeterminat sDetM in Eq.( D.0.4)
is some numerical factor which does not depend on variables. We can omit the numerical
factors which appear as a result of integration by the de�nitions ( D.0.3), ( D.0.4) and do
not contain parameters essential for the theory. The reason is the fact that only relative
(normalized) quantities in which these factors vanish are of actual interest for Quantum Field
Theory.

From de�nitions ( D.0.3), ( D.0.4) one can derive the basic properties of the functional
integrals. Here we restrict ourself only by enumerations of them omitting all proofs (for details
of proofs see, for example, [80], [103]).

The integral ( D.0.1) is invariant under the shifts of integration variables∫
Dφ F (φ, J) =

∫
Dφ F (φ+ ϕ, J). (D.0.5)

The integral of the total derivative over any of the integration �eld φA is equal to zero∫
Dφ δ

δφA
F (φ, J) = 0. (D.0.6)

From this property formulas of integration by parts follow∫
Dφ F (φ, J)

δG(φ, J)
δφA

= −
∫
Dφ (−1)εAε(G) δF (φ, J)

δφA
G(φ, J) (D.0.7)

where derivatives with respect to φA are considered as right ones.
The formula for the change of variables holds:∫

Dφ F (φ, J) =
∫
Dφ F (ϕ(φ), J) Ber[ϕ(φ)], (D.0.8)

where Ber[ϕ(φ)] is the Berezinian of the change of variables

Ber[ϕ(φ)] = sDetR, RAB =
δϕA(φ)
δφB

. (D.0.9)

In Eqs.( D.0.8), ( D.0.9) ε(ϕA) = ε(φA) and supermatrix R is nonsingular one.
Finally, formula for functional δ-fuction, δ(J), holds

δ(J) =
∫
Dφ exp

{
i

~
[JAφA]

}
. (D.0.10)

The δ-function ( D.0.10) obeys the usual property for δ-functions∫
DJ F (φ, J)δ(J) = F (φ, 0).
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