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Preface

These notes are extended version of the lectures which I have
given at International Advanced School on Modern Mathe-
matical Physics, JINR, Dubna, July 14-16, 2005; at Summer
School "Physics of Fundamental Interactions", Protvino, Au-
gust 17-26, 2006; at IV International Summer School in Mod-
ern Mathematical Physics, Belgrade, September 3-14, 2006;
and at Brazilian Center for Fundamental Physics (CBPF),
Rio de Janeiro, January, 2006. They devoted to brief intro-
duction to the basic notions of N’ = 1 D = 4 supersymme-
try, construction of supersymmetric field models and some of
their quantum aspects. From the very beginning the material
is presented completely in manifestly supersymmetric form in
terms of superspace and superfields.

These notes can also be entitled as "Pedagogical Intro-
duction to Supersymmetry" since the material has an educa-
tional character and is given in the form allowing the inter-
ested reader to acquire independently the first notations of
supersymmetric filed theory. No any preliminary knowledge
on supersymmetry is assumed though it is expected that the

readers passed the standard course of quantum field theory.
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We consider here only basic and simple enough notions of su-
persymmetric filed theory. The more advanced aspects are left
for further study. The theoretical material is supplemented
with a number of problems which should help the readers to
practice a formalism of supersymmetric field theory.

I am grateful to Organizers of all above meetings, espe-
cially to Professor B. Dragovich (Institute of Physics, Bel-
grade), Professor A. Filippov (Joint Institute for Nuclear Re-
search, Dubna), Professor J. Helayel-Neto (Brazilian Cen-
ter for Fundamental Physics, Rio de Janeiro), Professor M.
Vasiliev (Lebedev Physical Institute, Moscow) and Dmitry
Zimin Foundation "Dynasty" (Moscow) for support and pos-
sibility to deliver the lecture courses and kind atmosphere
during the meetings. Also, I am grateful to all participants
of the meetings for the interest to my lectures. The invalu-
able help in preparation of computer file has been rendered

by Denis Malishev and Igor Samsonov.



1 General idea of supersymmetry

Supersymmetry in physics means a hypothetical symmetry of
Nature relating the bosons and fermions. In its essence, the
supersymmetry is an extension of special relativity symmetry.
One can say, the supersymmetry is a special relativity symme-
try extended by the symmetry between bosons and fermions.

The main idea of supersymmetry in field theory can be
explained as follows.

Let us consider some model of field theory. Any such
model is given in terms of an action functional, S[b, f], de-
pending on a set of bosonic fields b(x) and a set of fermionic
fields f(z). Consider the infinitesimal transformations of the
fields b(x) and f(z) of the form

b— b+ 6b, b~ f,
f—f+48f,  Sf~b.

If the action S[b, f] is invariant under the transformations

(1.1), 0S[b, f] = 0, the field model under consideration is
called supersymmetric. The transformations (1.1)) are called

supersymmetry transformations or supertransformations.

9
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10 General idea of supersymmetry

Of course, the above statements look like very schematic

and naive while we have not answered the following questions:

1. What are an explicit sets of the fields b and f in the

model under consideration?
2. What is an explicit form of transformations (|1.1])7

3. What is an explicit form of the invariant action S[b, f]?

Originally, the supersymmetry was proposed in 1971 by
Yu. Golfand and E. Lichtman from Lebedev Physical Insti-
tute. It was then rediscovered again in some another form in
1972 by D. Volkov and V. Akulov from Khar’kov Institute of
Physics and Technology. In 1974 J. Wess and B. Zumino from
Karlsruhe University and CERN respectively, constructed the
first supersymmetric model of four-dimensional field theory.
After that, a number of papers on supersymmetry became to
increase as a rolling snow ball. It is also worth pointing out
a proposal of two-dimensional supersymmetry in 1971 in the
context of string theory (P. Ramond, A. Neveu, J. Schwarz,
J. Gervais, B. Sakira). Further, we will discuss only four-
dimensional supersymmetric field theories.

If the supersymmetry is a true symmetry of Nature, it
immediately leads to the fundamental physical consequences.
According to the Standard Model, all elementary particles
form two classes: the particles of matter which are the
fermions and the particles mediating the fundamental in-
teractions which are the bosons. However, if the concept

of supersymmetry is true, the classification of fundamental
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particles on bosons and fermions is relative since the super-
symmetry transforms bosons into fermions and vice versa. It
means that for each boson there should exist a corresponding
superpartner — a fermion and for each fermion there should
exist a corresponding superpartner — a boson. Hence, for
each fermionic matter particle there must exist a bosonic
matter particle and for each bosonic particle — mediator of
fundamental interaction there must exist a fermionic particle
— mediator of fundamental interaction. As a result, one gets
a beautiful symmetric picture of Nature on the fundamental

level.

As we already mentioned, up to now the supersymmetry
is a hypothetical symmetry since there is no experimental ev-
idence for it at present. However, the experiments for search-
ing the superpartners of known particles have already been
planned for the next several years. Further we are not going

to discuss the experimental aspects of supersymmetry.

As is already pointed out, the supersymmetry is an exten-
sion of special relativity symmetry. Special relativity is based
on invariance of physical phenomena under the Lorentz trans-
formations and four-dimensional translations " = x™ + a™,
where 2™ are the Minkowski space coordinates and a™ is a
constant four-vector, m = 0,1, 2,3. Supersymmetry includes
special relativity symmetry and some additional symmetry
associated with the transformations of the form and re-
sponsible for relations between bosons and fermions. There

is a universal procedure to realize the special relativity trans-
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formations together with the transformations (1.1). Such a
procedure is based on the notions of superspace and super-
field. Our purpose is to explain the meaning of this notions,
to show, how the supersymmetric field models are constructed
in terms of superfields and to demonstrate the technics of op-
eration with superfields. The notations and conventions cor-
respond to the book I.L. Buchbinder, S.M. Kuzenko, [Ideas
and Methods of Supersymmetry and Supergravity, IOP Publ.,
1998.



2 Lorentz and Poincare groups

2.1 Basic definitions

Let us consider the four-dimensional Minkowski space with

the coordinates 2™, m = 0,1, 2,3 and the metric
ds® = —(d2°)*+(dx')? + (dr?)? + (d2*)? = ppnda™dx™, (2.1)

where
n = diag(—1,1,1,1). (2.2)

It is easy to see, that the form of the metric (2.1)) is invariant
under the following linear inhomogeneous transformations

" — 2™ = A" 2"+ ad” (2.3)

where @™ is a constant four-vector and A = (A™,,) is some
matrix with constant elements. To find the restrictions on

this matrix one considers form invariance condition

Nmndx™ dx’™ = npgdaPz?. (2.4)
13



14 Lorentz and Poincare groups

Substituting the transformations (2.3)) into Eq. (2.4]), one gets

N A" p A" (d2P dx? = npedaPda?, (2.5)

or
Ninn A p A" g = g (2.6)
The equation (2.6)) can also be rewritten in the matrix form
AtnA =1, (2.7)

where AT is a transpose matrix with the elements (AT),™ =

A™,. The transformations with the matrix A satisfy-
ing the constraint are called the inhomogeneous Lorentz
transformations.

Clearly, the set of transformations is given by a pair
(a, A) with A being the Lorentz matrix satisfying Eq.
and a constant four-vector a. The set of such transformations

(a, A) has two natural subsets:
i) The subset of transformations
" =2 +a" (2.8)

is given by the pair (a,l), where I is the unit 4 x 4
matrix. The transformations (2.8)) are called space-time

translations.

ii) The subset of transformations
"= A" 2", (2.9)

with A satisfying Eq. (2.7)), is given by the pair (0, A).
The transformations (2.9) are called Lorentz rotations

or homogeneous Lorentz transformations.
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Let us consider two inhomogeneous Lorentz transforma-
tions of the form (2.3 given by the pairs (a;, A1) and (ag, Ag).
Performing these transformations consequently, one arrives at

the relation
(CLQ, Ag)(al, Al) = (A2a1 -+ as, A2A1). (210)

One can show that if the matrices A; and A, satisfy Eq. ,
their product AsA; satisfies Eq. as well. Therefore,
Eq. means that the composition of two inhomogeneous
Lorentz transformations is also an inhomogeneous Lorentz
transformations.

It is easy to see now that the set of transformations (a, A)
forms a group with the multiplication law given by Eq. .
Indeed, the unit group element is (0, ) and the element inverse
to (a,A) is (=A7'a,A™1). Here A~! is the inverse matrix

satisfying the relation
ATA=AAT =1 (2.11)

or

A" (ATHP =57, (2.12)

n

This group is called the Poincare group. One can show that
the subset of transformations (0, A) forms the group which is
called the Lorentz group. The subset of transformations (a, I)
also forms a group which is called the translation group. Two
these groups are the subgroups of the Poincare group.

One can check the following useful identity

(a,A) = (a,1)(0, A), (2.13)
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which means that any element of the Poincare group is rep-
resented as the composition of two elements from the Lorentz
group and the translation group.

Further we will use only the infinitesimal form of inhomo-
geneous Lorentz transformations. For this purpose we repre-
sent the Lorentz matrix as A = [+w, where w = (w™,,) is the

matrix with infinitesimal elements. In this case basic relation

(2.7)) takes the following form
(I+w) I +w) =n, (2.14)

or

where Wy, = Nmpw?y,. The equation (2.15) means that w,,, is
an arbitrary antisymmetric matrix which has six independent
real elements. Therefore the Lorentz group is a six-parametric

Lie group while the Poincare group is a ten-parametric Lie

group.

2.2 Proper Lorentz group and SL(2,C)
group

The basic relation ([2.7)) for matrices A leads to the following
identity
det AT det pdet A = det 7. (2.16)

As a consequence,
det A = +1. (2.17)
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In particular, Eq. (2.17) means that any Lorentz matrix is

non-degenerate and invertible. Moreover, one can show that

the element A is either positive or negative
sign(A%) = +1. (2.18)

Equations (2.17) and (2.18)) show that the set of matrices

A is divided into four non-overlapping subsets. Here we are
interested only in one such subset denoted as Ll and defined

by the conditions
AeLl & AT™A=1n, det A =1, signA’ =1. (2.19)

One can show, that the set of transformations (0, A), where
A e LL, forms a group which is called proper Lorentz group.

Further we will show that the proper Lorentz group allows
us to introduce the specific objects which are called the two-
component spinors.

First of all, we introduce a set of 2 x 2 complex matrices N
with unit determinant, det N = 1. Clearly, the set of such ma-
trices forms a group with the multiplication law being an or-
dinary matrix product. This group is called two-dimensional
special linear complex group and denoted as SL(2, C).

One can show that for each matrix N € SL(2,C) there
exists the matrix A € LL such that

i) A(N1N2) = A(N1)A(N,),
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The construction of the map A(N) is realized in the fol-
lowing five steps.
1. Consider a linear space of Hermitian 2 x 2 matrices X,

Xt = X. The basis in this space can be chosen in form of

—

following four matrices o, = (0, 7):

10 0 1
oy = , 01 = ,
0 0 1 ! 10
0 —i 1 0
- , - (220
& (zO) 7 <0—1> (2:20)

Here the oy, 05, 03 are very well known Pauli matrices and
09 is the unit 2 x 2 matrix. Any Hermitian matrix X can be
expanded over the basis (2.20]) as

X =X"0,, (2.21)

where X™ are the real numbers. It is easy to check the fol-

lowing identity for the matrices (2.20)
tr(0mom) = 20mn, (2.22)
which helps to express the coordinates X™ as

xm — %tr(Xam). (2.23)
2. Let N € SL(2,C). Consider the matrix
X' =NXNT. (2.24)
Since det N = 1, one gets

det X' = det X. (2.25)
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3. Using equations ([2.23]) and (2.25)) one obtains

1 1
Xm = §tr(X'0m) = Etr(NXNJ“Um)
1
= §tr(0'mNO'nN+)Xn = A", X", (2.26)

where )
A", =A",(N) = Etr(amNanNJr). (2.27)

4. Using the basis matrices ([2.20]), one rewrite the expan-
sion X = X™ag,, as follows

X0+ X% X!'—iX?
X'+ix? X0-Xx3 )

(2.28)

The straightforward calculation of the determinant of the ma-

trix X gives

det X = (X9)? — (X1)?2 — (X2 — (X?)? = =0 X" X"

(2.29)
The same consideration leads to
det X' = =1 XX, (2.30)
Applying now the equation (2.25), we have
Drn X" X" = 0 X X (2.31)
Substituting Eq. into , one gets
ATpA =, (2.32)

where A is given by ([2.27). This means that the matrix A is

nothing but a matrix of Lorentz rotation.
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5. One can show that Eq. (2.27) leads to
A% >0, det A = 1. (2.33)

Thus, the matrices A belong to the proper Lorentz
group.

As a result, we have proved that the proper Lorentz group
Ll is associated with SL(2,C) group.

2.3 Two-component spinors

It is evident that the complex 2 x 2 matrices N € SL(2,C)
act in two-dimensional complex space. We denote the vectors
of this space as ., @ = 1,2. Action of these matrices on the

vectors ¢, looks like
Do = Naﬁgpﬁ' (2.34)

Since each matrix N € SL(2,C) is associated with some
matrix A from the proper Lorentz group, one can say that
Eq. is the transformation law of the two-dimensional
complex vector under the Lorentz transformations. The vec-
tors ¢, with the transformation law are called left Weyl
spinors. The indices «, § are called the spinor ones.

Let us introduce the matrix ¢ with elements €44,

Eap = ( (1) _01 ) , (2.35)

and its inverse matrix e ! with the elements €%, that is

0 1
Eape® = 8), €*Pep, = 05, 6"‘5—< ) 0). (2.36)



2.3. 'Two-component spinors 21

One can prove the following identities
NeNT =¢, NTe'N=¢! (2.37)

for arbitrary matrix N € SL(2,C). The equation (2.37))

L are the invariant tensors

means that the matrices € and €~
of SL(2,C) group. Therefore these matrices can be used for

rising and lowering the spinor indices

o = 50‘5@5, Yo = Eagtpﬁ. (2.38)

Moreover, one can show that the expression ¢f s, is Lorentz
invariant, i.e.,

loe, 1

1 Paa = P12, (2.39)
where ¢/, is given by and @' = 5"/6g0’ﬂ.

Consider the matrix N* which is complex conjugate to the
matrix N, N € SL(2,C). It is clear, the matrix N* belongs
to the group SL(2,C) as well, N* € SL(2,C). We denote the
elements of the matrix N* as Nd*ﬁ'; &, = 1,2. This matrix
acts in the complex space of two-dimensional vectors y, by
the rule

o= NPy (2.40)
The two-component complex vectors ys with transformation
law are called right Weyl spinors. The indices a, ﬂ are
called the spinor ones.

Analogously to previous discussion, one introduces the ma-

trices

0 —1 v 0 1
= o — 241
801[3 (1 0)7 € (_1 0)7 ( )
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such that

ape” =04 (2.42)

The matrices ([2.41) are used to rise and lower the indices &,
3 of right Weyl spinors

X =5 Xa =g’ (2.43)

For the right Weyl spinors one can prove the identity anal-
ogous to ,

X1 Xaa = X1 Xz, (2.44)
where X/, is given by . The relation ([2.44) means that
the expression y{ya4 is Lorentz invariant.

Sometimes, the spinors Y, are called dotted spinors while
the spinors ¢* are called undotted ones.

Since the dotted spinors transform with the help of conju-
gated matrix N*, we can define the operation of conjugation

for the spinors by the rule

(Pa)” = e (2.45)

where ¢, is some dotted spinor.
Note also the following important properties for the left
and right Weyl spinors

(P102) = ©TP20 = —P5P1a = —(P2001),
(X1X2) = xlaxé“ = —X2aX{f = —(X2X1). (2-46)

Let us consider the matrices o, given by Eq. (2.20). Their
matrix elements are denoted as (0,,,)as. We introduce also the
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sigma-matrices with upper spinor indices

B gdb (o (2.47)

(Um)ad =€ m),@ﬁ'-

Using the explicit form of the matrices o,,, (2.20)), and

€d6, , , one can show that

Gm = (09, —0). (2.48)

The matrices o,, and &, possess many useful identities, for

example
(Ombn + O'nO'm> = —2nda”, (2.49a)
(GmOn + Gnom)® 5= —277mn6d‘5, (2.49b)
tr(ombn) = —20mn, (2.49¢)
(0o (Fm)* = ~20,%657, (2.494)
om = No,NT(ATH(N))", . (2.49)

Here A(N) is given by eq (2.27). Eq. (2.49¢) means that the
matrices o, are invariant tensors of SL(2,C) group.

Let us consider the following expressions:

Xd (5-m>da90a’
©*(0m)aa X (2.50)

o™ = (xd"p)
Um = (900'm>_<)

Using the transformation laws for the spinors ¢,, Y&, Egs.

(2.34), (2.40) and (2.49¢)), one can show that v™ is a con-

travariant vector while wu,, is covariant one.
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2.4 Lie algebra of the Poincare group

Here we will consider some notions of the Lie algebra of the
Poincare group on the base of one special example. One can
show that the results, we are interesting, do not depend on
the example we begin with.

The infinitesimal coordinate transformations correspond-
ing to the inhomogeneous Lorentz transformations have been
written in sect.[2.1]in the form

2" =™+ W™ +ad™ = 2™+ o™, (2.51)

where w™,, and a™ are the infinitesimal parameters, w,,, =
—Wpm- Let t™(z) be a vector field which is determined by
the following transformation law under the inhomogeneous

Lorentz transformations

B ax/m
~ Oxm
where '™ is given by Eq. (2.51)). The equation (2.52)) can be

rewritten as

" (2

t"(z), (2.52)

t"(x + ox) = A", " (x), (2.53)

where A™,, = 6™, + w™,, is the Lorentz matrix. Therefore
" (x+wr+a)= (0", +wm)t"(x), (2.54)
or, denoting §t™(x) = t'"™(x) — t™(x), one gets

St™(x) = a"Opt™ () + W™t (z) — w"px" O t™ (x).  (2.55)



2.4. Lie algebra of the Poincare group 25
The relation (2.55)) can be written as follows

5™ (@) = —ia"(P)™ £(x) + LW (o)™ "(2),  (2.56)

2
where
(Z)™, O™ (—i0)),
(‘]TS)mn = nTkxk(PS)mn - nskxk(Pr)mn + (Mrs)mn>
(Mys)™,, = (0" sMen — 0™ Nsn)- (2.57)

Using the explicit form of operators P, J., (2.57)), we calcu-
late the commutation relations among these operators. The

result is written as follows

[Pra Ps] = 07
[Jfrm Pm] - i(nrmPs - nsmpr)u
[eru Jrs] - Z(nmrJns - nmst]nr + nnstr - 7711er50258>

The expressions are called the generators of Poincare
group in vector representation. The relations form the
commutation relations of these generators. Sometimes, the
relations themselves are called the Poincare algebra.
One can show that the infinitesimal transformations of any

tensor or spinor field under inhomogeneous Lorentz transfor-
mations (2.51)) can be written in the form analogous to ([2.56]),

50 (z) = —ia™ P ®(x) + %wmnjmnq)(x), (2.59)

with some generators P,, and .J,,,. The operators P,, are

called the translation generators and .J,,, are called the
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Lorentz rotation generators. 'The commutation relations
among the operators P,,, J,, also have the form ,
independently of the type of fields ¢ in . We would
like to emphasize that the algebra is a mathematical
expression of the special relativity symmetry.



3 Superspace and superfields

3.1 Supersymmetry algebra

Here we will discuss how to extend the Poincare algebra
by means of new generators which can provide symmetry be-
tween bosons and fermions. A general idea of such an exten-
sion is based on the use of spinor generators Q7 and Q% with
dotted and undotted indices o, & and I = 1,2,...,N. The
integer N/ numerates a number of new generators.

It is postulated that the generators QI, Q) possess a
fermionic nature and their commutation relations are given
in terms of anticommutators. We want to preserve the alge-
bra for P,, and J,,, and should find, additionally, the

following commutators and anticommutators

[P, Q2 [P, QL) (3.1a)
[ o> QL] [Tyans QL. (3.1b)
{QL. Q43 {Q4 Q%) (3.1¢)
{Q4, Q1) (3.1d)

27
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where {A, B} = AB + BA is the anticommutator. A natural

assumption is that the right hand sides of above commutators
and anticommutators should be linear combinations of all gen-
erators P, Jom, QL, Q% with some coefficients. The Lorentz
invariance imposes the conditions on these coefficients: they
can be constructed only from the invariant tensors of Lorentz
and SL(2,C), i.e., Nmn, €ap Espr (Om)ad (61 )%. Therefore,
the most general forms of the commutators and anticommu-
tators are written as follows:

[PmaQi] = Cl(am)adela
[PmaQ{d] - 02(5m)daQaI=
[Jmn7 Qg] = CS(O'mn)aﬁQéa
[Jmna Qi] = 04(&mn)dﬁc_2/]3'a
{qu Qé} C5€aBZ]J + c~5(O-mn)a,8JmnX1J7
{Qi: Q_ﬁJ} CﬁgaﬁZIJ + 56(6mn)d§JmnXIJ7
[QLQI} = er2(0™)aaP5", (3.2)
where ¢, ..., c; are some numerical coefficients and Z// =
7z 7 = 771 X1 = X7 X7 = X7! are some matri-
ces. Here
1, -
(Umn)aﬂ - _Z(O-mo-n - Ungm)aﬁa
. I .
(Cmn)ap = _Z(Uman — 0nOm) - (3.3)

Of course, the coefficients ¢y, ¢, c3, ¢4 are written down with-
out any calculations since they are defined by the transforma-

tion laws of the dotted and undotted spinors under inhomo-
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geneous Lorentz group. We do not write yet these coefficients
to emphasize a general idea how all coefficients in (3.3) can
be found .

To fix the coefficients ¢y, ..., c7 in the algebra (eq2.2) one
uses the Jacobi identities which are written in terms of double
commutators and anticommutators. We will use the standard
terminology, when the operators P,,, J,,, are called bosonic
and Q! , QY are called fermionic. Let B is some bosonic oper-
ator while F' is some fermionic one. The Jacobi identities for

such operators have the form

[B1, [Ba, B3] + [Ba, [Bs, Bi]] + [Bs, [B1, Bo]] = 0,
(B, {F\, Fx}| + {F1, [Fs, B]} — {F,,[B, Fi]} = 0,
[Blv{B?vF]]+[B27[F7B1]]+[F17[BIJB2H = 07

[F1,{Fy, F3}| + [y, {F3, FA}| + [F3,{F\, F3}] = 0.(3.4)

Substituting the generators P,,, J,., instead of B and gener-
ators QL. QI instead of F into the identities (3.4) and using
the relations , one can find all numerical coefficients in
Egs. (3.2). The results are written as

1 = 02:55:6620, 03264:i, 05206207:1,

XM = X =y, (3.5)

and the operators Z7, Z'7 must commute with all generators.
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Thus, one gets the algebra (3.2)) in the final form

[va Qé] - 07 [Pm’ Qi] = 07

[Jmna Qé] = i(amn)aﬁQév [Jmn7 Qé] = Z((}mn)aﬁ 7/13'7
{Qév Qé} = 5aﬁZIJa {Qé? Qg} = EQBZIJa
{QL, Q1Y = 2(0™)aa Pnd"”. (3.6)

The equations (3.6]), together with Egs. (2.58)), form the so
called Poincare superalgebra. The fermionic generators @Y,

Q! are called the supercharges, the generators Z, Z are called
the central charges. If N' = 1, the supersymmetry is called
simple, or N' = 1 supersymmetry. In this case all central
charges are absent. If A/ > 1, the supersymmetry is called
extended, or N-extended supersymmetry. The statement that
the relations represent the most general extension of the
Poincare algebra by means of fermionic generators is
referred as the Haag - Lopuszanski- Sohnius theorem which
was proved in 1975.

Further we will consider only N’ = 1 supersymmetry.

3.2 Anticommuting variables

Supersymmetric field theories (as well as all fermionic field
theories) are formulated naturally with the help of a notion
of Grassmann algebra which operates with the so called an-
ticommuting variables, or anticommuting numbers. Here we
discuss only some simple properties of anticommuting vari-

ables.
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Why do we have to think about anticommuting variables
in the case under consideration? We know that the gener-
ators of the Poincare algebra can be associated with
the coordinate transformations of the Minkowski space (see
Eqgs. (2.51)-(2.57)). Therefore, it is naturally to expect that
the generators of supersymmetry algebra can also be associ-
ated with the coordinate transformations of some space. Since
the generators P,,, J,,, are included into the supersymme-
try algebra , the coordinates ™ of the Minkowski space
should also be included into this new space. As the supersym-
metry algebra contains the supercharges Q., Qg4 satisfying the
anticommutation relations (see Egs. ), it is natural to as-
sume that these supercharges are also associated with some
new coordinates. Since the supercharges satisfy the anticom-
mutation relations, one can assume that the corresponding co-
ordinates should be anticommuting as well. Moreover, since
the supercharges are the undotted and dotted spinors, it is
natural to assume that these new anticommuting coordinates

should also be the undotted and dotted spinors.

Further we will follow the pragmatic point of view: we will
avoid any rigorous definitions and describe only the rules of
operation with the anticommuting variables. In principle, all
necessary material concerning the anticommuting variables is
given in standard texts on quantum filed theory, particularly
in the sections concerning the Lagrangians for spinor fields
and anticommuting ghost fields in quantum theory of gauge

fields. Here we assume that the readers are familiar with all
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these notions.
We denote anticommuting variables as 6,, 0,. It means
that 6, is a left Weyl spinor and 6, is a right Weyl spinor.

One can raise the spinor indices with the e-tensors as usual:

0% = 9, 0% = adﬁég. (3.7)

The basic relations expressing the fundamental property of

the anticommuting variables have the form

Hdﬂﬁ + 956)@ = 0,
Haeg + 65«% = 0,
0,05 + 040, = 0. (3.8)

(6,)* = 0, a=1,2, (3.9)
(7(54)2 - 07 CE:]_,Q,

eae,@&y - 07 047677:1727

0:050; = 0, &89 =12

The basic relations allow us to simplify the expres-
sions 0,03 and 6_0,0_5-. For example, let us consider 6,603 which
is an antisymmetric 2 X 2 matrix. Any such a matrix is al-
ways proportional to the matrix e,5 with some coefficient,
say C, 0,03 = Ce,p3. Contracting the spinor indices, one gets
£*0,05 = CePe,5 = 2C or C = 3°*0,05. The similar con-
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siderations are applicable to the expression éo-ﬂ_ﬁ-. As a result,

1 5 7 15
Qaeﬁ = 55045'927 9@9[5 = _56d592,
| e
A T (3.10)

where
02 = 090 = 9050, 62 =0,0° =£.,0°0%.  (3.11)

Due to the relations (3.8)), (3.10]), any function of anticom-
muting variables can be only a polynomial

f(0,0) = a+b0y +ba0% + caaf0* + g6* + §6°
+ [Y0,0° + f,090 + d 6?6, (3.12)

where a, b, b Caa, d, d, fa fa, g are real or complex numbers.
Sometimes, the expansion is called a superfunction and
the numbers a, b*, by Cas, d, d, fas fd, g are called the com-
ponents of the superfunction.

Now we introduce the notions of differentiation and the
integration of the superfunction over the Grassmann
variables 6, 0. The derivatives with respect to anticommut-

ing variables are denoted as

0

_— 9. 1
o s (3.13)

8017

9
004
and satisfy the following four rules:

i) The derivative is a linear operation;
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Oals =047, 0:0° = 65" (3.14)
iii)
0, (0°07) = 6,707 —5,76°,
04 (0°07) = 6,507 — 5,70°. (3.15)
iv)

040°(...) = —0%94(...),
0n0°(..) = —0P0,(...). (3.16)

Using these rules i) — iv), one can show that the Grass-

mann derivatives are anticommuting

0,03 + 030, = 0,
8@85 + 35'(9@ = 0,
0003+ 0500 = 0 (3.17)
In particular,
P=02=0, a=12 a=1,2 (3.18)

In principle, there are two types of derivatives with respect
— «—
to anticommuting variables, that is left 0, and right 0, ones.
é
Here we consider only left derivatives 9, = d, since only they

are sufficient for our purposes.
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Using the relations (3.17) one can show, analogously to
(3.10), that the expressions J,0p, 5@55 can be simplified as

follows

1 = 5 1
0,03 = §€ag82, 3@% = —5%5827
1 T B
0°0% = —5e™0?, 907 = e, (3.19)
where
0* = 0%0,,  0°= 0,0 (3.20)

Let us consider now the integration over anticommuting
variables. Since (9,)? = 0, (04)> = 0 (no contraction over o
or ¢v), an integration can not be defined as an operation inverse
to differentiation. A correct definition of the integration over
anticommuting variables has been given by F. Berezin. The

Berezin integral is based on the following rules:
i) Integration is a linear operation.

ii) Let df,, df% are the extra parameters anticommuting
among themselves and with all 6,,0; variables. Then,

by definition,
/ A0, F = O, F, / d6°G = c¥9,G. (3.21)

iii) Multiple integration is defined as repeated.

According to these rules, one has

/ 0,0° = 6,”, / g0, = 6% 5. (3.22)



36 Superspace and superfields
Let us define

1, _ 1 -
d*6 = 1€ Bdf,.,dos, d*6 = Z%Bde d6°, (3.23)
then
/ d?06* =1, / d*00* = 1. (3.24)
Using the rules (3.21]) and Egs. (3.23)), it is easy to see that
/ d*00,F = 0, / d*00,G = 0, (3.25)

for arbitrary superfunctions F' and G.
The relations (3.24) have a clear interpretation. Let us

consider
/d2992F(9) = /d2092(a + b,0% +d 92)

= /d2992a = a/d2962 =a = F(((B.26)

Here we have used the property 6,030, = 0. Note that
Eq. (3.26) is analogous to the well known property of usual
delta-function [*°_dzd(z)f(z) = f(0). Therefore one can

treat 62, 02 as the delta-functions of the Grassmann variables
§%(0) = 6%, §%(0) = 62 (3.27)
As a consequence, the following properties are satisfied
/d2952(0) =1, /d29(52(9) =1,
/ 20 52(0)F(0) = F(0), / 426 52(0)F(8) = F(0).
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Note also that the Grassmann delta-functions are not sin-

gular at zero
0*(0)lo=0 =0, 6*(0)|g=0 = 0. (3.29)

Therefore, all Grassmann loop integrations in the quantum
computations in supersymmetric theories are always conver-

gent while all so-called tadpole contributions simply vanish

due to the property ({3.29)).

It is convenient to define the expressions
54(0) = 6%(0)6%(9), d*0 = d*0d>6. (3.30)
Then, the following equality takes place

/ d*064(0)F(0,0) = F(6,0)]4—0 -0 (3.31)

for arbitrary superfunction F(6,8).

3.3 Superspace

Let 6, 65 be the anticommuting variables. We assume that

they are conjugated to each other,
(0a)" =05, (02)" =0, (3.32)

where “x” means the complex conjugation. We define also the

conjugation rule for the products of anticommuting variables

as follows:
(0a.05)" = éﬁfd, (éﬁéd)* = 0,03,
(Qaéﬁ-)* = 957(1, (Qamé)* = (90m§). (3.33)
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Superspace is defined as a manifold parameterized by
the variables {2, 0, 04}, were 2™ are the coordinates of
Minkowski space and 6,, 6; are anticommuting variables.

™ are called the bosonic coordinates while 6, 64

Usually, x
are called fermionic coordinates. The dimension of such su-
perspace is equal to eight: four bosonic dimensions and four
fermionic ones.

Any function defined on superspace is called a superfield,
V = V(z,0,0). Taking into account that any superfunction

is a polynomial of anticommuting variables, one can write

V(z,0,0) = A(x)+ 0Ua() + 050 () + 0 F ()
+02G(x) + (00™0) A () + 020°N\ (2)
+020,7% () + 0260°D(x). (3.34)

The coefficients A(x), ¥q(7), ¢%(2), F(z), G(x), An(z),
Ao(z), 7%(z), D(x) in the decomposition (3.34) are called
component fields. All component fields are the usual fields
in Minkowski space. We see that a superfield automatically
includes a lot of usual fields. We will consider further only the
superfields which are the scalars under Lorentz rotations. In
this case A(z), F(z), G(x), D(x) are the scalar fields, A,,(z)
is a vector field, 1, (7), A\o(z) are left Weyl spinors and 1%(z),
7%(x) are right Weyl spinors.

One can impose a reality condition on the superfield

VE=V, (3.35)

where the conjugation rules of anticommuting variables are

given by Egs. (3.32), (3.33). The condition ((3.35)) implies that
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A(x), D(z) are real scalar fields, A,,(x) is a real vector field

and the following equalities take place
G=F" ¢a=a) =% 7a= )" =a (3.36)

As a result, the real scalar superfield is given by the following

decomposition

V(2,0,0) = A(x) + 0o (x) + 050%(z) + 0> F ()
+02F*(z) + (00™0) Ay () + 020% Mo ()
+020: 1% (x) + 00> D(x). (3.37)

Note that the real scalar superfield has less number of
independent component fields in comparison with the general
one ([3.34).

Our next purpose is to realize the supercharges Qq, Q4 as
the operators acting on superfields. We consider the super-

space coordinate transformations of the form

™ = 2™ —i(eo™ — 0o™E),
0/0[ — ea _|__€Oé,
0, = 04+¢c. (3.38)

The transformations (3.38)) are called the supertranslations or
supersymmetry transformations. Here €, €; are anticommut-
ing transformation parameters. We assume that the infinites-

imal transformations of any superfield V = V(x,6,6) under
supertranslations (3.38]) should be written as

SV (2,0,0) = i(e*Qq + Q) V (2, 0,0), (3.39)
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where @, are Q% are some operators satisfying the (anti)com-
mutation relations of the superalgebra (3.6) for NV = 1. In

particular, the following relations should take place
{QOH Qﬂ} = 07 {Qo'm Qﬁ} = 07
{Qa, Qat =2(0™) 4 Prm- (3.40)

The superfield V = V(x, 0, 0) is called scalar superfield if
it transforms under supertranslations (3.38)) as

V(' 0,0)=V(x,0,0). (3.41)
Substituting Eq. (3.38) into (3.41)) one gets
V'(z+0z,0+¢,0+¢€ =V(z,0,0), (3.42)

where dz™ = —i(ec™0 — §o™€). Expanding Eq. (3.42)) up to
first order in the parameters €, €, one obtains

V'(x,0,0) + 62™0,,V (x,0,0)

+€20,V (2,0,0) + €05V (2,0,0) = V(x,0,0).(3.43)

Therefore,

5V (z,0,0)

V'(2,0,0) — V(x,0,0)
= €20,V — €0,V — 2™,V
= i(ie“0,V) — i(—ie*04V)
+i€%0™ 0020,V — i0%0™ 40 €0,V
= €(i0q + 0™ 000 )V
—i% (=04 — 0°0™ 06Om) V. (3.44)
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Comparing Eq. (3.44) with (3.39)), we conclude that the su-
percharges are given by

Qo = 100 + 0"0a00p, Qs = —i04 — 00" 440 (3.45)

Now it is easy to check that the operators (3.45) satisfy the
relations (3.40)), i.e., they realize the representation of the
supersymmetry algebra (3.6)) on scalar superfields.

The relations (3.39), (3.45) allow us to find the transfor-

mation laws of the component fields under the supertransla-

tions (3.38). For example, we take the real scalar superfield

V(z,0,0) in the form (3.37)), substitute it into Eq. (3.39)) and
apply (3.45):

SA 4 0%y + 0500 + 0*6F + 9*6F*

+00%F A, + 020%0 N + %0507 + 626%6D

= (1€ (10a + 0%0us) — 1€ (—i0s — 00as))

X (A+ 0% + 0507 + 0°F + °F* + 60°0° A5
020\ + 20,07 + 026°D), (3.46)

where

80@ = amad(?m, Aad = O'madAm. (347)

Now, we have to compute all derivatives over the anticom-
muting variables in right hand side of Eq. and take
into account Eq. as well as the identities 0,036, = 0,
(%5357 = 0. Comparing the expressions at the corresponding

powers of f-variables, we arrive at the following set of equali-
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ties

0A = —eh — &,
e = —2€,F — Anq — i€ 000 A,
0OF = —€“\,,
0Aua = 2(Eha — aa) — 2i(eadpat® + €50, 40"
FiDaa (€507) — *4g), (3.48)
o = —2€uD — i€ 0 A™ — 200, F,
6D = —%8ad(ea>\d + &Y. (3.49)

As we know from the course of quantum field theory, the
scalar and vector fields describe the bosonic particles and
they are called bosonic fields. The spinor fields describe the
fermionic particles and are called fermionic fields. Equations
show explicitly that the supersymmetry transforms the

bosonic fields into fermionic ones and vice versa.

In the conclusion of this section let us consider the question
about the numbers of bosonic and fermionic components of a
real superfield V' which is given by Eq. . The bosonic
fields A, ', D, A,, have 8 real components (two real scalar
fields A, D, one four-component real vector A,,, and a complex
scalar F'). The fermionic fields v, A\, have also 8 real compo-
nents (both of them have two complex components due to the
spinor index o = 1,2). As a result, we see that the number of
bosonic components of the superfield is equal to the number

of its fermionic ones.
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3.4 Supercovariant derivatives

Supercovariant derivatives Dy, Dg are defined by the follow-
ing conditions

0DV = D,i(°Qs + €,Q°)V = DoV,

5DV = Dyi(’ Qg +€,Q")V = DadV, (3.50)
which have to be valid for arbitrary superfield V = V(z, 6, 0).

The equations ([3.50) mean that the expressions D,V , DsV
transform like V' under the supertranslations (3.38)). It follows

from Eqgs. (3.50]) that
[De, €°Qs +€,Q°) = 0. (3.51)

Since the parameters €”, €5 are anticommuting, one gets from

(3.51)) the following identities
{DaaQﬁ} =0, {DOUQB} =0,
{Do'm Qa} - 07 {Do'w Qﬁ} = Oa (352)

where the supercharges Q., Q4 are given by Eq. (3.45)). The
Egs. (3.52)) allow us to find the supercovariant derivatives ex-

plicitly. To do this we solve the equations (3.52) using the
anzatz

Da == 018(1 -+ 029_‘3‘8&@, Dd == Cgéd + 640115&6” (353)

with some unknown coefficients c¢i, ¢o, c3, ¢4. Substituting

Egs. (3.53) into (3.52), one can find all coefficients [ The

IThe coeflicients ¢, c3 are arbitrary while co, ¢4 are expressed in

terms of ¢, ¢o. Here we choose ¢; = 1, ¢3 = —1 for simplicity.
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result looks like

Dy = 04 +i0™ 05000 = 0n +i0%00s,
Dd == _5d — iﬁo‘amadﬁm == _5(34 - i@aaad. (354)

Sometimes, the supercovariant derivatives are called the
spinor derivatives. Note that the derivative 0,, is covariant
with respect to the supertranslations since the supercharges
commute with the generators of space-time translations as it
follows from the algebra (3.6]).

The spinor derivatives possess a number of impor-
tant properties which are used in supersymmetric field theo-

ries. It is easy to check that they satisfy the algebra

{DayDg} =0,  {Da, Dy} =0,

[Daa am] - 07 [Dou am] = 07
{Da, Dd} == —2i3ad - 2Pad- (355)

Since D, Dg is antisymmetric 2 X 2 matrix we can repeat the

same analysis as for 0,03. It leads to the number of identities:

DuDy = %gaﬁpa DD = _%%BDZ,
D*DP = —%MD?, DADP = —%gdﬁ'z‘)?, (3.56)
D.DgD., =0, DsDyDs = 0, (3.57)
where
D? = D*D,, D? = DyD*,

D =Dy, DY =e%Dy, (3.58)
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Using the algebra of spinor derivatives (3.55)) one can prove
the identities

D?*DsD? = 0, D?D,D? =0, (3.59a)
D*D?D,, = DgD?*D*, (3.59b)

D?D?*+ D?D? — 2D*D?*D,, = 160, (3.59¢)
D?D?D? =1600D?,  D?D?D? = 1600D?, (3.59d)
[D?, Dy] = —4i0n6 D%, [D?, D] = 41046 D% (3.59¢)

3.5 Chiral superfields

Using the supercovariant derivatives D,, D, one can impose
the constraints on the superfields which are consistent with
the supersymmetry transformations. The simplest such a con-

straint is given by
Dy®(x,0,0) =0, (3.60)

where ®(z,6,0) is a complex scalar superfield. Eq. (3.60) can

be exactly solved. Let us act on both sides of Eq. (3.60]) by

the operator e~ i(f™0)0m

"0 00 [ _ i(05™0)0m o =i(05™)Om gy — () (3.61)
Due to the identity
e_i(eo_mé)adeei(eamé)am

= 100 (D 4+ 00°0™ 43O ) €O = —5{3.62)
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Eq. (3.61)) is simplified

B4 (e*“"f’mé)f’mq)(x, 0, é)) —0. (3.63)

Hence, the function e‘i(e"mé)amq)(x, 0,0) is independent on 6

variables, i.e.,
e—i(@g’”é)@mq)(x’ 0,0) = d(x,0), (3.64)

where ®(x,0) is an arbitrary superfield depending on z™ and
6, variables only. As a result, the solution of (3.65) is written
as follows

®(z,0,0) = 07" mP (. 0) = O(x + i05™0,0).  (3.65)

A superfield satisfying the constraint is called chiral
superfield. Eq. defines a general form of a chiral super-
field. It is important to emphasize that the chiral superfield
is obligatory complex.

Analogously, consider the constraint
D,®(z,6,0) =0. (3.66)

A superfield satisfying the constraint (3.66)) is called antichi-
ral. One can show that a solution of (3.66)) has the form

O(z,0,0) = 00 H(z §) = B(x — i05™6,0).  (3.67)

As a result, we see that the basic features of chiral and

antichiral superfields are given by the special dependence on
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anticommuting variables: a chiral superfield depends essen-
tially only on # while an antichiral one depends essentially on
6 only.

Equations , allow us to find the component

structure of chiral and antichiral superfields. We begin with
Eq. (3.65). Since ®(z,0) is f-independent, it is given by the

following component decomposition

®(z,0) = A(x) + 0“Ya(z) + 0°F (). (3.68)

O(z,0,0) = 00MmP(x, 0)
= 00 (A(z) + 0o + 07 F ()
= A+ 0%, + 0*F +i(00™0)0,, A (3.69)
_ 1 _ _
+i(00™0)0%O1be, — 5(90”18)(90”8)8,”8”14.
Now we have to use the identities (3.10) to simplify the fol-

lowing terms
i(00™0)0%0pt)e = %(920d(&m)da m¥a),
—%(Hamé)(ﬁanﬁ_)&m@nfl _ —%192§2DA. (3.70)
Then, the component expansion of the chiral superfield is
O(z,0,0) = A+0%, +0°F +i(0070)0,, A
%929@(5’“)@@ b — i029_2DA(m)(3.71)

The component expansion for antichiral superfield can be ob-
tained from (3.71)) by conjugation.
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Let us study the transformations of a chiral superfield un-

der supertranslations. There is a general relation
60 = i(*Qq + Q%) D, (3.72)

which takes place for arbitrary superfield. Substituting the

chiral superfield in the form into , ones get
SA+IO OV +O?0F +... = i(€* Qo —"Qu) (A+0 s +0? F+...),
(3.73)
where dots mean the other components which are expressed
via A, 1Y,, F' according to Eq. . Then we have to sub-
stitute the explicit forms of supercharges Qq, Qa, (3.45)), and

compute the derivatives with respect to 0, 04. As a result,

one gets
0A(x) = —eo(x),
6Pa(T) = —26,F(x) — 20804 A(T),
SF(x) = —ies(6™)"0mniba. (3.74)

The same consideration for antichiral superfield gives

§A(z) = —e(x),
6ha(z) = —28,F (1) — 2000 A(2),
SF(z) = i€ (0™)aaOm®. (3.75)

In the conclusion of this section we point out that any

function of a chiral superfield only is also a chiral superfield:
Dyf(®) = f/(®)Da® = 0. (3.76)

Analogously, any function of antichiral superfield is also a

antichiral superfield.
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4.1 Superfield action

Any field model in quantum field theory is given by a set
of fields and corresponding action functional depending on
these fields. The action is usually written as an integral over
the Minkowski space of a Lorenz invariant Lagrangian. We
are going to develop a formulation of supersymmetric field
theory, where a set of fields consists of superfields and the
action functional is written as an integral over the superspace
of a superfield Lagrangian.

We consider only the simplest models when the set of fields
consists only of the real scalar superfield V(z,6,0) and the
chiral and antichiral superfields ®, ®.

First of all, let us introduce the notations.

i) The superspace coordinates are denoted as

M= (2™ 6% 0%). (4.1)
49
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ii) The set of supercovariant derivatives is denoted as

Dar = (8, Da, D). (4.2)

iii) The measure of full ' = 1 superspace is denoted as
d*z = d*zd*0d*0 = d*zd*0, (4.3)

while the measures on chiral and antichiral subspaces

are

d%z = d*zd*0, d°z = d*zd*, (4.4)
respectively.
iv) The superspace delta-function is given by
88z —2) =4z — 2)6' (0 — 0, (4.5)
where

FHO—0) = 62(0—0)2(0—F) = (0—0)2(0—F)2 (4.6)

The most general action functional, which can be written

as an integral over the superspace, has the form

S = /d82£+/d62£6+/d62£6, (4.7)

where L is a real scalar superfield, L. is a chiral scalar su-
perfield and £, is an antichiral scalar one. The first term in
Eq. is given by the integral over full superspace, the sec-
ond term represents the integral over chiral superspace and

the last one is the integral over antichiral superspace.
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One can ask a question, why not to write the following
term [ d®zL,, i.e., to integrate a chiral function L. over full
superspace? The answer sounds as follows: such an expression

identically vanish. Indeed, using the properties of the integral
over anticommuting variables, Eqs. (3.21)—(3.25]), one writes

1 == 1 S
/dszﬁc = /d%dQQstgﬁaaﬁEc = Z/d4xd298d8aﬁc.
(4.8)
Note that the contraction of covariant spinor derivatives can

be written as

DaD% = (=04 — i0%00) (0% — i0%0,%)
= —040" + total space-time derivatives. (4.9)

Note also the similar relation for D, derivatives
D“D, = —0%0,, + total space-time derivatives. (4.10)
Since total space-time derivatives can be discarded under the

integration over d*z , the expression (4.8) reads

i / d'xd*00,0° L, = / d%d"‘&(—%l)DdDdﬁc. (4.11)

Recalling the definition of a chiral superfield, DsL. = 0, we

conclude that
/d%ﬁc = 0. (4.12)
Analogously

/d%ﬁc = 0. (4.13)
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In principle, the integration over all anticommuting vari-
ables in the action can be performed resulting to the
action in the component form as an integral over Minkowski
space. Indeed, since all integrals over anticommuting variables

are nothing but the Grassmann derivatives, we have

_1
16

Applying the relations (4.9)), (4.10)), one gets

S d4x8282£+i/d4x82ﬁc+}l/d‘lxazﬁ_c. (4.14)

1 _ 1 1 -, -
S = / d'z (1—6D2D2£ - ZDQEC - ZD2£C> : (4.15)
This relation is useful for finding a component form of super-
field actions.

The main objects of classical field theory are the equations
of motion. In the case under consideration the equations of
motion can be written completely in superfield form. To find
the superfield equations of motions we need the superfield
identities generalizing the following useful relation in conven-
tial field theory

5¢(I) _ s4 r—1
o) 54 ) (4.16)

for arbitrary scalar field ¢(z). In our case we have a real scalar

superfield V', a chiral scalar superfield ® and an antichiral one
®. Therefore we have to calculate the following variational

derivatives
SV(z)  0B(z)  59(2)
SV (z) 0®(2)  §P(2)

(4.17)
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The first case 0V (2)/6V (2') is rather trivial. Indeed, due to
the identity

WV(z) = /dSz’(Sg(z — 2oV (2, (4.18)
we have 5V (2)
) 58z —2). (4.19)

The calculation of the variational derivative 0®(z)/0®(z)
is more complicated since ®(z) is a constrained superfield,
Ds® = 0. The ®(z) and §®(z) are chiral superfields, there-
fore they should be integrated over the chiral superspace with

the measure d®z. Hence

5(2) = / dﬁz’gg)((j) 5B(2) / B258 (2 — )00 (2).
(4.20)

The last term in Eq. (4.20) can be transformed as follows
1 _
/d82’58(z —209(2) = —Z/dﬁz’D?Z,)ég(z — 209 (%)
1_
_ / @[y D2 — 2)]00()), (4.21)

where we apply the same tricks as in the equations (4.8])—

(4.11)). As a result, we find

0P (z) 1 2o s /
552 = _ZLD (z— 7). (4.22)

Analogously, one ones get the last variational derivative in

o,

5@(2) R g /
552 _ZD (2 — 7). (4.23)
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Due to the properties of the spinor derivatives, , it is
easy to see that the expressions and are chiral
and antichiral superfields, respectively, with respect to both
their argument z and 2’

To conclude this section ones point out that, in general,
the explicit Lagrangian construction is an art rather then
a formal technical procedure. Here we study only the La-
grangians for the simple enough supersymmetric theories such
as Wess-Zumino model, supersymmetric sigma-model and su-

per Yang-Mills model.

4.2 Wess-Zumino model

The Wess-Zumino model describes a dynamics of chiral and
antichiral superfields. The most general action depending on

these superfields without higher space-time derivatives looks
like

S[®, 3] / K (D, B)+ / TV ()4 / PV (B), (4.24)

where K (®, ®) is a real function of complex superfields ® and
®, W (®) is a function of chiral superfield ® while W (®) is a
function conjugated to W (®).

The inquiring readers can ask, where there are the deriva-
tives in this action at all? To answer, we point out that the
derivatives are encoded in the definitions of chiral and antichi-

ral superfields, see Eqs. (3.65)), (3.67). Therefore, the term in
(4.24) with the function K (®, ®) does contain the space-time
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derivatives and is responsible for the kinetic terms for the com-

ponent fields. However, do to the expressions (3.65)), (3.67)),

the terms with the functions W (®), W(®) do not contain the

derivatives. Indeed, for any chiral superfield ®(z) we have

/ d2d(z) = / A8z 07" (1 ) = / d°2[®(z, 0)

+total space-time derivatives]
:/d6z<1>(x,9), (4.25)

where Eq. has been applied. On these grounds, the
term [ d82K(®,®) is usually called the kinetic term while
W (®) and W (®) are called chiral and antichiral superpoten-
tials, respectively.

Historically, the Wess-Zumino model was the first super-
symmetric field theory. It corresponds to the following par-
ticular choice of the functions K (®,®), W(®), W(®) in the
action (|4.24)):

K(®,3) = &,

A

W(d) = %®2+§®3,

o L

WD) = %@MQ 3 (4.26)

where m is a mass and A\ is a coupling constant. The action
(4.24) now reads

_ A
Swy = /d8z<I>(I>—|—/d6z (%@2 + 5<1>3)

I
+/d62 (%@2 + 5<I>3> . (4.27)
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At present, the models of chiral and antichiral superfields with
the action like Eq. (| emerge in the low-energy limit of a
superstring theory In thls case the the functions K (®, ®),
W(®), W(®) have the special , more complicated form than
(7.26)).

Let us consider now the derivation of equations of motion
corresponding to the action . As follows from Eq. ,
the superfield ®(z) essentially depends only on (, ) coordi-
nates. Therefore, the variation of action S with respect to

®(2) is defined as an integral over the antichiral superspace

05 -
55 = [ d°Z— : 4.2
055 /d Zé(I)(,z) (2) (4.28)
For the variation of the action (4.24]) we have
0K - oW _
o _ 8, 0 659V
055 = /d 5% 00(z) + /d 5% 0P(z). (4.29)

The integral over the full superspace in (4.29) can be trans-

formed to the integral over the antichiral superspace,

/d8zg—K§(I>( ) = /d6z (——DQZg) §®(2).  (4.30)

Note that the spinor derivatives D, in Eq. (4.30]) do not act on
the superfield §® sine it is antichiral, D,d® = 0. Therefore,
the equation (4.28) can be rewritten as follows

565 = /dGZ (——DQZ{; + %Z) 50(2). (4.31)

As a result, comparing (4.31)) with the definition (4.28]), we
conclude

5—§ = — D 20K + == ow (4.32)

0P b 0D
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Analogously,
08 1, 0K OW
— =-D— + —. 4.
50 17 9% 9% (4.33)
Note that the expressions (4.32)) and (4.33) are chiral and
antichiral, respectively,
08 _ 0S5
D22 =0, D22 =o. 4.34
od b (434)
>From the Egs. (4.32|4.33)) we obtain the equations of motion
in the model (4.24))
1 _,0K oW 1 -, 0K O0W
—-D* — 4+ —=0 —— D+ — =
179 e Y "1V e T e
Further, we will consider only the Wess-Zumino model

which is given by the conditions (4.26)). In such a case the

equations of motion (4.35)) are written as follows

0. (4.35)

— iD% +md + %@2 =0, —im@ +md + 5c1>2 =0.
(4.36)
The next problem we will study is the component form of
the Wess-Zumino model. For this purpose we represent the

chiral and antichiral superfields in the form

O(z) = 0D (AL 0%, +07F),

B(z) = e MOTDIm(A 400 +OPF)  (4.37)
and substitute these expressions into the action

Swz = /dszq)(x,é)ezi(e"mé)a’”@(m,@)

n {/d% (%(I)(.r, 0) + %fbg’(x, 9))

~+complex conjugate } . (4.38)
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Here we transferred the operator e~ 0o 00m from P to ® us-

ing the integration by parts. As to the integrals over chiral
and antichiral superspaces, the factors e*i0o0)0m can be dis-
carded here since we omit the total derivatives. The next
step is to apply the identity and calculate the spinor
derivatives under the integrals. These calculations can be
simplified if we take into account the following properties of
a Berezin integral. The integral [ d*0V singles out only the
coefficient at 6262 in a superfield V. Analogously, the inte-
gral [ d?0® gives the coefficient at 62 in the expansion of a
chiral superfield ®. Therefore, to find the component form of
i d®2®® it is necessary to multiply ® on ® and extract the
only term proportional to #26%. To find the component form
of [ d°z("2®?+ 4,®%) it is sufficient to extract only terms with
6 in the expression 2% + 2®%. The result of these compu-

tations has the form
Swz = /d4x {—87”/_18,”14 — %w%madamq/?d + FF
Ao _ - A
+F(mA+ §A )+ F(mA + §A )
1 1 .
—Z(m + AA)Y Yy — Z(m + AA)%W‘} . (4.39)

In principle, the action (4.39)) can be expressed in terms of
standard four-component spinors instead of two-component

ones. For this purpose we introduce the Dirac v-matrices

m 0 a™ . o)) 0
T =1 - y U5 = 017278 = ’
g™ 0 0 —oy

(4.40)
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and four-component Majorana spinors

I T — 0 — (s
\1/_\/5<1Ed>, \I/—\va—ﬁ(lﬁ,l/}a). (4.41)

It is a technical exercise to check that the action (4.39)) in

term of spinors (4.41f) can be rewritten as
4 m A n A 2
Swz = /d x{—@ A(‘?mA+FF+F(mA+§A )
. = 1 -
1 -

Let us consider now the equations of motion corresponding

to the component action (4.39))

- 1
OA+ F(m+ M) — waa = 0,
Z’O'maol&mq/_}d - (m + /\A>¢a = 07
_ A
F+ (mA+ §A2) = 0. (4.43)
We see that the component fields F' and F enter the equations
(4.43) without derivatives and, therefore, have no non-trivial

dynamics. These fields can be expressed algebraically from

the equations of motion

F=—(mA+ %[12), F=—(mA+ %AQ). (4.44)

Such fields are called auxiliary fields. Substitute the auxiliary
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fields (4.44]) back into the action (4.39)) or (4.42)

~ _ 1_
+%m)\(A + A)AA + }lAZ(AA)2 +
1 . 1 o
+Z)\(A + AT + Z)\(A — AUy U}, (4.45)

As a result, we see that the model under consideration is one
of complex scalar field A and Majorana spinor field ¥ with
special cubic and quartic scalar self-interactions and special
Yukawa coupling. Bosoic and fermionic fields have the same
mass m.

To conclude this section we will discuss briefly the role of
auxiliary fields. As we see, the theory under consideration can
be formulated without these fields. The natural question is
why we need them? To clarify this question let us write the

supersymmetry transformations of component fields (3.74)),
(13.75))

0A(z) = —€e"Yu(z),

6tho(z) = —26,F(1) — 20,6 A(2),

0F(z) = —iea(6™)** Omtba,

0A(z) = —e(z),

She(z) = —2e5F(x) + 2ie®0psAlx),

SF(z) = i€ (6™)aaOmi®. (4.46)

Substituting the auxiliary fields from equations of motion



4.2. Wess-Zumino model 61
(4.44) to the above relations, one gets

0A = —e",,
5A - _Ed"zdv
St = 2e4(mA+ %AQ) — 200,54 A, (4.47)

_ A _
e = 2e4(mA+ 5142) + 2% Do A.

The action Syz (4.45) is automatically invariant under the
transformations (4.47). However, let us calculate the commu-
tators of the transformations (4.47)) with two different param-

eters €1, €5. The result has the form

[0e, 0 ]A = a™OnA, (4.48)

[0e;, 0y |0 = a™ m@/za—i—z’aadsl_z, (4.49)
0%
where @™ = 2i(€20™44€5 — €50 04€Y); o = 0™ aalm- The
equation shows that the supersymmetry algebra is bro-
ken when the auxiliary fields are eliminated. This algebra
is closed only on the equations of motion for spinor fields
Swaz /014 = 0. Hence, the supersymmetry algebra in the the-
ory without auxiliary fields is closed only on-shell (on equa-
tions of motion). This explains the role of auxiliary fields:
they are responsible for off-shell closure of the supersymme-
try algebra.
Let us return back to the superfield formulation of the
Wess-Zumino theory . It has two attractive points in

comparison with the component formulation (4.39):
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i) Using the superfield formulation we work with a single
object ®(z) instead of dealing with set of component

fields A, ¥,, F in the component formulation.
ii) The supersymmetry algebra is automatically closed off-
shell.

4.3 Supersymmetric sigma-model

Conventional (non-supersymmetric) sigma-model is defined as

a scalar field theory with the action

1 A )
Slel =3 / d'29:;(0)Omp' 0™, (4.50)
where ¢ is a set of scalar fields, i = 1,2,...,n. These fields

are considered as the coordinates on a Riemann manifold with
the metric g;;(¢). The action (4.50]) is invariant under the

following reparametrization transformations

o = "= fy),
B 8@"3 890l

= 0 Wﬁkl(@a (4.51)

9i5(0) — gi;(¢)

where fi(ip) are arbitrary smooth functions. We consider here
a supersymmetric generalization of this model.

A supersymmetric sigma-model is a dynamical theory of a
set a chiral and antichiral superfields ®¢(z) ®¢(z) numerated

by the indices 7,2 = 1,2, ..., n with the action

S,[®, 9] = /dgzK(CD, D), (4.52)
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where K (®,®) is a real function of n complex variables &
and their conjugate ®!. The function K (®,®) is defined up

to the following transformations
K(®,®) — K(®,®) + A(®) + A(P), (4.53)

where A(®) is an arbitrary holomorphic function of n complex
variables ®°. Originally, the model was suggested by B.
Zumino. It can be treated as a generalization of the kinetic
term in the Wess-Zumino model since here we consider
n chiral superfields ®° instead one ® and the action
includes an arbitrary function K instead of the special one
K = 00.

To clarify the relation of the model to the sigma-
model , let us find the component form of the action
(4.52). For this purpose we write the component form of su-
perfields as

P = A4 6%, +6*F + ..,
Ot = A4 0N+ PF + ., (4.54)

where dots mean the terms with spatial derivatives of compo-
nent fields. The general procedure of getting the component
form of a superfield action is discussed in section [ 4.1} Fol-
lowing this procedure we represent the action (4.52)) as
1 . _

S, = /d”‘xEDZDQK((I),(I)) = /d4xL. (4.55)
To find the function L we have to fulfil the straightforward
calculations according ([4.15]) taking into account that Dq®' =
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0, Do®! = 0. The final result is written as follows:

L = —Ky(0mAld,A' — FiF + iwamad?&jé‘)
—}lKiﬂ(Fiw%ja — (O AP0 0
Ky (FUi 8 40, Al o™ o 5%0)
o Ky (0 F50%), (1.56)

where we have used the notation

B OPTIK (A, A)
Lol 9 Aie A AL . O AN

K; (4.57)

Comparing Eq. (4.56) with (4.50)), we see that in purely scalar

sector we get a sigma-model of complex scalar fields A’ with
the metric ~
DPK(AA)
DAIDAL
The metric of the form defines the so called K&hler
geometry and the function K (A, A) is called Kdhler potential.
The model is described by complex scalar fields A%,
spinor fields ¢! and auxiliary fields F?. It is convenient to
rewrite the Lagrangian in some another form. Let us
introduce the fields

i (A, A) = (4.58)

) ) 1. .
Fi=F — Zrljkwaﬂng, (4.59)

where I, are the Cristoffel symbols calculated for the metric
gij (4.58) where all derivatives are taken with respect to A’



4.4. Supersymmetric Yang-Mills theories 65
but not to A% Then one gets

_. . _ 7 .. — ..
L = —gii(é)mAl — 0, A" — FLF + Z—lwmamad V o t2%)
1 . U
+ER@MWW§¢?X¢M, (4.60)
where szkl is a curvature tensor

829‘1 _ pq&giﬂ%
0AROAL I AR gAL

The symbol V,, denotes a target-space covariant derivative

lekl = = Kizkl_gpgKikngl‘L (461)

vmq/}(il - mf/fi + Fz]l(amA]) laa
Vs = Ot + Ta(0m A5, (4.62)
The equation (4.89)) shows that the supersymmetric sigma-

model is expressed completely in terms of geometrical objects

as well as the conventional sigma-model.

4.4 Supersymmetric Yang-Mills theories

To formulate the supersymmetric Yang-Mills theory we begin
with the model of chiral ® and antichiral ®; superfields (CE =
(®%)*) with the action

S = / d®2®;®". (4.63)

We assume that these fields carry out a representation of some

compact Lie group. This means that they transform as follows

P — @ = () DI Dy — DL =Di(eN),,  (4.64)

Vi (2
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where A = A'T", A" are some constant parameters and (T")}
are the Hermitian generators satisfying the commutation re-

lation
[T, T7) = if" 5Tk (4.65)

with fI7% being the structure constants. It is evident that
the action is invariant under the transformations of the
type .

Now let us apply a standard trick of localizing the param-
eters A, i.e., we assume that they are some functions of z.
Note that the superfields, ® and ® are chiral and antichiral,
respectively. To preserve this property we have to modify the
transformations considering their as local in superspace

BB =a ey, (460)

Vi 1

(I)/i — (ez’A)z‘

where A is a chiral superfield and A is antichiral one,

Y

A=A ()T", DA (2)
D, . (4.67)

0
A= AT, A(z)=0

In the matrix form the equations (4.66)) are written as
P =erp, P = Pe N (4.68)

However, now the action (4.63) is not invariant under the
transformations (4.68)). Indeed,

S = / P2 = / dB2Pe PN £ / P20, (4.69)
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To provide the invariance under the transformations

(4.66)), (4.67), we modify the action (4.63]) by introduction of

a gauge superfield. It means we consider the new action
S = / d*2®; (V) , @7 = / dB20e*V @, (4.70)

where V = VI(2)TT and V! (2) is a real scalar superfield. The

transformation law of the superfield V' is fixed by requirement

that action (4.70)) is invariant under (4.68|)

/dSZCI)’eZV/@’ = /dgzq)emewlemq)’ = /d82¢62v¢.
(4.71)

Hence, we conclude
o
e e = 2V (4.72)

Thus, if the superfield V'(z) transforms by the rule and
the superfields ®(2), ®(z) transform according to Eq. (4.68),
the action remains invariant. The superfield V(z) is
called gauge superfield and the transformations , ,
are called supergauge transformations. Also V(z) is
called Yang-Mills superfield. The superfields AandA are called
the gauge superfield parameters.

Since we have introduced a new field into the theory, we
have to find the action for this field. Let us introduce the

following superfields

Woz = _%DZ(EQVDQGQV), Wd = —éD2(62deew).
(4.73)
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It is clear that W, and Wj are chiral and antichiral superfields,

respectively,
DyW, =0, D W4 = 0. (4.74)

One can prove that they are the Lie-algebra-valued superfields
W, =WIirt — W,=W:iT. (4.75)
It is easy to see that W, W, transform covariantly under the

supergauge transformations (4.72)). Indeed,

1- /
W(; — —§D2(€_2V Da€2v)

= MV, e — gelADQDae”A = e MV,e7(4.76)

where we have used the relation (3.59¢]) and the chirality of

e~ Analogously,
W = e Wae ™. (4.77)

As a consequence of Eqs. (4.76]), (4.77), the following quanti-
ties
tr(WeW,),  tr(WW9) (4.78)

are invariant under the supergauge transformations. Here “tr”
denotes the trace over the matrix indices of the generators.
Therefore, we can define the action for the gauge superfield
in the form

1 6 « 1 6= 17 1A/
Seyy = e d’z tr(WeW,) + 4—g2/d Ztr(WaWe),
(4.79)
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where ¢ is a coupling constant. The superfields (4.76)), (4.77))
are called the superfield strengths. The action (4.79) is con-

sidered as action of supersymmetric Yang-Mills theory. More-

over, one can show that (up to total divergence)
/ doz tr(WW,) = / dOZ tr(WaWe). (4.80)

Therefore, the final form of the action of super Yang-Mills
theory is
1
SsvulV] = 53 / 02 tr(WOTV,). (4.81)
g
As a result, the action of super Yang-Mills theory coupled to

supersymmetric matter is written as

_ 1 _
S[V,®, ] = Q—QZ/dﬁztr(WaWa)Jr/de@eW@. (4.82)

Further we will discuss two aspects. First, we will find
the superfield equations of motion for the theory (4.82)) and,
second, the component form of the action (4.82)).

To derive the superfield equations of motion, we consider

the variation of
§Ssym[V] = 9—12 / d®z tr(OWW,,)
= _8_;2/d62 D*tr (0(e > Do )W?)
= 2ng / Pz tr (0(e 7 Do )W) . (4.83)

Here we have used Eq. (4.73]) at the second line and equations
(4.8)), (4.11) at the third one. Due to the identity e 2V e?V = 1,
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one gets
Se 2V = e 2V (5e?V)e 2. (4.84)

Applying Eq. (4.84)), the variation (4.83)) reads

1
dSsym[V] = 2—92 dsztr{—6_2v(562v)e_2vDo‘e2v
+e V(DY) } W (4.85)

Now, using the property tr[e=2V(D%e?V )W, ] =
tr[(D*e* )W,e~2V] and integration by parts, after some cal-

culations one gets

1
0Ssyml[V] = 3 d*ztr(e” 2 5e2V)[DW,  (4.86)
+(6_2VD°‘62V)W& + Wa(G_QVDO[GQV)].

>From the variation (4.86)) we see that the superfield equation

of motion for gauge superfield is given by
[DW,, + (e72V D*e* YW, + Wo(e 2V D**)] = 0. (4.87)
Let us introduce the operator D
D, = D, +ily, (4.88)

where
ilq = e 2V (Dye?), (4.89)

which acts on the superfield W, by the rule

DW, = D*W, + i{l* W,}. (4.90)
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Using this operator (4.88)), the equation of motion of super
Yang-Mills theory (4.87)) is written in compact form

DWW, = 0. (4.91)

Now it is a good exercise to show that this equation (4.91))

is invariant under supergauge transformations.
DW! = M (D*W,)e ™ = 0. (4.92)
Indeed,

DW,, = D W/ +e V' (D* )W) + We > (D)

= W (e W,e™™)
+€iA€72V67iADa(eiA62V€7iA)€iAWa€7iA
+€iAWa6—iA€iAe—2V6—i]\Da (emere—iA)

= (De™Woe ™ + e™(DW,)e ™
—eM W, (DY~ ™)
Feihe™2V DoV =M, e~
M W,e~ DYV i)

= (D™MWae ™ + M DW,)e ™
— MW, (Do) + eV (DO ) W,pe ™t
el (D) A, e
+e M Woe 2V (D )e ™ + AW, (D)

= MDW, + e 2V (D)W,
+Woe 2V (D%?V)]e™™ (4.93)
+ (DM Woe ™ 4 (DY ™M) e AW e
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Due to the identity

MDY M e M We T = —(D¥e™)W,e ™, (4.94)

the two terms in the last line of Eq. cancel and we arrive
at Eq. . As a result, if D*W,, = 0 then D"*W/ = 0, that
means the gauge invariance of the equations of motion (4.91)).

The last aspect we discuss in this section is a component
form of the action Sgy s . We start with the component
expansion of a gauge superfield V(z) which was derived in
sect.

V(z) = A+ 0, + 0:,0% + 0*F + 0*°F + (05™0) A,,
LE0ON, + 020,05 + 202D (4.95)
All components here take the values in Lie algebra. First
of all, we will show that the component form (4.95) can be

simplified with the help of gauge transformations. The gauge
transformation (4.72)) in the infinitesimal form reads

VTV = 2 L iAe® — Vil (4.96)

Expanding all exponentials in (4.96)) up to the first order in

V', we have

SV = %(A —A)+O(V). (4.97)

Since the gauge parameter A is a chiral superfield, it can be

written as

A = P70 (u(z) + 0%pa(z) + 62 f(2)), (4.98)
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where u(x), po(x), f(x) are component fields. Then, the equa-

tion (4.97)) reads

Vo= La—u)— %9% + %édﬁd‘ - %er + %éQf

DN | .

+%(00m§)8m(u +a)+ ..., (4.99)

where dots stand for terms with higher space-time derivatives.

Comparison of Eq. (4.95) with (4.99)) shows that the compo-
nents A, 1, Y%, F and F in the expansion (4.95]) can be done

arbitrary and hence they can be gauged away. In the other
words, there exists a gauge where these components are equal
to zero. As a result, the component form of the superfield
V(z) is reduced to

V = (00™0) A, + 020°\, + 620,0% + 0%6°D. (4.100)

The gauge where the superfield V' has the form (4.100) is
called the Wess-Zumino gauge. This gauge can also be fixed

by equations
V=0, D,V|=0, D*V|=0 D*V|=0. (4.101)

It is important to emphasize that in the Wess-Zumino
gauge the series for the exponential €2V is reduced to a finite-

order polynomial. This allows us to write W, in the form
1= 1=
W, = _szpav + Z—lD?[v, D,V]. (4.102)

Next, we apply the general rule

/ d°L. = / d%(—%lDQ)EC, (4.103)
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where L. = #W“Wa in the case under consideration and
W, is given by Eq. (4.102). To find the component action

it is necessary to substitute Eqs. (4.100)), (4.102)) into (4.103))

and compute all the spinor derivatives. The final result is
1 1
SSYM = —2/d4$ tr {——GmnGmn
g 4
—iA* 0" 0 Vi AY + 2D? } , (4.104)
where

VA = 0,A% +i[\*, Al (4.105)

As a result, we see that the super Yang-Mills theory includes

vector field A,,, Majorana spinor ¥ = 5\3 and auxiliary

field D. It is worth pointing out that the Wess-Zumino gauge
(4.101]) does not fix completely a gauge freedom of the theory.
The residual gauge symmetry corresponds to gauge freedom in

conventional Yang-Mills theory coupled to Majorana spinor.
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5.1 A scheme of perturbation expansion in

quantum field theory

The purpose of this section is to remind a scheme of pertur-
bation expansion in quantum field theory. The basic notion
of such a construction is the generating functional of Green
functions given in terms of path integral.

Let ¢ be a set of fields in the model with action S[¢].
The generating functional of Green functions is defined as the

following path integral
200 = / DS+ (@) @) (5.1)

The external field J(z) is called a source. The Green functions

are expressed on the base of Z[J] by the rule

o 5n Z[J]
Cnl@r, o) = Zon Sy i@ |,

To develop the perturbation expansion of Green functions

one writes the action as a sum of quadratic part Sy[¢|, which

75
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corresponds to the free action, and interaction S;,;[¢] which

includes higher powers of fields. The generating functional

(5.1]) is represented as
where

Zo[J] — /D(bei(SoJrf dzd(z)J(z)) _ e%fdxdm’](z)D(x,x’)J(x’) (54)

and D(x,z’) in is the Feynman propagator.

The perturbation series for Green functions arise when
the equations , are substituted into Eq. and
eiSinel37] ig expanded in power series in Smt[%] and the differ-
entiation with respect to source J(z) is fulfilled. The result
is described by Feynman diagrams where the propagator is
defined by the quadratic part of the action and the vertices
are created by Si[¢@].

There is a simple rule illustrating how to find the Feynman

propagator. Consider the following action

Sild) = 5 [ (@) Fuo(o) 55

where F), is some differential operator acting on space-time
coordinate 2™, and introduce the source field J(z) by adding

an extra term to ((5.5). Then ones get the action

Sl + [ d@yola). (5.6)
The equation of motion in the model (/5.6)) is

Fepy(x) + J(x) = 0, (5.7)
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where ¢;(z) is the field in the theory with source J(z). The
Feynman propagator is defined by the rule

)
D(z,2") = % (5.8)
Then, Eq. leads to
F,D(x,2') = §*(x — 2'). (5.9)

As a result, we see that the Feynman propagator can be de-

fined as a solution of the equation (5.9)).

5.2 Superpropagators in the Wess-Zumino

model

Now we turn to the Wess-Zumino model with the action
_ A
S = /d82<1>¢>+/d62 (%cb%u 5@3)
+/d6z Mg2 ié?’
2 3!

= So[®, D] + Sii[®, D), (5.10)
where
Sol®, 3] = /d8z®<1>+/d6z%<b2+/d6‘%®2,
T >\ 6 3 )\ 6 =13

To find the propagators in this theory we will follow the

procedure sketched in the previous section. For this purpose
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we introduce the sources as new external superfields. Since
there are two superfields, ®(z) and ®(z), which are chiral and
antichiral the corresponding sources J(z) and J(z) should also
be chiral and antichiral, respectively. The free action in the

theory with sources has the form

/d%i@—i—/d%%qﬂ+/d6z%§>2+/d6zéj+/dﬁz@j.

(5.12)
The equations of motion corresponding to the action (5.12))

are

1 _ _
— ZDQCI)J—i—mCI)J—i— J = 0,

1-.-
—ZDQ@J +m®;+J = 0. (5.13)

The theory under consideration is characterized by the

matrix propagator with the following elements

n_ 09,(2) N 09,(2)
G++<Z7’Z) Z(SJ(Z,)’ GJr*(Z?Z) - Zéj(Z,)’
, 5@](2) , 5(@] Z)
_ __ = — . 14
G -‘r(’z?Z) ZéJ(Z/)’ G (sz) Z(SJ(Z/) (5 )
The indices “+” and “—” mean that the propagator is chiral

or antichiral with respect to the corresponding argument. For

example,
De(2)Gi4(2,2') =0, Do:nG-_(2,7") = 0. (5.15)

Next, we calculate the variational derivatives of Egs. (5.13))
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over the sources J(z) and J(2)

1

— ZD2G++ +mG_ = 0,

_iD?G+ +mG__ = i6_(z,2),

—iDQG_JF +mGyy = i04(2,2),

—iDQG__ +mG,_ = 0. (5.16)

Here 0, and d_ are chiral and antichiral delta-functions de-

fined as follows

5i(27) = —%lD254(x — N0 0)

_ _%D%S(z _ 2, (5.17)
5 (27) = —%ID%‘*(QC — N0 — )

_ —;lDQ(Sg(z _ ) (5.18)

Satisfying the (anti)chirality conditions
Dy (z,2') =0, Dndé_(z,2") = 0. (5.19)

Egs. (5.16)) allow us to express the propagators G_, G _
through G, G__ as follows

1 1 -
L =—D? _=—D*G__. 2
Gy = DGy,  Goo=_ DG (5.20)
Substituting Eqs, ((5.20]) into other equations (5.16)), one gets
1 _
— ——D?D?’G__4+mG__ =id_,
16m
1 _
—_D2D2G++ + mG++ = Z(S+ (521)

16m
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Next, we apply the identities (3.59)) for chiral and antichiral
superfields

1, - 1 -
EDQDQG,, =0G__, 1—61)21)2(;++ =0G,, (5.22)

and arrive at the following equations for the propagators

O-m*)G__ = —imé_,
(O-m*)Gyy = —imd,. (5.23)

The solutions of the equations (5.23|) are written as
—im —im

G —_— "M Gy = ——
O—m2+ie T O-m2tie

5_. (5.24)

Here we have used the Feyman prescription defying the causal
Green function. Now we have to substitute Eqs. (5.24]) into
(5.20) and find G_,,G,_. As a result, the matrix propagator

in the model under consideration is

i 5. D%
G —Z(”“ 1 ) (5.25)

T O-m2+ie\ iD%, md_

The matrix (5.25)) is called the superpropagator in the Wess-
Zumino model.

The superpropagator can be transformed to a more
useful form. Note that the superpropagator contains the
delta-functions of different chiralities. Therefore we have to
consider separately the chiral vertex 2 [d°z®* and the an-
tichiral one % [ d5z®3. However, it is possible to rewrite the

superpropagator in such a form where all its matrix elements
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contain the only delta-function §%(z — 2’) and, moreover,
the superpropagator will have extra D2, D? factors which
help to transform the integrals over chiral or antichiral sub-
spaces to the integrals over the full superspace. For this

purpose we substitute the explicit expressions for (anti)chiral

delta-functions (5.17)), (5.18]) into the matrix (5.25))

s _mD258 _LD2D268
G=— v Kl 16 . (5.26)
O—m?2+ie —xD*D?*6% -2 D?*®

Next, we apply the identities (3.59d)) in the form

D2: D2D2D2 D2: D2D2D2
160 1601
As a result, the expression for the superpropagator ([5.26) is

written in the form

(5.27)

' m D?D?D? D*D?
__ v | 4 16 16
G = O— m2 +ic D;DI;;S mD}D2D268 )
16 4 16
(5.28)
or
N2 12 71N2
1 mD'D"D” e 55(s _ o
Gy =L | 47O R PGl
’ 16 D2p? m D*D"D O —m?2+ie
4 ]
(5.29)

The expression contains a single delta-function §%(z —
z') and some number of D- and D-factors. Although the form
of the superpropagator looks complicated in compar-
ison with form it actually much more convenient for

constructing the perturbation theory.



82 Superfield perturbation theory
5.3 Supergraphs

The Feynman diagrams in the theory under consideration are
constructed on the basis of standard prescriptions. The ma-
trix elements of the superpropagator correspond to lines
in the diagrams and the integrations § [ d®z, 3 [ dz are as-
sociated with the corresponding vertices. The only point we
have to control is the consistency of chirality and antichirality
of propagators with the chirality or antichirality of vertices.
It is worth emphasizing that the diagrams are completely for-
mulated in superfield terms. Therefore they are called super-
graphs.

Let us consider some chiral vertex within a supergraph

21

~

22 (5.30)

There are three internal lines attached to the chiral vertex,
therefore the corresponding contribution to the Feynman
graph looks like

/dGZGA+(Z/,Z)G+B(Z, 21)G (2, 29), (5.31)

where A, B,C = +,— are the signs (chiralities) of nearest
vertices. The propagators G 4p are given by Eq. (5.29)). The
equation (5.29) shows that each propagator G 4. (2, z) has the
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structure (...). (—3D?)6%(2' —z). Therefore, the factor D? can
be used under the integral (5.31]) to form the full measure d®z.

Let one of the lines in (5.30)) is external one of the whole
diagram. In this case we have the contribution

/d62®(z)G+A(z,zl)G+B(z, 23). (5.32)

From Eq. we see that any propagator G 4(z,z;) has
the factor —3D?2(...). Due to chirality of the superfield ®(z),
one can use the factor —iDz to obtain the integral over the
full superspace [ d®z(—1D?)(...) = [d®z(...).

Analogous consideration is also valid for antichiral vertex.
The factors —}LDE can be used to restore the full superspace
measure d®z in the correspond vertices. As a result, we see
that all vertices in supergraphs correspond to the integrals

over full superspace only.

We would like to note also that each matrix element of
(5.29) contains the operator D, and Ds. Some of them are
used to form the full superspace measure, other will treated

as the operators in vertices acting on the lines. It corresponds
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to the following rules for the lines in supergraphs

?

O P-line: z.—2‘z’: AR Bz —2)=K,_,

PP-line: z_'ﬂz': K, = izﬁﬁég(z —2)
- ZDQ K, (5.33)

O P-line: ZHTZL.Z/: K _= iDQD(Di—%58(z -2
- ﬂfm) K, (5.34)

As a result, the lines can bear the factors D,, D, acting on
the function K, _. The matrix with the elements K, ,, K, _,
K_., K__ is called the improved superpropagator.

The factors D,, D, can be transferred from one line to

another with the help of integration by parts. For example,

_Da
= -

D,
-D,

This manipulation allows us to remove all D-factor from at
least one Grassmann J-function and integrate over one of
d*6. Since each of the propagators contains the delta-function
§4(6 — "), we can decrease a number of integrations over d*6.

As usual, one can make transformation from coordinate

to the momentum space with the help of standard Fourier
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transform. In the momentum picture all spatial derivatives

0,, become the operators of multiplication on —ip,,

am - _ipm7
Da - Da(p) = aoz + (Um)adédpma
Dd — Da(p) = —6d — Ho‘crmadpm. (535)

It is easy to check the following anticommutation relations for

the operators ([5.35))

(Do Dg} =0,  {Da, Dy} =0,

{Da(p)’Dd(p)} = _20madpm. (536)

All further considerations are analogous to the ones in the
conventional quantum field theory and we do not discuss that.
Here we emphasized only these aspects which are specific just

to superfield theories.

5.4 Non-renormalization theorem

A non-renormalization theorem in supersymmetric quantum
field theory concerns superfiled structure of the effective ac-
tion and, as a consequence, explains the specific features of
quantum corrections in component form. In particular, this
theorem explains the cancelations of divergences in such the-
ories.

By definition, the effective action is a generating func-

tional of connected one particle irreducible amputated Green
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functions. In conventional quantum field theory it has the

following general form

['¢] = Z % /dxl dr, T (2, ) o(@) - d(),
"= (5.37)

where T (zq, ... ,T,) are connected one-particle irreducible
amputated Green functions and ¢(z) denotes all fields enter-
ing the theory.

The non-renormalization theorem in N = 1 supersymmet-
ric quantum field theory states that each term in the effective
action can be expressed as an integral over a single d*f. In
the other words, any supergraph contributing to effective ac-
tion can be presented in the form with a single integral over
full superspace. It means that the superfield effective action
is always local in anticommuting coordinates.

The general idea of the proof is based on the observa-
tion that the superpropagator contains the Grassmann
delta-function 6*(0 — ¢') allowing to fulfill all integrals over
anticommuting variables except ondﬂ

Proof. Consider arbitrary one-particle irreducible L-loop

supergraph. As we know, at each vertex there is the inte-

"'We consider the non-renormalization theorem only for Wess-Zumino
model. General consideration is given e.g. in the books S.J. Gates, M.T.
Grisaru, M. Rocek, W. Siegel, Superspace or One Thousand and One
Lessons in Supersymmetry, Addison-Wisley, 1983; hep-th/0108200 and
I.L. Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry
and Supergravity or a Walk Through Superspace, Bristol, IOP Publ.,
1998.
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gration over d'f and each line includes §*(6 — 6') with some
number of factors D,, D, acting on this delta-function. We
omit here the dependence of a supergraph on the internal
and external momenta since it has no relation to the problem
under discussion. Consider in the supergraph a fixed loop in-
volving, say, n vertices. It is clear that there will be a cycle

of Grassmann delta-functions associated with propagators
54 (01 — 02)0%(0y — 05) ... 0%(6, — 0)) (5.38)

with some number of derivatives D,, D, acting on é-functions.
Integrating by parts, we can transfer all the spinor derivatives
acting on §%(f; — 0) to the delta functions §*(6, — 65) or
5%4(0, — 0) or to the external lines of the loop supergraph.
Then, one integrates over 6y and uses 54(91 — 05) to replace 60y
by 61 everywhere. After that, we continue this process n — 3
times with the remaining delta-functions. As a result, the
cycle is reduced to a single delta-function. The expression for

the supergraph takes the following schematic form

/d491 11 / A0 f(00,0)[D ... DD ... D5 (0 — 1), —o..
! (5.39)

Here the index A enumerates the vertices external to the given
loop which appear with some factors f(0;,604). The expres-
sion [D...DD...D§* 0, — 01)]]g,—e, in (5.39) can be easily
evaluated. First, using the anticommutation relations among
the spinor derivatives Dy, Dy, (3.55)), any product of them

is reduced to an expression involving no more than four such
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factors. Since 6*(0, — 01) = (0, — 61)*(0, — 6,)%, we need

exactly two derivatives D, and two D, ones, otherwise the
expression [D...DD ... D3* (6, — 01)]|g,—s, is zero. Then we
use the identity

1 _
1—6D2D254(0n —01)|0,=0, = 1. (5.40)

As a result, the loop is shrunk into a point with respect to
the anticommuting variables.

Continuing the above procedure loop-by-loop one reduces
the whole supergraph to a point in #-space and the total con-

tribution takes the form
/d4p1---d4pL/d40F(p1a'~'7pL7079_)7 (541)

where p; are the internal momenta associated with the loops.
This finalizes the proof of the theorem.

Let us discuss the consequences of this theorem.

1. According to the non-renormalization theorem, the ef-
fective action is represented in the form with single integration
over d*f. For example, in the Wess-Zumino model it has the

following general structure

e, o = Z/d4361 . ..d4xn/d4(9gn(x1, ooy @) F1 (21, 0)
n=2
o Fo(xy,, 0), (5.42)

where G, are the translationally invariant functions of the

Minkowski space coordinates and Fi, F5,..., I, are the local
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functions of superfields ®, ® and their covariant derivatives

F’i = Fl(¢zaéZaDMq)l7DM§)27)7

2. All vacuum supergraphs vanish. Indeed, according to
the non-renormalization theorem, any vacuum supergraph is

written as
A/d49-1, (5.44)

where A is a #-independent loop momentum integral. But
Jd*91=0.

3. There are no (anti)chiral divergences in the Wess-
Zumino model. Indeed, the divergences are (quasi)local in
space-time, therefore in given case any (anti)chiral divergent
supergraph contribution to effective action must be local in

Minkowski space and hence is written as
/ d*xd*OW (D) + / d*xd*ON (D). (5.45)

But all expressions of the form are forbidden by the
non-renormalization theorem, since the general structure of
the effective action is given by with the integration
over d*d, not over d%6 or d26.

At first sight, the renormalization theorem prohibits any
contributions to the (anti)chiral potentials. In fact, it is not
true and the finite corrections are possible. For example, let
us consider the identity

1 [ o D> [
-4 dzEG_/de, (5.46)
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where G is a chiral superfield. Therefore, a finite term of
the type [ d®2(—12) is unprohibited in and can give
a contribution to the purely chiral quantum corrections. We
emphasize that this finite term is non-local in x-space while
the divergent terms are always loca]E|.

4. Non-renormalization theorem immediately shows that
there is the only renormalization constant in the Wess-Zumino
model.

The standard arguments tell us that the renormalization

of the Wess-Zumino model is described by the transformation

O =2"0p, & =2"Ds m=zmmp A=A
(5.47)
where the label R means the renormalized quantity and 2z,
Zm, %) are renormalization constants. Substituting Eqgs.
into the Wess-Zumino action , we obtain the correspond-

ing renormalized action
- 1
Sp = /d8221¢R¢R+ [/dﬁz(§zlzmm3q>%

1
+ yz,\zi’/z)\RCD?j%) + complex conjugate| ,(5.48)

But, according to the non-renormalization theorem, there are

no divergent contributions to the (anti)chiral potentials, i.e.,

1 2 A 3 1 2 AR 3
2The calculations of chiral quantum corrections to effective action is
considered in the book I.L. Buchbinder, S.M. Kuzenko, Ideas and Meth-
ods of Supersymmetry and Supergravity or a Walk Through Superspace,

Bristol, IOP Publ., 1998.
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Hence,

212m = 1, zfmz,\ =1, (5.50)

and we conclude that the model is characterized by the only

independent renormalization constant z;.



6 Problems

6.1 Lorentz and Poincare groups

Problem 1.1. Let the matrices A; and A, satisfy the relation
ATpA =, (P1)

where n = diag(—1,1,1,1). Show that the matrix AsA; sat-
isfy the relation (P1) as well.

Problem 1.2. Let (a,A) be some non-homogeneous Lorentz
transformation. Show that the set of such transformations

form a group with the following multiplication low

(ag, Ao)(ar, A1) = (Asar + ag, Ag/Ay). (P2)

Problem 1.3. Prove the identities
NeNT =¢, NTe'N =& (P3)

0 -1
where € = ) and N is a complex 2 X 2 matrix with

the unit determinant, det N = 1.
92
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Problem 1.4. Prove the equality

o, )

©1%Poa = P71 P20 (P4)
where ¢!, = N,Pp5 and ¢* = ey
Problem 1.5. Prove the relations

O P20 = —P5 Plas Xlaxg = —anx‘f- (P5)

Problem 1.6. Let (0,,)as = (00, 01,09, 03) are the following

(10 (01
“\lo1) " 10/
= (10
2=\ o) BP0 o1 )

Introduce also the matrices 7, by the rules

matrices

(Gm)*" = e () g5, Tm = (00, —01,—02,—03). (P6)

Prove the identities

(O-m&n + O-na-m)aﬁ - _27]mn6§7
(O'mo'n + 0pom dg = _277mn§§>
tr(omdn) = —20mn,

(0™)aa(Fm)" = 25250, (P7)
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Problem 1.7. Any vector index m can be transformed to a

couple of spinor ones acv by the rules

1 .
Vao’c = (Um)advma Vm = _5(6m)aavad¢

1 .
Wad = (O-m>(ldWm7 Wm - _§<5-m>aaWad’ (PS)
Check the identity
1 A
Vo W = —§VadW‘m. (P9)

Problem 1.8. Consider the matrices

1
(O'mn)aﬁ = _Z<0m&n - O'na'm)ozﬁa
~ & L, . ~ &
(Grmn) 5 = _Z(ngn — 0n0m)” (P10)

where the matrices o, are given by (P6)). Show that any
antisymmetric tensor H,,, = —H,,, is equivalent to a pair of
two symmetric spin-tensors hag, hs; and they are related as

follows

Hmn = (Umn)oaﬁhaﬂ - (6mn)a6hdga

mn _ 1/~mn (Pll)
(U )OlﬁHmn7 h‘d,@ - —5(0' )aﬁHmn

N[

hag =

Problem 1.9. Let F,,, = 0,,A, — 0,A,, be an electromag-
netic strength tensor. Consider the corresponding spin-tensor

components of the strength tensor

1 mn 1 ~mn
Fag = 5(0™)agFrms Fag= =50 )agFon:  (P12)
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a. Express the spin-tensors Fog, Fy, 5 through the following

objects
Aaa = (O'm)adA s 8aa = (O'm)ada . (P13)
Answer:
1 & &
Faﬁ - —Z(aadAﬁ + 85dAa),
1, .. N
Fap = Z(aaAaﬁ' + 3514(1@)- (P14)

b. Express F™"F,, through the spin-tensors Fug, Fg.

Answer:

F™ Fp = 2F* Fog + 2F*F, 5. (P15)

Problem 1.10. Show that the expression u™ = ¢*(0™)aax®

is a four-vector with respect to the Lorentz rotations.

Problem 1.11. Prove that under the non-homogeneous
Lorentz transformations a vector field ¢"(x) transforms by

the rule
St™(x) = —a"Opt™ () + Wt (x) — Wz, t™ (x).  (P16)
Check that the transformations (P16]) can be written as

17 () = —id! ()"t () + 57 ()t (2), (P17)
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where the operators P,, J,.; are given by

(Pr>mn = 61?(_2-87')7
(Jrs)mn = nrkxk(Ps)mn - nskxk(Pr)mn + (Mrs)mn7
(Mys)"n = i(5;"77m — 0, Nsn)- (P18)

Problem 1.12. Show that the operators P,, J., given by
Egs. (P18) satisfy the following commutation relations

[PT? PS] = 07
[JT'S7 Pm] - Z(nrmPs - T]SmPT')7 (Plg)
[Jmna Jrs] = Z-<7]m1"t]ns - nmanr + nnsjmr - nnrt]ms)-

Problem 1.13. Consider the operators [[]
C, = P"P,, = P?, Cy = W™W,, = W2, (P20)

where W™ = %EmmsPnJrs. Prove the following relations

[, Wa] =0, (P21a)
[Jins Wel = i Wine = e Wha), (P21b)
(Won, Wol = i€mmes W' P, (P21c)
[C1,Pn] = 0,  [Ci,Jmn] =0, (P21d)
[Co, Pn] = 0,  [Co,Jma] =0. (P21e)

!The operators C; and Cy given by Eq. (P20)) are called Casimir
operators of the Poincare group.
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6.2 Superspace and superfields

Problem 2.1. Prove the relations

1 _ 1 _
0,05 = §5a592, edeﬁ = —55(.15-82,
1 s 1 .-
0°6° = —550‘562, 0408 = 5{5&592’ (P22)

where 0% = 020, = %040, 0> = 0,0° = €d5§5§d.

Problem 2.2. Let the supercharges are given by

Qo = 104 + 0"0%0,,, Q4 = —i04 — 0°0™0,,.  (P23)
Let the covariant spinor derivatives are searched in the form
Da = clﬁa + Cgﬁgdédam, Dd = C35d + 049‘“05}187% (P24)

with some unknown coefficients c¢;, ¢, ¢3, ¢4. Find these

coefficients from the following anticommutation relations of

spinor derivatives (P24]) with the supercharges (P23))
{Da,Qs} =0, {Da,Qs} =0,
{Dd, ng} - 0, {Dd, QB} - 0 (P25)
Problem 2.3. Show that the covariant spinor derivatives

Dy = 04 +i0m0%,, = O0g + 10%0na,
_50'1 — i@aagdﬁm == _5d - i@aﬁad (P26)

]
o
I
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satisfy the following (anti)commutation relations

{DomDﬁ} = 07 {Ddé?DB} :O,
[Donam] = 0; [Ddaam] :O7
(Da,Da} = —2i0us = 2Pus. (P27)

Problem 2.4. Prove the following identities with the covari-

ant derivatives

D?’DyD* =0,  D?*D,D?* =0,
D*D?D,, = DyD?*D*,
D?D? + D?*D? —2D*D?*D,, = 160,
D?*D?D? = 16D*0, D?*D?D? = 16D°0,
[D?, Dy) = —4i0,4 D, [D?, D] = 4i0,6D%. (P28)

Problem 2.5. Show that the operators

1 - 1 _
Por = g0 P Po=1eg? "
1 _
Poy = —S—DDQD2Da (P29)

satisfy the following conditions for projection operators

P+)+ Py +Po =1 PuyPy =%Pu, t.j=+,-,0.
(P30)



6.2. Superspace and superfields 99
Problem 2.6. Consider the operators

Py = —iOp,
Jun = (@0 — T + (On) 0005 — (Grn) P 8:05),
Qo = 0+ (0™)aal O,

Qs = —i0s — 0*(0™)0aOm. (P31)

Show that the operators (P31])) obey the (anti)commutation

relations of Poincare superalgebra

[Py Pa] =0, [Jons Pr] = e P — i P,
[Jons Jrs] = e Ins — s Inr + NnsImr — e Jms,
[Joms Qal = 1(Omn)a’ Qﬁv [Py Qa) = 0,

[T, @] = i(Gmn)*3Q°, [P, Q%] =0,

{Qa,Qs} = 0, {Qs,Q4} =0,
{Qom@ﬁ'} = 2<0m)ade~ (P32)

Problem 2.7. Consider a superfield
D(y,0) = A(y) + 0°¢aly) + 0°F(y), (P33)

where y™ = 2™ + i0%(0™)aa0* = 2™ + i(fo™f). Prove the
identity

O(z,0,0) = d(z+i(000),0) = A( ) + 0% () + 02 F(z)
+i(05™0)0,, A(z) + 929 (6™)**Optha ()

—39252514(:5). (P34)
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Problem 2.8. Prove the identities

e~ 0 00m ) 0 0m 4 2iG4,,
=100 (1000 5.

(0T 00m =i 00 _

0T 00m P o=il6o 00 — 5. 2igog, . (P35)

Problem 2.9. Let ®(x,0,0) be a chiral superfield with the
component decomposition (P34)). Show that under the super-

symmetry translations
5B = i(€* Qo + £4 Q%) (P36)

the component fields A(z), 1, (x), F(x) transform by the rules

514(25) = _ﬁawa ('1')7
6V (r) = —26,F(x) — 2ie%0,5A(z),
6F(z) = —i€s(6™)*Opmtbalr). (P37)

Problem 2.10. Show that the expression
PO—-0)=0-0)Y=0-0)0-0), (P38)

satisfy the definition of delta-function with respect to the an-

ticommuting variables
/ Q20520 — 0V F(0') = F(0), (P39)

Where F () is an arbitrary superfunction, d*6 = }lgo‘ﬁdﬁadﬁﬁ,
[ d6.0° = 6.
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6.3 Superfield models

Problem 3.1. Prove the identity
_ 1., -
/ d*zd*0L, = / d4x(—1D2)L’c (P40)
for arbitrary antichiral superfield L..

Problem 3.2. Let V(x,0,0) be a real scalar superfield with
the following classical action

1 _
S[V] = 3 / d*2VD*D*D,V + m? / d*2V?2. (P41)
Prove the following statements.

a. The action (P41)) can be represented in the form
1
S[V] = 3 / d°2WoW,, + m? / d®2V?, (P42)
where W, = —1D*D, V.

b. The action (P41)) leads to the following equation of mo-
tion for the field V

1 _
gDO‘DQDaV +m?V = 0. (P43)

c. The equation (P43) has the following differential conse-
quences

D*V =0, D?V =0. (P44)
Hint: use the identities D?D4D? = 0, D>D,D? = 0.
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d. The equation of motion (P43)) leads to the mass-shell
condition for the superfield V/

(O—-m?)V =0. (P45)
Hint: apply the identity D?D? + D?D? — 2D*D?D,, =
1601.
Problem 3.3. Consider the following operators
D, = e*QVDaew, Dy = Dy,
D = +{DuDil, (P46)
where V' is a real scalar superfield.
a. Check that under the gauge transformations
eV = ehe?Ve DgA =0, (P47)
the operators transform by the rules
D) = e*Dye ™, (P48)
where A = «, &, ad.

b. Let us introduce the superfields I'4 by the following re-
lations
Da= Dy +il'y, (P49)

where Dy = (Dg, Dg, Ona). Show that

iTy = e 2V (Dye?),  Tas==Dsla. (P50)
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c. Prove the relations
{D,,Ds} =0, [Da, Dyy) = 2ie; W, (P51)

where W5 = —£ D%V (Dge?").

Problem 3.4. Consider the model of chiral and antichiral
superfields with the action

S[®,®,V] = / d®20e*V @, (P52)
where V' is an external abelian superfield.

a. Show that the equation of motion for the field ® in the

model (P52)) is

1
— ZD%”@ =0. (P53)

b. Using the relations (P51]) show that the equation of mo-

tion (P53)) can be rewritten as
1
[D"D,, — WD, — §(DO‘WQ)](I> =0, (P54)
where D,, = —%(am)adDad.
Problem 3.5. Let xq, X4 be some spinorial (anticommuting)

superfields satisfying the (anti)chirality conditions Dgy, = 0,
D,xa = 0. Let the action is given by

S, x] = —/dszG2 —m2/d62X2 —m"‘/d%‘& (P55)

where G = 1(D%x + Dax®) = G.
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Problems

Prove the relations

D*G =0, D*G=0. (P56)

Show that the action (P55]) leads to the following equa-

tions of motion

1 1 .-
§D2DQG +m?xa = 0, gD?DdG +m2xq = 0.
(P57)

Show that on the equations of motion (P57)) the super-
fields x., Xa satisfy the constraint

Do = DaX*. (P58)
Hint: apply the identity D*D?D, = DsD?*D*.
Show that the equations of motion (P57) are equivalent
to the equations
1

O—m*)xa =0 Yo = ———0aaD’Xx*. (P59

(O —m)x ;X yyoe x*. (P59)
Hint: use the following identity for the chiral superfield

Xo
D*D*y, = 160x4. (P60)
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