УДК 579.222.4

# М. А. Сергеева, С. В. Шкребова

# ДИНАМИКА МИКРОБНОЙ БИОМАССЫ ОЛИГОТРОФНОГО БОЛОТА

Методом субстрат-индуцированного дыхания (СИД) впервые изучена динамика скорости базального дыхания, микробная биомасса и метаболический коэффициент торфяной залежи олиготрофного болота (северовосточная часть Васюганского болота). Определено, что в среднем за сезон значения микробной биомассы с глубиной изменяются незначительно, а интенсивность базального дыхания выше в аэробных слоях.

**Ключевые слова:** олиготрофное болото, микробиологическая активность, метод СИД, микробная биомасса, базальное дыхание, метаболический коэффициент.

# ВВЕДЕНИЕ

Микробная биомасса — важный компонент в развитии и функционировании торфяно-болотных экосистем. Западная Сибирь, территория которой на 40–60 % занята болотами, является уникальным объектом для исследования микробных сообществ торфяных почв.

Об особенностях болотных микробоценозов, их динамике и функционировании сведений очень мало. Большая часть микробиологических работ, оценивающих распределение и запасы микробной биомассы по профилю торфяной почвы, в том числе и по сезонам [1–5], выполнены методом люминесцентной микроскопии, который позволяет четко дифференцировать эукариотные и прокариотные клетки, однако не позволяет судить об их активности и экофизиологическом статусе [6]. Именно поэтому устойчивая количественная оценка биомассы торфов остается неопределенной, а вопросы, связанные с ее функционированием и, соответственно, продуцированием парниковых газов, во многом остаются до сих пор неясными.

Все эти ограничения могут быть преодолены использованием метода субстрат-индуцированного дыхания (СИД), который дает информацию о взаимосвязи величины микробной биомассы, ее дыхательной активности и параметрах экофизиологического статуса микробного сообщества. Метод СИД является чувствительным, воспроизводимым, менее трудо- и времязатратным, а также менее субъективным по сравнению, например, с методом прямой люминесцентной микроскопии [7, 8].

Метод СИД входит в перечень стандартных параметров, характеризующих биологические свойства почв в ряде зарубежных стран [9, 10], поэтому применение этого метода является новым и весьма эффективным подходом в экологических исследованиях, проводимых в нашей стране. Большинство микробиологических исследований проведенных методом СИД, относятся к минеральным лесным почвам [6, 11–14], работы, оценивающие микробоценозы торфяных почв методом СИД, единичны [15–18].

Цель работы – изучить динамику микробного продуцирования CO<sub>2</sub> и экофизиологический статус

микробного сообщества олиготрофного болота (северо-восточная часть Васюганского болота) в погодных условиях 2012 г.

Такие исследования на территории Васюганского болота проводятся впервые и представляют научную значимость при оценке микробиологической активности в эмиссии парниковых газов с болотных экосистем такого уровня.

#### МАТЕРИАЛЫ И МЕТОДЫ

Исследования проводились на пункте 3 (п. 3) болотного стационара «Васюганье», расположенном на северо-восточных отрогах Васюганского болота (п. Полынянка Бакчарского района Томской области). Торфяная залежь мощностью 3 м имеет смешанный топяной вид строения. В основании залежи лежит слой низинного осокового торфа, далее следует прослойка переходного древесно-сфагнового торфа и верховой торф двух видов – магелланикум и фускум. Степень разложения с глубиной увеличивается, в верхних слоях она составляет 0–5 %, в придонных слоях достигает 45 %.

Зольность торфов низкая (2,7–4,3 %), pH солевой вытяжки варьирует в пределах 2,4–4,2, увеличиваясь с глубиной, что характеризует торфа как кислые и слабокислые [19].

Образцы на микробиологический анализ отбирались в мае, июле и сентябре 2012 г. торфяным буром ТБГ-1 согласно ботаническому составу.

Определение респирометрических микробиологических показателей (базальное дыхание (БД), микробная биомасса (БМ), микробный метаболический коэффициент (QR)) проводилось методом субстрат-индуцированного дыхания.

Субстрат-индуцированное дыхание (СИД) оценивали по скорости начального максимального дыхания микроорганизмов после добавления к торфу глюкозо-минеральной смеси [11, 20]. В стеклянные флаконы объемом 250 мл помещали 2 г торфа и добавляли 0,1 мл глюкозо-минеральной смеси [21]. Флаконы герметично закрывали пробками, фиксировали время и инкубировали при 25 °С. Спустя 3 ч отбирали пробу воздуха из флакона и вводили в газовый хроматограф «Кристалл-5000.1».

Микробную биомассу торфа (мкг С/г торфа) рассчитывали на сухую навеску и определяли путем пересчета скорости субстрат-индуцированного дыхания по формуле [11]:

$$БM = CИД \cdot 40,04 + 0,37.$$

Базальное дыхание (БД) измеряли по скорости выделения  $CO_2$  торфом за 24 ч инкубации при температуре 25 °C. Скорость продуцирования диоксида углерода определяли хроматографически, как описано для СИД, но вместо раствора ГМС добавляли воду. Скорость БД выражали в мкг  $C-CO_2/(\Gamma$  торфа · ч).

Микробный метаболический (QR) коэффициент рассчитывали как отношение БД и СИД [11].

Статистическая обработка данных проведена с использованием программы Microsoft Excel, в рисунках приведены средние арифметические значения с двухсторонним доверительным интервалом для пяти биологических повторностей.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В связи с незначительным количеством подобных работ по торфяным почвам, как уже упоминалось выше, в первой части работы мы приведем результаты, рассчитанные в среднем для вегетационного периода 2012 г., которые позволят провести сравнение с результатами других авторов.

Так, в работах И. Д. Гродницкой [15], проведенных на олиготрофном болоте Озерное, расположенном в Томской области, отмечается незначительное увеличение БМ с глубиной. В верхних горизонтах этого болота средние значения микробной биомассы составили 0,6 мг/г торфа, но и на глубине 300 см микробная биомасса не превышает 1,9 мг/г торфа. Более высокие значения БМ в анаэробных горизонтах авторы объясняют тем, что процессы разложения органического вещества в

них протекают более интенсивно за счет одновременной активизации факультативно-анаэробной и анаэробной микрофлоры [15].

Аналогичная закономерность отмечается и в наших результатах. В целом активность исследуемой торфяной залежи выше, но изменения БМ в торфяном профиле в среднем за сезон по глубине незначительны и характеризуются высокой активностью и в верхних, и в нижних слоях (3,6–3,8 мг С/г с.т.) (рис. 1). Полученные данные подтверждают уже высказанную ранее рядом авторов мысль, что нижние слои торфяной залежи нельзя считать «стерильными», а в понятие «торфяная почва» должна быть включена вся толща торфяной залежи независимо от ее мощности [4, 22].

Средняя за сезон интенсивность базального дыхания также с глубиной снижается и изменяется от 5,2 до 4,1 мкг  $C-CO_2/(r \cdot q)$ , на глубине 0–25 и 200–250 см соответственно, что совпадает с данными, приведенными в работах других исследователей, проведенных и на торфяных, и на минеральных лесных почвах [12, 15].

Значения метаболического коэффициента, который является критерием устойчивости микробных сообществ и индикатором эффективности использования субстрата [23], с глубиной изменяются незначительно с 0,9 (0–25 см) до 0,6 (200–250 см) и в целом для вегетационного периода 2012 г. не превышают 1, следовательно, характеризуют стабильное функционирование микробных сообществ в исследуемой торфяной залежи. Согласно работе Т. Н. Anderson [24], отсутствие значительных различий величин QR может свидетельствовать об устойчивом протекании микробных процессов, связанных с трансформацией углерода.

Подробнее остановимся на динамике респирометрических микробиологических показателей исследуемой торфяной залежи олиготрофного болота.

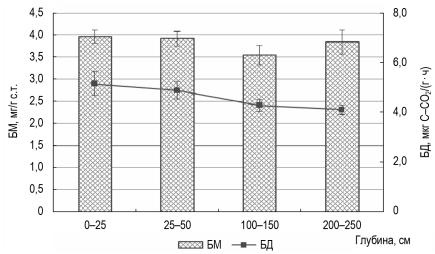
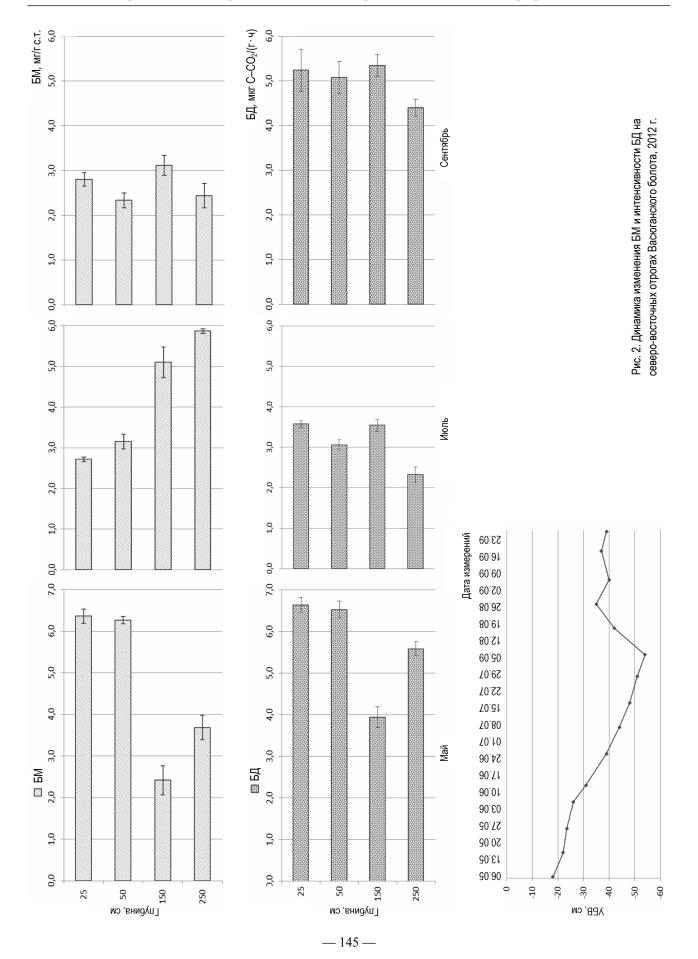




Рис. 1. Изменение микробной биомассы и интенсивности дыхания на северо-восточных отрогах Васюганского болота в среднем за 2012 г.



Вегетационный период 2012 г. характеризуется как жаркий и сухой, что является редким явлением для территории Западной Сибири. Значения ГТК для всех месяцев были ниже среднемноголетних, что характеризует погодные условия как засушливые. Май и июль характеризовались по ГТК как очень сухие (ГТК – 0,2 и 0,1 соответственно).

Уровни болотных вод (УБВ) уже в начале вегетационного периода 2012 г. были на 9 см ниже поверхности, и включительно по август отмечалось снижение УБВ. Максимальное их понижение было зафиксировано в конце июля, начале августа — 54 см от поверхности. К сентябрю УБВ поднялся до отметки — 35 см.

Такое снижение УБВ нетипично для рассматриваемого олиготрофного болота, что, надо полагать, оказывает влияние на окислительно-восстановительные условия торфяной залежи. Торфяную залежь условно можно разделить на три горизонта: верхний (с преобладанием окислительных процессов), переходный (с переменными ОВ условиями) и нижний (с преобладанием резко восстановительных условий). В обычный по погодным условиям год на исследуемом олиготрофном болоте окислительные процессы формируются в верхних слоях до 20 см, отмечаемое очень сильное понижение УБВ в 2012 г. привело к распределению окислительных условий глубже 50 см. Такие уникальные для олиготрофного болота окислительные условия, вероятно, оказали влияние на интенсивность микробиологических процессов, протекающих в торфяной залежи в течение рассматриваемого периода.

Сезонный анализ основных респирометрических характеристик показал, что в аэробной зоне торфяной залежи (0–50 см) наиболее высокие значения микробной биомассы регистрируются в мае,

они изменяются в пределах 6,3–6,4 мг С/г с.т. (рис. 2). В июле и сентябре значения биомассы характеризуются практически одинаковыми величинами, но они примерно в 2 раза ниже весенних значений (2,3–3,2 мг С/г с.т.). В анаэробных слоях максимальные значения БМ фиксируются в июле (5,1–5,9 мг С/г с.т.), в мае и сентябре отмечается снижение биомассы микроорганизмов в 2 раза.

Интенсивность базального дыхания (БД) в аэробной зоне в погодных условиях 2012 г., как и значения биомассы, выше в мае (6,53-6,64 мкг С- $CO_{2}/(\Gamma \cdot \Psi)$ ), что отражает связь между БМ и БД в аэробных слоях торфяной залежи. Это предположение подтверждается исследованиями, проведенными на олиготрофном болоте Озерное [15], согласно которым скорость базального дыхания микроорганизмов коррелировала с величинами микробной биомассы (r = 0.8), и максимальные значения дыхания отмечены в аэробной зоне. В анаэробной зоне торфяной залежи наиболее высокая интенсивность БД фиксируется в мае и сентябре (3,95–5,59 и 4,40– 5,35 мкг С-CO<sub>2</sub>/( $\Gamma \cdot \Psi$ ), соответственно месяцам), минимальная в июле  $(2,32-3,54 \text{ мкг C-CO}_2/(\Gamma \cdot \Psi))$ , при том, что максимальные значения микробной биомассы отмечаются именно в летний период. В целом следует отметить, что в каждый из рассматриваемых месяцев интенсивность дыхания с глубиной изменяется незначительно, несмотря на изменения содержания микробной биомассы.

Значения микробного метаболического коэффициента, представляющего собой отношение скоростей базального и субстрат-индуцированного дыхания, в мае и июле не превышает 1: в мае – от 0,61 до 0,86, при среднем для залежи – 0,74; в июле от 0,05 до 0,54, при среднем – 0,34. В целом оба коэффициента отражают устойчивое состояние микробных сообществ в весенний и летний периоды.

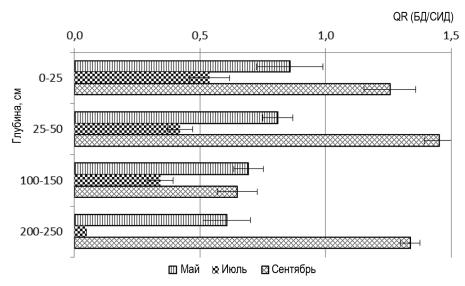



Рис. 3. Динамика микробного метаболического коэффициента на северо-восточных отрогах Васюганского болота, 2012 г.

В сентябре значения QR изменяются от 0,65 до 1,45, при среднем для залежи — 1,17, что свидетельствует о более высокой трофности торфяной залежи в осенний период, но функционирование микробного сообщества в сентябре можно также охарактеризовать как стабильное. Наибольшие колебания QR отмечаются летом, что указывает на более существенную зависимость микрофлоры от внешних факторов среды именно в этот период.

### ЗАКЛЮЧЕНИЕ

В торфяном профиле олиготрофного болота в среднем за сезон содержание БМ изменяется от 3,6 до 3,8 мг С/г с.т., интенсивность БД — от 5,2 до 4,1 мкг С—СО $_2$ /(г · ч), значения QR не превышают 1. Полученные данные, сопоставимые с имеющимися в научной литературе, и характеризуют стабильное функционирование микробных со-

обществ в рассматриваемый период времени.

Динамика БМ различна для аэробных и анаэробных слоев исследуемой торфяной залежи, наиболее высокие значения БМ в аэробных слоях регистрируются в мае (6,3-6,4 мг C/r с.т.), в анаэробных – в июле (5,1-5,9 мг C/r с.т.). Интенсивность БД в аэробных слоях выше в мае  $(6,5-6,6 \text{ мкг C-CO}_2/(\Gamma \cdot \Psi))$ , что отражает связь между БМ и БД. В анаэробных в мае  $(3,9-5,6 \text{ мкг C-CO}_2/(\Gamma \cdot \Psi))$  и сентябре  $(4,4-5,4 \text{ мкг C-CO}_2/(\Gamma \cdot \Psi))$ .

Наибольшие колебания QR отмечаются летом, что указывает на более существенную зависимость микрофлоры от внешних факторов среды в этот период.

Исследования поддержаны грантам РФФИ (12-04-31716) и государственным заданием Минобрнауки (5.1161.2011).

## Список литературы

- 1. Головченко А. В., Полянская Л. М., Добровольская Т. Г. и др. Особенности пространственного распределения и структуры микробных комплексов болотных-лесных экосистем // Почвоведение. 1993. № 10. С. 78–89.
- 2. Инишева Л. И., Головченко А. В. Характеристика микробоценоза в торфяных залежах ландшафтного профиля олиготрофного торфогенеза // Сиб. экол. журн. 2007. № 3. С. 363–373.
- 3. Головченко А. В., Тихонова Е. Ю., Звягинцев Д. Г. Численность, биомасса, структура и активность микробных комплексов низинных и верховых торфяников // Микробиология. 2007. Т. 76, № 5. С. 711–719.
- 4. Головченко А. В., Добровольская Т. Г., Звягинцев Д. Г. Микробиологические основы оценки торфяника как профильного почвенного тела // Вестн. Том. гос. пед. ун-та. 2008. № 4 (78). С. 46–53.
- 5. Добровольская Т. Г., Головченко А. В., Кухаренко О. С. и др. Структура микробных сообществ верховых и низинных торфяников Томской области // Почвоведение. 2012. № 3. С. 317–326.
- 6. Сусьян Е. А., Ананьева Н. Д., Гавриленко Е. Г. и др. Углерод микробной биомассы в профиле лесных почв южной тайги // Почвоведение. 2009. № 10. С. 1233–1240.
- 7. Ананьева Н. Д., Полянская Л. М., Сусьян Е. А. и др. Сравнительная оценка микробной биомассы почв, определяемой методами прямого микроскопирования и субстрат-индуцированного дыхания // Микробиология. 2008. Т. 77. №. 3. С. 404—412.
- 8. Domsch K. H., Beck Th., Anderson J. P. E. et al. A comparison of methods for soil microbial population and biomass studies // Z. Pflanzenernaehr. Bodenkd. 1979. № 142. P. 520–533.
- 9. Bouma J. Environmental quality: a Eurupean perspective // J. Environm. Quality. 1997. V. 26. P. 26–31.
- 10. Sikora L. J., Yakovchenko V., Kaufman D. D. Comprasion of rehydration method for biomass determination to fumigation-incubation and substrate-induced respiration method // Soil Biol. Biochem. 1994. V. 26, № 10. P. 1443–1445.
- 11. Ананьева Н. Д. Микробиологические аспекты самоочищения и устойчивости почв. М.: Наука, 2003. 223 с.
- 12. Ананьева Н. Д., Сусьян Е. А., Рыжова И. М. и др. Углерод микробной биомассы и микробное продуцирование двуокиси углерода дерново-подзолистыми почвами постагрогенных биогеоценозов и коренных ельников южной тайги (Костромская область) // Почвоведение. 2009. № 9. С. 1108–1116.
- 13. Сусьян Е. А., Рыбянец Д. С., Ананьева Н. Д. Изменение микробной активности по профилю серой лесной почвы и чернозема // Почвоведение. 2006. № 8. С. 956–964.
- 14. Ananyeva N. D., Susyan E. A., Chernova O. V., Wirth S. Microbial respiration activities of soils from different climaticregions of European Russia // European J. Soil Biol. 2008. V. 44, № 2. P. 147–157.
- 15. Гродницкая И. Д., Трусова М. Ю. Микробные сообщества и трансформация соединений углерода в болотных почвах таежной зоны (Томская область) // Почвоведение. 2009. № 9. С. 1099–1107.
- 16. Сырцов С. Н. Функциональные особенности болотных микробоценозов на территории Средней Сибири // Материалы VII Всерос. с междунар. участием науч. шк. «Болота и биосфера» (13–15 сентября 2010 г.). Томск: Изд-во Том. гос. пед. ун-та, 2010. С. 253–256.
- 17. Сырцов С. Н., Гродницкая И. Д. Особенности функционирования микробных сообществ лесных и тундровых почв криолитозоны севера Сибири // Материалы VIII Всерос. с междунар. участием науч. шк. «Болота и биосфера» (10–15 сентября 2012 г.). Томск: Изд-во Том. гос. пед. ун-та, 2012. С. 271–274.
- 18. Гродницкая И. Д., Карпенко Л. В., Кнорре А. А., Сырцов С. Н. Микробная активность торфяных почв заболоченных лиственничников и болота в криолитозоне Центральной Эвенкии // Почвоведение. 2013. № 1. С. 67–79.

- 19. Инишева Л. И., Виноградов В. Ю., Голубина О. А., Ларина Г. В. и др. Болотные стационары Томского государственного педагогического университета. Томск: Изд-во ТПУ, 2010. 118 с.
- 20. Anderson J. P. E., Domsch K. H. A phisiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10, № 3. P. 314–322.
- 21. Методы почвенной микробиологии и биохимии / под ред. Д. Г. Звягинцева. М.: Изд-во Моск. ун-та, 1991. 303 с.
- 22. Инишева Л. И., Головченко А. В., Бубина А. Б., Голубина О. А. Характеристика биохимических процессвов эвтрофных и мезотрофных болотах Сибири // Вестн. Том. гос. пед. ун-та. 2009. № 11 (89). С. 207–212.
- 23. Anderson T. H., Domsch K. H. Application of eco-physiological quotients qCO2 and qD on microbial biomass from soils of different cropping histories // Soil Biol. Biochem. 1990. V. 22, № 2. P. 251–255.
- 24. Anderson T. H., Domsch K. H. The metabolic quotient for CO2 (qCO2) as a specific of environmental conditions, such as pH, on the microbial biomass of forest soils // Soil Biol. Biochem. 1993. V. 25. P. 393–395.

Сергеева М. А., доцент, кандидат биологических наук.

#### Томский государственный педагогический университет.

Ул. Киевская, 60, Томск, Россия, 634061.

E-mail: Margaret80@yandex.ru

Шкребова С. В., магистрант.

#### Томский государственный педагогический университет.

Ул. Киевская, 60, Томск, Россия, 634061.

E-mail: agroecol@yandex.ru

Материал поступил в редакцию 17.05.2013.

#### M. A. Sergeeva, S. V. Shkrebova

### DYNAMICS OF MICROBIAL BIOMASS OF THE OLIGOTROPHIC BOG

The method of substrate-induced respiration studied the dynamics of the rate of basal respiration, microbial biomass and metabolic quotient peat deposits oligotrophic bog (north-eastern part of the Vasyugan bog). It was determined that on average during the season microbial biomass values vary slightly with the depth and basal respiration of aerobic layers.

**Key words:** oligotrophic bog, microbial activity, substrate-induced respiration method, microbial biomass, basal respiration, metabolic quotient.

Sergeeva M. A.

### Tomsk State Pedagogical University.

Ul. Kievskaya, 60, Tomsk, Russia, 634061.

E-mail: Margaret80@yandex.ru

Shkrebova S. V.

# Tomsk State Pedagogical University.

Ul. Kievskaya, 60, Tomsk, Russia, 634061.

E-mail: agroecol@yandex.ru